/* Parameters for execution on a Gould NP1, for GDB, the GNU debugger. Copyright (C) 1986, 1987 Free Software Foundation, Inc. GDB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to anyone for the consequences of using it or for whether it serves any particular purpose or works at all, unless he says so in writing. Refer to the GDB General Public License for full details. Everyone is granted permission to copy, modify and redistribute GDB, but only under the conditions described in the GDB General Public License. A copy of this license is supposed to have been given to you along with GDB so you can know your rights and responsibilities. It should be in a file named COPYING. Among other things, the copyright notice and this notice must be preserved on all copies. In other words, go ahead and share GDB, but don't try to stop anyone else from sharing it farther. Help stamp out software hoarding! */ /* This code appears in libraries on Gould machines. Ignore it. */ #define IGNORE_SYMBOL(type) (type == N_ENTRY) /* Macro for text-offset and data info (in NPL a.out format). */ #define TEXTINFO \ text_offset = N_TXTOFF (exec_coffhdr, exec_aouthdr); \ exec_data_offset = N_TXTOFF (exec_coffhdr, exec_aouthdr)\ + exec_aouthdr.a_text /* Macro for number of symbol table entries */ #define END_OF_TEXT_DEFAULT \ (0xffffff) /* Macro for number of symbol table entries */ #define NUMBER_OF_SYMBOLS \ (coffhdr.f_nsyms) /* Macro for file-offset of symbol table (in NPL a.out format). */ #define SYMBOL_TABLE_OFFSET \ N_SYMOFF (coffhdr) /* Macro for file-offset of string table (in NPL a.out format). */ #define STRING_TABLE_OFFSET \ (N_STROFF (coffhdr) + sizeof(int)) /* Macro to store the length of the string table data in INTO. */ #define READ_STRING_TABLE_SIZE(INTO) \ { INTO = hdr.a_stsize; } /* Macro to declare variables to hold the file's header data. */ #define DECLARE_FILE_HEADERS struct exec hdr; \ FILHDR coffhdr /* Macro to read the header data from descriptor DESC and validate it. NAME is the file name, for error messages. */ #define READ_FILE_HEADERS(DESC, NAME) \ { val = myread (DESC, &coffhdr, sizeof coffhdr); \ if (val < 0) \ perror_with_name (NAME); \ val = myread (DESC, &hdr, sizeof hdr); \ if (val < 0) \ perror_with_name (NAME); \ if (coffhdr.f_magic != GNP1MAGIC) \ error ("File \"%s\" not in coff executable format.", NAME); \ if (N_BADMAG (hdr)) \ error ("File \"%s\" not in executable format.", NAME); } /* Define COFF and other symbolic names needed on NP1 */ #define NS32GMAGIC GNP1MAGIC #define NS32SMAGIC GPNMAGIC #define vprintf printf /* Get rid of any system-imposed stack limit if possible. */ #define SET_STACK_LIMIT_HUGE /* Define this if the C compiler puts an underscore at the front of external names before giving them to the linker. */ #define NAMES_HAVE_UNDERSCORE /* Debugger information will be in DBX format. */ #define READ_DBX_FORMAT /* Offset from address of function to start of its code. Zero on most machines. */ #define FUNCTION_START_OFFSET 8 /* Advance PC across any function entry prologue instructions to reach some "real" code. One NPL we can have one two startup sequences depending on the size of the local stack: Either: "suabr b2, #" of "lil r4, #", "suabr b2, #(r4)" "lwbr b6, #", "stw r1, 8(b2)" Optional "stwbr b3, c(b2)" Optional "trr r2,r7" (Gould first argument register passing) or Optional "stw r2,8(b3)" (Gould first argument register passing) */ #define SKIP_PROLOGUE(pc) { \ register int op = read_memory_integer ((pc), 4); \ if ((op & 0xffff0000) == 0xFA0B0000) { \ pc += 4; \ op = read_memory_integer ((pc), 4); \ if ((op & 0xffff0000) == 0x59400000) { \ pc += 4; \ op = read_memory_integer ((pc), 4); \ if ((op & 0xffff0000) == 0x5F000000) { \ pc += 4; \ op = read_memory_integer ((pc), 4); \ if (op == 0xD4820008) { \ pc += 4; \ op = read_memory_integer ((pc), 4); \ if (op == 0x5582000C) { \ pc += 4; \ op = read_memory_integer ((pc), 2); \ if (op == 0x2fa0) { \ pc += 2; \ } else { \ op = read_memory_integer ((pc), 4); \ if (op == 0xd5030008) { \ pc += 4; \ } \ } \ } else { \ op = read_memory_integer ((pc), 2); \ if (op == 0x2fa0) { \ pc += 2; \ } \ } \ } \ } \ } \ } \ if ((op & 0xffff0000) == 