/* GNU/Linux native-dependent code common to multiple platforms.
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
#include "defs.h"
#include "inferior.h"
#include "target.h"
#include "gdb_string.h"
#include "gdb_wait.h"
#include "gdb_assert.h"
#ifdef HAVE_TKILL_SYSCALL
#include
#include
#endif
#include
#include "linux-nat.h"
#include "linux-fork.h"
#include "gdbthread.h"
#include "gdbcmd.h"
#include "regcache.h"
#include "regset.h"
#include "inf-ptrace.h"
#include "auxv.h"
#include /* for MAXPATHLEN */
#include /* for elf_gregset etc. */
#include "elf-bfd.h" /* for elfcore_write_* */
#include "gregset.h" /* for gregset */
#include "gdbcore.h" /* for get_exec_file */
#include /* for isdigit */
#include "gdbthread.h" /* for struct thread_info etc. */
#include "gdb_stat.h" /* for struct stat */
#include /* for O_RDONLY */
#include "inf-loop.h"
#include "event-loop.h"
#include "event-top.h"
#include
#include
#include "gdb_dirent.h"
#include "xml-support.h"
#include "terminal.h"
#ifdef HAVE_PERSONALITY
# include
# if !HAVE_DECL_ADDR_NO_RANDOMIZE
# define ADDR_NO_RANDOMIZE 0x0040000
# endif
#endif /* HAVE_PERSONALITY */
/* This comment documents high-level logic of this file.
Waiting for events in sync mode
===============================
When waiting for an event in a specific thread, we just use waitpid, passing
the specific pid, and not passing WNOHANG.
When waiting for an event in all threads, waitpid is not quite good. Prior to
version 2.4, Linux can either wait for event in main thread, or in secondary
threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
miss an event. The solution is to use non-blocking waitpid, together with
sigsuspend. First, we use non-blocking waitpid to get an event in the main
process, if any. Second, we use non-blocking waitpid with the __WCLONED
flag to check for events in cloned processes. If nothing is found, we use
sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
happened to a child process -- and SIGCHLD will be delivered both for events
in main debugged process and in cloned processes. As soon as we know there's
an event, we get back to calling nonblocking waitpid with and without __WCLONED.
Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
so that we don't miss a signal. If SIGCHLD arrives in between, when it's
blocked, the signal becomes pending and sigsuspend immediately
notices it and returns.
Waiting for events in async mode
================================
In async mode, GDB should always be ready to handle both user input
and target events, so neither blocking waitpid nor sigsuspend are
viable options. Instead, we should asynchronously notify the GDB main
event loop whenever there's an unprocessed event from the target. We
detect asynchronous target events by handling SIGCHLD signals. To
notify the event loop about target events, the self-pipe trick is used
--- a pipe is registered as waitable event source in the event loop,
the event loop select/poll's on the read end of this pipe (as well on
other event sources, e.g., stdin), and the SIGCHLD handler writes a
byte to this pipe. This is more portable than relying on
pselect/ppoll, since on kernels that lack those syscalls, libc
emulates them with select/poll+sigprocmask, and that is racy
(a.k.a. plain broken).
Obviously, if we fail to notify the event loop if there's a target
event, it's bad. OTOH, if we notify the event loop when there's no
event from the target, linux_nat_wait will detect that there's no real
event to report, and return event of type TARGET_WAITKIND_IGNORE.
This is mostly harmless, but it will waste time and is better avoided.
The main design point is that every time GDB is outside linux-nat.c,
we have a SIGCHLD handler installed that is called when something
happens to the target and notifies the GDB event loop. Whenever GDB
core decides to handle the event, and calls into linux-nat.c, we
process things as in sync mode, except that the we never block in
sigsuspend.
While processing an event, we may end up momentarily blocked in
waitpid calls. Those waitpid calls, while blocking, are guarantied to
return quickly. E.g., in all-stop mode, before reporting to the core
that an LWP hit a breakpoint, all LWPs are stopped by sending them
SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
Note that this is different from blocking indefinitely waiting for the
next event --- here, we're already handling an event.
