/* Definitions to make GDB run on a merlin under utek 2.1 Copyright (C) 1986, 1987 Free Software Foundation, Inc. GDB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to anyone for the consequences of using it or for whether it serves any particular purpose or works at all, unless he says so in writing. Refer to the GDB General Public License for full details. Everyone is granted permission to copy, modify and redistribute GDB, but only under the conditions described in the GDB General Public License. A copy of this license is supposed to have been given to you along with GDB so you can know your rights and responsibilities. It should be in a file named COPYING. Among other things, the copyright notice and this notice must be preserved on all copies. In other words, go ahead and share GDB, but don't try to stop anyone else from sharing it farther. Help stamp out software hoarding! */ #ifndef ns16000 #define ns16000 #endif # include /* Define this if the C compiler puts an underscore at the front of external names before giving them to the linker. */ #define NAMES_HAVE_UNDERSCORE /* Debugger information will be in DBX format. */ #define READ_DBX_FORMAT /* Offset from address of function to start of its code. Zero on most machines. */ #define FUNCTION_START_OFFSET 0 /* Advance PC across any function entry prologue instructions to reach some "real" code. */ #define SKIP_PROLOGUE(pc) \ { register int op = read_memory_integer (pc, 1); \ if (op == 0x82) \ { op = read_memory_integer (pc+2,1); \ if ((op & 0x80) == 0) pc += 3; \ else if ((op & 0xc0) == 0x80) pc += 4; \ else pc += 6; \ }} /* Immediately after a function call, return the saved pc. Can't always go through the frames for this because on some machines the new frame is not set up until the new function executes some instructions. */ #define SAVED_PC_AFTER_CALL(frame) \ read_memory_integer (read_register (SP_REGNUM), 4) /* This is the amount to subtract from u.u_ar0 to get the offset in the core file of the register values. */ #define KERNEL_U_ADDR (0xfef000) /* Address of end of stack space. */ #define STACK_END_ADDR (0x800000) /* Stack grows downward. */ #define INNER_THAN < /* Sequence of bytes for breakpoint instruction. */ #define BREAKPOINT {0xf2} /* Amount PC must be decremented by after a breakpoint. This is often the number of bytes in BREAKPOINT but not always. */ #define DECR_PC_AFTER_BREAK 0 /* Nonzero if instruction at PC is a return instruction. */ #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0x12) /* Return 1 if P points to an invalid floating point value. */ #define INVALID_FLOAT(p, len) 0 /* Define this to say that the "svc" insn is followed by codes in memory saying which kind of system call it is. */ #define NS32K_SVC_IMMED_OPERANDS /* Say how long (ordinary) registers are. */ #define REGISTER_TYPE long /* Number of machine registers */ #define NUM_REGS 25 #define NUM_GENERAL_REGS 8 /* Initializer for an array of names of registers. There should be NUM_REGS strings in this initializer. */ #define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \ "pc", "sp", "fp", "ps", \ "fsr", \ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \ "l0", "l1", "l2", "l3", "l4", \ } /* Register numbers of various important registers. Note that some of these values are "real" register numbers, and correspond to the general registers of the machine, and some are "phony" register numbers which are too large to be actual register numbers as far as the user is concerned but do serve to get the desired values when passed to read_register. */ #define AP_REGNUM FP_REGNUM #define FP_REGNUM 10 /* Contains address of executing stack frame */ #define SP_REGNUM 9 /* Contains address of top of stack */ #define PC_REGNUM 8 /* Contains program counter */ #define PS_REGNUM 11 /* Contains processor status */ #define FPS_REGNUM 12 /* Floating point status register */ #define FP0_REGNUM 13 /* Floating point register 0 */ #define LP0_REGNUM 21 /* Double register 0 (same as FP0) */ #define REGISTER_U_ADDR(addr, blockend, regno) \ { \ switch (regno) { \ case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7: \ addr = blockend + (R0 - regno) * sizeof (int); break; \ case PC_REGNUM: \ addr = blockend + PC * sizeof (int); break; \ case SP_REGNUM: \ addr = blockend + SP * sizeof (int); break; \ case FP_REGNUM: \ addr = blockend + FP * sizeof (int); break; \ case PS_REGNUM: \ addr = blockend + 12 * sizeof (int); break; \ case FPS_REGNUM: \ addr = 108; break; \ case FP0_REGNUM + 0: case FP0_REGNUM + 1: \ case FP0_REGNUM + 2: case FP0_REGNUM + 3: \ case FP0_REGNUM + 4: case FP0_REGNUM + 5: \ case FP0_REGNUM + 6: case FP0_REGNUM + 7: \ addr = 76 + (regno - FP0_REGNUM) * sizeof (float); break; \ case LP0_REGNUM + 0: case LP0_REGNUM + 1: \ case LP0_REGNUM + 2: case LP0_REGNUM + 3: \ addr = 76 + (regno - LP0_REGNUM) * sizeof (double); break; \ default: \ printf ("bad argument to REGISTER_U_ADDR %d\n", regno); \ abort (); \ } \ } /* Total amount of space needed to store our copies of the machine's register state, the array `registers'. */ #define REGISTER_BYTES ((NUM_REGS - 4) * sizeof (int) + 4 * sizeof (double)) /* Index within `registers' of the first byte of the space for register N. */ #define REGISTER_BYTE(N) ((N) >= LP0_REGNUM ? \ LP0_REGNUM * 4 + ((N) - LP0_REGNUM) * 8 : (N) * 4) /* Number of bytes of storage in the actual machine representation for register N. On the 32000, all regs are 4 bytes except for the doubled floating registers. */ #define REGISTER_RAW_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4) /* Number of bytes of storage in the program's representation for register N. On the 32000, all regs are 4 bytes except for the doubled floating registers. */ #define REGISTER_VIRTUAL_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4) /* Largest value REGISTER_RAW_SIZE can have. */ #define MAX_REGISTER_RAW_SIZE 8 /* Largest value REGISTER_VIRTUAL_SIZE can have. */ #define MAX_REGISTER_VIRTUAL_SIZE 8 /* Nonzero if register N requires conversion from raw format to virtual format. */ #define REGISTER_CONVERTIBLE(N) 0 /* Convert data from raw format for register REGNUM to virtual format for register REGNUM. */ #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \ bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM)); /* Convert data from virtual format for register REGNUM to raw format for register REGNUM. */ #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \ bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM)); /* Return the GDB type object for the "standard" data type of data in register N. */ #define REGISTER_VIRTUAL_TYPE(N) \ ((N) >= FP0_REGNUM ? \ ((N) >= LP0_REGNUM ? \ builtin_type_double \ : builtin_type_float) \ : builtin_type_int) /* Extract from an array REGBUF containing the (raw) register state a function return value of type TYPE, and copy that, in virtual format, into VALBUF. */ #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \ bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE)) /* Write into appropriate registers a function return value of type TYPE, given in virtual format. */ #define STORE_RETURN_VALUE(TYPE,VALBUF) \ write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE)) /* Extract from an array REGBUF containing the (raw) register state the address in which a function should return its structure value, as a CORE_ADDR (or an expression that can be used as one). */ #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF)) /* Describe the pointer in each stack frame to the previous stack frame (its caller). */ /* FRAME_CHAIN takes a frame's nominal address and produces the frame's chain-pointer. FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address and produces the nominal address of the caller frame. However, if FRAME_CHAIN_VALID returns zero, it means the given frame is the outermost one and has no caller. In that case, FRAME_CHAIN_COMBINE is not used. */ /* In the case of the Merlin, the frame's nominal address is the FP value, and at that address is saved previous FP value as a 4-byte word. */ #define FRAME_CHAIN(thisframe) (read_memory_integer (thisframe, 4)) #define FRAME_CHAIN_VALID(chain, thisframe) \ (chain != 0 && (FRAME_SAVED_PC (thisframe) >= first_object_file_end)) #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain) /* Define other aspects of the stack frame. */ #define FRAME_SAVED_PC(frame) (read_memory_integer (frame + 4, 4)) /* compute base of arguments */ #define FRAME_ARGS_ADDRESS(fi) ((fi).frame) #define FRAME_LOCALS_ADDRESS(fi) ((fi).frame) /* Return number of args passed to a frame. Can return -1, meaning no way to tell. */ #define FRAME_NUM_ARGS(numargs, fi) \ { CORE_ADDR pc; \ int insn; \ int addr_mode; \ int width; \ \ pc = FRAME_SAVED_PC (fi.frame); \ insn = read_memory_integer (pc,2); \ addr_mode = (insn >> 11) & 0x1f; \ insn = insn & 0x7ff; \ if ((insn & 0x7fc) == 0x57c \ && addr_mode == 0x14) /* immediate */ \ { if (insn == 0x57c) /* adjspb */ \ width = 1; \ else if (insn == 0x57d) /* adjspw */ \ width = 2; \ else if (insn == 0x57f) /* adjspd */ \ width = 4; \ numargs = read_memory_integer (pc+2,width); \ if (width > 1) \ flip_bytes (&numargs, width); \ numargs = - sign_extend (numargs, width*8) / 4; } \ else numargs = -1; \ } /* Return number of bytes at start of arglist that are not really args. */ #define FRAME_ARGS_SKIP 8 /* Put here the code to store, into a struct frame_saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. */ #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \ { int regmask,regnum; \ int localcount; \ CORE_ADDR enter_addr; \ CORE_ADDR next_addr; \ \ enter_addr = get_pc_function_start ((frame_info).pc); \ regmask = read_memory_integer (enter_addr+1, 1); \ localcount = ns32k_localcount (enter_addr); \ next_addr = (frame_info).frame + localcount; \ for (regnum = 0; regnum < 8; regnum++, regmask >>= 1) \ (frame_saved_regs).regs[regnum] \ = (regmask & 1) ? (next_addr -= 4) : 0; \ (frame_saved_regs).regs[SP_REGNUM] = (frame_info).frame + 4; \ (frame_saved_regs).regs[PC_REGNUM] = (frame_info).frame + 4; \ (frame_saved_regs).regs[FP_REGNUM] \ = read_memory_integer ((frame_info).frame, 4); } /* Things needed for making the inferior call functions. */ /* Push an empty stack frame, to record the current PC, etc. */ #define PUSH_DUMMY_FRAME \ { register CORE_ADDR sp = read_register (SP_REGNUM); \ register int regnum; \ sp = push_word (sp, read_register (PC_REGNUM)); \ sp = push_word (sp, read_register (FP_REGNUM)); \ write_register (FP_REGNUM, sp); \ for (regnum = 0; regnum < 8; regnum++) \ sp = push_word (sp, read_register (regnum)); \ write_register (SP_REGNUM, sp); \ } /* Discard from the stack the innermost frame, restoring all registers. */ #define POP_FRAME \ { register CORE_ADDR fp = read_register (FP_REGNUM); \ register int regnum; \ struct frame_saved_regs fsr; \ struct frame_info fi; \ fi = get_frame_info (fp); \ get_frame_saved_regs (&fi, &fsr); \ for (regnum = 0; regnum < 8; regnum++) \ if (fsr.regs[regnum]) \ write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \ write_register (FP_REGNUM, read_memory_integer (fp, 4)); \ write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \ write_register (SP_REGNUM, fp + 8); \ } /* This sequence of words is the instructions enter 0xff,0 82 ff 00 jsr @0x00010203 7f ae c0 01 02 03 adjspd 0x69696969 7f a5 01 02 03 04 bpt f2 Note this is 16 bytes. */ #define CALL_DUMMY { 0x7f00ff82, 0x0201c0ae, 0x01a57f03, 0xf2040302 } #define CALL_DUMMY_START_OFFSET 3 #define CALL_DUMMY_LENGTH 16 #define CALL_DUMMY_ADDR 5 #define CALL_DUMMY_NARGS 11 /* Insert the specified number of args and function address into a call sequence of the above form stored at DUMMYNAME. */ #define FIX_CALL_DUMMY(dummyname, fun, nargs) \ { int flipped = fun | 0xc0000000; \ flip_bytes (&flipped, 4); \ *((int *) (((char *) dummyname)+CALL_DUMMY_ADDR)) = flipped; \ flipped = - nargs * 4; \ flip_bytes (&flipped, 4); \ *((int *) (((char *) dummyname)+CALL_DUMMY_NARGS)) = flipped; \ } #ifdef notdef /* Interface definitions for kernel debugger KDB. */ /* Map machine fault codes into signal numbers. First subtract 0, divide by 4, then index in a table. Faults for which the entry in this table is 0 are not handled by KDB; the program's own trap handler gets to handle then. */ #define FAULT_CODE_ORIGIN 0 #define FAULT_CODE_UNITS 4 #define FAULT_TABLE \ { 0, SIGKILL, SIGSEGV, 0, 0, 0, 0, 0, \ 0, 0, SIGTRAP, SIGTRAP, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0} /* Start running with a stack stretching from BEG to END. BEG and END should be symbols meaningful to the assembler. This is used only for kdb. */ #define INIT_STACK(beg, end) \ { asm (".globl end"); \ asm ("movl $ end, sp"); \ asm ("clrl fp"); } /* Push the frame pointer register on the stack. */ #define PUSH_FRAME_PTR \ asm ("pushl fp"); /* Copy the top-of-stack to the frame pointer register. */ #define POP_FRAME_PTR \ asm ("movl (sp), fp"); /* After KDB is entered by a fault, push all registers that GDB thinks about (all NUM_REGS of them), so that they appear in order of ascending GDB register number. The fault code will be on the stack beyond the last register. */ #define PUSH_REGISTERS \ { asm ("pushl 8(sp)"); \ asm ("pushl 8(sp)"); \ asm ("pushal 0x14(sp)"); \ asm ("pushr $037777"); } /* Assuming the registers (including processor status) have been pushed on the stack in order of ascending GDB register number, restore them and return to the address in the saved PC register. */ #define POP_REGISTERS \ { asm ("popr $037777"); \ asm ("subl2 $8,(sp)"); \ asm ("movl (sp),sp"); \ asm ("rei"); } #endif