0x59000000) { \ pc += 4; \ op = read_memory_integer ((pc), 4); \ if ((op & 0xffff0000) == 0x5F000000) { \ pc += 4; \ op = read_memory_integer ((pc), 4); \ if (op == 0xD4820008) { \ pc += 4; \ op = read_memory_integer ((pc), 4); \ if (op == 0x5582000C) { \ pc += 4; \ op = read_memory_integer ((pc), 2); \ if (op == 0x2fa0) { \ pc += 2; \ } else { \ op = read_memory_integer ((pc), 4); \ if (op == 0xd5030008) { \ pc += 4; \ } \ } \ } else { \ op = read_memory_integer ((pc), 2); \ if (op == 0x2fa0) { \ pc += 2; \ } \ } \ } \ } \ } \ } /* Immediately after a function call, return the saved pc. Can't go through the frames for this because on some machines the new frame is not set up until the new function executes some instructions. True on NPL! Return address is in R1. The true return address is REALLY 4 past that location! */ `#define SAVED_PC_AFTER_CALL(frame) \ (read_register(R1_REGNUM) + 4) /* Address of U in kernel space */ #define KERNEL_U_ADDR 0x7fffc000 /* Address of end of stack space. */ #define STACK_END_ADDR 0x7fffc000 /* Stack grows downward. */ #define INNER_THAN < /* Sequence of bytes for breakpoint instruction. */ #define BREAKPOINT {0x28, 0x09} /* Amount PC must be decremented by after a breakpoint. This is often the number of bytes in BREAKPOINT but not always. */ #define DECR_PC_AFTER_BREAK 2 /* Nonzero if instruction at PC is a return instruction. "bu 4(r1)" */ #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0x40100004) /* Return 1 if P points to an invalid floating point value. */ #define INVALID_FLOAT(p, len) ((*(short *)p & 0xff80) == 0x8000) /* Largest integer type */ #define LONGEST long /* Name of the builtin type for the LONGEST type above. */ #define BUILTIN_TYPE_LONGEST builtin_type_long /* Say how long (ordinary) registers are. */ #define REGISTER_TYPE long /* Size of bytes of vector register (NP1 only), 32 elements * sizeof(int) */ #define VR_SIZE 128 /* Number of machine registers */ #define NUM_REGS 27 #define NUM_GEN_REGS 16 #define NUM_CPU_REGS 4 #define NUM_VECTOR_REGS 7 /* Initializer for an array of names of registers. There should be NUM_REGS strings in this initializer. */ #define REGISTER_NAMES { \ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \ "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \ "sp", "ps", "pc", "ve", \ "v1", "v2", "v3", "v4", "v5", "v6", "v7", \ } /* Register numbers of various important registers. Note that some of these values are "real" register numbers, and correspond to the general registers of the machine, and some are "phony" register numbers which are too large to be actual register numbers as far as the user is concerned but do serve to get the desired values when passed to read_register. */ #define R1_REGNUM 1 /* Gr1 => return address of caller */ #define R4_REGNUM 4 /* Gr4 => register save area */ #define R5_REGNUM 5 /* Gr5 => register save area */ #define R6_REGNUM 6 /* Gr6 => register save area */ #define R7_REGNUM 7 /* Gr7 => register save area */ #define B1_REGNUM 9 /* Br1 => start of this code routine */ #define FP_REGNUM 10 /* Br2 == (sp) */ #define AP_REGNUM 11 /* Br3 == (ap) */ #define SP_REGNUM 16 /* A copy of Br2 saved in trap */ #define PS_REGNUM 17 /* Contains processor status */ #define PC_REGNUM 18 /* Contains program counter */ #define VE_REGNUM 19 /* Vector end (user setup) register */ #define V1_REGNUM 20 /* First vector register */ #define V7_REGNUM 27 /* First vector register */ /* This is a piece of magic that is given a register number REGNO and as BLOCKEND the address in the system of the end of the user structure and stores in ADDR the address in the kernel or core dump of that register. */ #define REGISTER_U_ADDR(addr, blockend, regno) { \ addr = blockend + regno * 4; \ if (regno == VE_REGNUM) addr = blockend - 9 * 4; \ if (regno == PC_REGNUM) addr = blockend - 8 * 4; \ if (regno == PS_REGNUM) addr = blockend - 7 * 4; \ if (regno == SP_REGNUM) addr = blockend - 6 * 4; \ if (regno >= V1_REGNUM) \ addr = blockend + 16 * 4 + (regno - V1_REGNUM) * VR_SIZE; \ } /* Total amount of space needed to store our copies of the machine's register state, the array `registers'. */ #define REGISTER_BYTES \ (NUM_GEN_REGS*4 + NUM_VECTOR_REGS*VR_SIZE + NUM_CPU_REGS*4) /* Index within `registers' of the first byte of the space for register N. */ #define REGISTER_BYTE(N) \ (((N) < V1_REGNUM) ? ((N) * 4) : (((N) - V1_REGNUM) * VR_SIZE) + 80) /* Number of bytes of storage in the actual machine representation for register N. On the NP1, all normal regs are 4 bytes, but the vector registers are VR_SIZE*4 bytes long. */ #define REGISTER_RAW_SIZE(N) \ (((N) < V1_REGNUM) ? 