Use of signals
==============
We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
signal is not entirely significant; we just need for a signal to be delivered,
so that we can intercept it. SIGSTOP's advantage is that it can not be
blocked. A disadvantage is that it is not a real-time signal, so it can only
be queued once; we do not keep track of other sources of SIGSTOP.
Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
use them, because they have special behavior when the signal is generated -
not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
kills the entire thread group.
A delivered SIGSTOP would stop the entire thread group, not just the thread we
tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
cancel it (by PTRACE_CONT without passing SIGSTOP).
We could use a real-time signal instead. This would solve those problems; we
could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
generates it, and there are races with trying to find a signal that is not
blocked. */
#ifndef O_LARGEFILE
#define O_LARGEFILE 0
#endif
/* If the system headers did not provide the constants, hard-code the normal
values. */
#ifndef PTRACE_EVENT_FORK
#define PTRACE_SETOPTIONS 0x4200
#define PTRACE_GETEVENTMSG 0x4201
/* options set using PTRACE_SETOPTIONS */
#define PTRACE_O_TRACESYSGOOD 0x00000001
#define PTRACE_O_TRACEFORK 0x00000002
#define PTRACE_O_TRACEVFORK 0x00000004
#define PTRACE_O_TRACECLONE 0x00000008
#define PTRACE_O_TRACEEXEC 0x00000010
#define PTRACE_O_TRACEVFORKDONE 0x00000020
#define PTRACE_O_TRACEEXIT 0x00000040
/* Wait extended result codes for the above trace options. */
#define PTRACE_EVENT_FORK 1
#define PTRACE_EVENT_VFORK 2
#define PTRACE_EVENT_CLONE 3
#define PTRACE_EVENT_EXEC 4
#define PTRACE_EVENT_VFORK_DONE 5
#define PTRACE_EVENT_EXIT 6
#endif /* PTRACE_EVENT_FORK */
/* We can't always assume that this flag is available, but all systems
with the ptrace event handlers also have __WALL, so it's safe to use
here. */
#ifndef __WALL
#define __WALL 0x40000000 /* Wait for any child. */
#endif
#ifndef PTRACE_GETSIGINFO
# define PTRACE_GETSIGINFO 0x4202
# define PTRACE_SETSIGINFO 0x4203
#endif
/* The single-threaded native GNU/Linux target_ops. We save a pointer for
the use of the multi-threaded target. */
static struct target_ops *linux_ops;
static struct target_ops linux_ops_saved;
/* The method to call, if any, when a new thread is attached. */
static void (*linux_nat_new_thread) (ptid_t);
/* The method to call, if any, when the siginfo object needs to be
converted between the layout returned by ptrace, and the layout in
the architecture of the inferior. */
static int (*linux_nat_siginfo_fixup) (struct siginfo *,
gdb_byte *,
int);
/* The saved to_xfer_partial method, inherited from inf-ptrace.c.
Called by our to_xfer_partial. */
static LONGEST (*super_xfer_partial) (struct target_ops *,
enum target_object,
const char *, gdb_byte *,
const gdb_byte *,
ULONGEST, LONGEST);
static int debug_linux_nat;
static void
show_debug_linux_nat (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
value);
}
static int debug_linux_nat_async = 0;
static void
show_debug_linux_nat_async (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
value);
}
static int disable_randomization = 1;
static void
show_disable_randomization (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
#ifdef HAVE_PERSONALITY
fprintf_filtered (file, _("\
Disabling randomization of debuggee's virtual address space is %s.\n"),
value);
#else /* !HAVE_PERSONALITY */
fputs_filtered (_("\
Disabling randomization of debuggee's virtual address space is unsupported on\n\
this platform.\n"), file);
#endif /* !HAVE_PERSONALITY */
}
static void
set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
{
#ifndef HAVE_PERSONALITY
error (_("\
Disabling randomization of debuggee's virtual address space is unsupported on\n\
this platform."));
#endif /* !HAVE_PERSONALITY */
}
static int linux_parent_pid;
struct simple_pid_list
{
int pid;
int status;
struct simple_pid_list *next;
};
struct simple_pid_list *stopped_pids;
/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
can not be used, 1 if it can. */
static int linux_supports_tracefork_flag = -1;
/* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