4 : VR_SIZE) /* Number of bytes of storage in the program's representation for register N. On the NP1, all regs are 4 bytes. */ #define REGISTER_VIRTUAL_SIZE(N) \ (((N) < V1_REGNUM) ? 4 : VR_SIZE) /* Largest value REGISTER_RAW_SIZE can have. */ #define MAX_REGISTER_RAW_SIZE VR_SIZE /* Largest value REGISTER_VIRTUAL_SIZE can have. */ #define MAX_REGISTER_VIRTUAL_SIZE VR_SIZE /* Nonzero if register N requires conversion from raw format to virtual format. */ #define REGISTER_CONVERTIBLE(N) (0) /* Convert data from raw format for register REGNUM to virtual format for register REGNUM. */ #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \ bcopy ((FROM), (TO), REGISTER_RAW_SIZE(REGNUM)); /* Convert data from virtual format for register REGNUM to raw format for register REGNUM. */ #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \ bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM)); /* Return the GDB type object for the "standard" data type of data in register N. */ #define REGISTER_VIRTUAL_TYPE(N) (builtin_type_int) /* Store the address of the place in which to copy the structure the subroutine will return. This is called from call_function. On this machine this is a no-op, because gcc isn't used on it yet. So this calling convention is not used. */ #define STORE_STRUCT_RETURN(ADDR, SP) /* Extract from an arrary REGBUF containing the (raw) register state a function return value of type TYPE, and copy that, in virtual format, into VALBUF. */ #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \ bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE)) /* Write into appropriate registers a function return value of type TYPE, given in virtual format. */ #define STORE_RETURN_VALUE(TYPE,VALBUF) \ write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE)) /* Extract from an array REGBUF containing the (raw) register state the address in which a function should return its structure value, as a CORE_ADDR (or an expression that can be used as one). */ #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF)) /* Describe the pointer in each stack frame to the previous stack frame (its caller). */ /* FRAME_CHAIN takes a frame's nominal address and produces the frame's chain-pointer. FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address and produces the nominal address of the caller frame. However, if FRAME_CHAIN_VALID returns zero, it means the given frame is the outermost one and has no caller. In that case, FRAME_CHAIN_COMBINE is not used. */ /* In the case of the NPL, the frame's norminal address is Br2 and the previous routines frame is up the stack X bytes, where X is the value stored in the code function header xA(Br1). */ #define FRAME_CHAIN(thisframe) (findframe(thisframe)) #define FRAME_CHAIN_VALID(chain, thisframe) \ (chain != 0 && chain != (thisframe)->frame) #define FRAME_CHAIN_COMBINE(chain, thisframe) \ (chain) /* Define other aspects of the stack frame on NPL. */ #define FRAME_SAVED_PC(FRAME) \ (read_memory_integer ((FRAME)->frame + 8, 4)) #define FRAME_ARGS_ADDRESS(fi) \ ((fi)->next_frame ? \ read_memory_integer ((fi)->frame + 12, 4) : \ read_register (AP_REGNUM)) #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame + 80) /* Set VAL to the number of args passed to frame described by FI. Can set VAL to -1, meaning no way to tell. */ /* We can check the stab info to see how many arg we have. No info in stack will tell us */ #define FRAME_NUM_ARGS(val,fi) (val = findarg(fi)) /* Return number of bytes at start of arglist that are not really args. */ #define FRAME_ARGS_SKIP 8 /* Put here the code to store, into a struct frame_saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. */ #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \ { \ bzero (&frame_saved_regs, sizeof frame_saved_regs); \ (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 8; \ (frame_saved_regs).regs[R4_REGNUM] = (frame_info)->frame + 0x30; \ (frame_saved_regs).regs[R5_REGNUM] = (frame_info)->frame + 0x34; \ (frame_saved_regs).regs[R6_REGNUM] = (frame_info)->frame + 0x38; \ (frame_saved_regs).regs[R7_REGNUM] = (frame_info)->frame + 0x3C; \ } /* Things needed for making the inferior call functions. */ /* Push an empty stack frame, to record the current PC, etc. */ #define PUSH_DUMMY_FRAME \ { register CORE_ADDR sp = read_register (SP_REGNUM); \ register int regnum; \ sp = push_word (sp, read_register (PC_REGNUM)); \ sp = push_word (sp, read_register (FP_REGNUM)); \ write_register (FP_REGNUM, sp); \ for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \ sp = push_word (sp, read_register (regnum)); \ sp = push_word (sp, read_register (PS_REGNUM)); \ write_register (SP_REGNUM, sp); } /* Discard from the stack the innermost frame, restoring all saved registers. */ #define POP_FRAME \ { register FRAME frame = get_current_frame (); \ register CORE_ADDR fp; \ register int regnum; \ struct frame_saved_regs fsr; \ struct frame_info *fi; \ fi = get_frame_info (frame); \ fp = fi->frame; \ get_frame_saved_regs (fi, &fsr); \ for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \ if (fsr.regs[regnum]) \ write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \ if (fsr.regs[PS_REGNUM]) \ write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); \ write_register (FP_REGNUM, read_memory_integer (fp, 4)); \ write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \ write_register (SP_REGNUM, fp + 8); \ flush_cached_frames (); \ set_current_frame ( create_new_frame (read_register (FP_REGNUM),\ read_pc ())); } /* This sequence of words is the instructions: halt halt halt halt suabr b2, # lwbr b6, #con stw r1, 8(b2) - save caller address, do we care? lw r2, 60(b2) - arg1 labr b3, 50(b2) std r4, 30(b2) - save r4-r7 std r6, 38(b2) lwbr b1, # - load function call address brlnk r1, 8(b1) - call function halt halt ld r4, 30(b2) - restore r4-r7 ld r6, 38(b2) Setup our stack frame, load argumemts, call and then restore registers. */ #define CALL_DUMMY {0xf227e0ff, 0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, 0x4e4f4e71} #define CALL_DUMMY_LENGTH 28 #define CALL_DUMMY_START_OFFSET 12 /* Insert the specified number of args and function address into a call sequence of the above form stored at DUMMYNAME. */ #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, type) \ { *(int *)((char *) dummyname + 20) = nargs * 4; \ *(int *)((char *) dummyname + 14) = fun; } /* * No KDB support, Yet! */ /* Interface definitions for kernel debugger KDB. */ /* Map machine fault codes into signal numbers. First subtract 0, divide by 4, then index in a table. Faults for which the entry in this table is 0 are not handled by KDB; the program's own trap handler gets to handle then. */ #define FAULT_CODE_ORIGIN 0 #define FAULT_CODE_UNITS 4 #define FAULT_TABLE \ { 0, 0, 0, 0, SIGTRAP, 0, 0, 0, \ 0, SIGTRAP, 0, 0, 0, 0, 0, SIGKILL, \ 0, 0, 0, 0, 0, 0, 0, 0, \ SIGILL } /* Start running with a stack stretching from BEG to END. BEG and END should be symbols meaningful to the assembler. This is used only for kdb. */ #define INIT_STACK(beg, end) \ { asm (".globl end"); \ asm ("movel $ end, sp"); \ asm ("clrl fp"); } /* Push the frame pointer register on the stack. */ #define PUSH_FRAME_PTR \ asm ("movel fp, -(sp)"); /* Copy the top-of-stack to the frame pointer register. */ #define POP_FRAME_PTR \ asm ("movl (sp), fp"); /* After KDB is entered by a fault, push all registers that GDB thinks about (all NUM_REGS of them), so that they appear in order of ascending GDB register number. The fault code will be on the stack beyond the last register. */ #define PUSH_REGISTERS \ { asm ("clrw -(sp)"); \ asm ("pea 10(sp)"); \ asm ("movem $ 0xfffe,-(sp)"); } /* Assuming the registers (including processor status) have been pushed on the stack in order of ascending GDB register number, restore them and return to the address in the saved PC register. */ #define POP_REGISTERS \ { asm ("subil $8,28(sp)"); \ asm ("movem (sp),$ 0xffff"); \ asm ("rte"); }