PTRACE_O_TRACEVFORKDONE. */
static int linux_supports_tracevforkdone_flag = -1;
/* Async mode support */
/* Zero if the async mode, although enabled, is masked, which means
linux_nat_wait should behave as if async mode was off. */
static int linux_nat_async_mask_value = 1;
/* The read/write ends of the pipe registered as waitable file in the
event loop. */
static int linux_nat_event_pipe[2] = { -1, -1 };
/* Flush the event pipe. */
static void
async_file_flush (void)
{
int ret;
char buf;
do
{
ret = read (linux_nat_event_pipe[0], &buf, 1);
}
while (ret >= 0 || (ret == -1 && errno == EINTR));
}
/* Put something (anything, doesn't matter what, or how much) in event
pipe, so that the select/poll in the event-loop realizes we have
something to process. */
static void
async_file_mark (void)
{
int ret;
/* It doesn't really matter what the pipe contains, as long we end
up with something in it. Might as well flush the previous
left-overs. */
async_file_flush ();
do
{
ret = write (linux_nat_event_pipe[1], "+", 1);
}
while (ret == -1 && errno == EINTR);
/* Ignore EAGAIN. If the pipe is full, the event loop will already
be awakened anyway. */
}
static void linux_nat_async (void (*callback)
(enum inferior_event_type event_type, void *context),
void *context);
static int linux_nat_async_mask (int mask);
static int kill_lwp (int lwpid, int signo);
static int stop_callback (struct lwp_info *lp, void *data);
static void block_child_signals (sigset_t *prev_mask);
static void restore_child_signals_mask (sigset_t *prev_mask);
/* Trivial list manipulation functions to keep track of a list of
new stopped processes. */
static void
add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
{
struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
new_pid->pid = pid;
new_pid->status = status;
new_pid->next = *listp;
*listp = new_pid;
}
static int
pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
{
struct simple_pid_list **p;
for (p = listp; *p != NULL; p = &(*p)->next)
if ((*p)->pid == pid)
{
struct simple_pid_list *next = (*p)->next;
*status = (*p)->status;
xfree (*p);
*p = next;
return 1;
}
return 0;
}
static void
linux_record_stopped_pid (int pid, int status)
{
add_to_pid_list (&stopped_pids, pid, status);
}
/* A helper function for linux_test_for_tracefork, called after fork (). */
static void
linux_tracefork_child (void)
{
int ret;
ptrace (PTRACE_TRACEME, 0, 0, 0);
kill (getpid (), SIGSTOP);
fork ();
_exit (0);
}
/* Wrapper function for waitpid which handles EINTR. */
static int
my_waitpid (int pid, int *status, int flags)
{
int ret;
do
{
ret = waitpid (pid, status, flags);
}
while (ret == -1 && errno == EINTR);
return ret;
}
/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
we know that the feature is not available. This may change the tracing
options for ORIGINAL_PID, but we'll be setting them shortly anyway.
However, if it succeeds, we don't know for sure that the feature is
available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
create a child process, attach to it, use PTRACE_SETOPTIONS to enable
fork tracing, and let it fork. If the process exits, we assume that we
can't use TRACEFORK; if we get the fork notification, and we can extract
the new child's PID, then we assume that we can. */
static void
linux_test_for_tracefork (int original_pid)
{
int child_pid, ret, status;
long second_pid;
sigset_t prev_mask;
/* We don't want those ptrace calls to be interrupted. */
block_child_signals (&prev_mask);
linux_supports_tracefork_flag = 0;
linux_supports_tracevforkdone_flag = 0;
ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
if (ret != 0)
{
restore_child_signals_mask (&prev_mask);
return;
}
child_pid = fork ();
if (child_pid == -1)
perror_with_name (("fork"));
if (child_pid == 0)
linux_tracefork_child ();
ret = my_waitpid (child_pid, &status, 0);
if (ret == -1)
perror_with_name (("waitpid"));
else if (ret != child_pid)
error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
if (! WIFSTOPPED (status))
error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
if (ret != 0)
{
ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
if (ret != 0)
{
warning (_("linux_test_for_tracefork: failed to kill child"));
restore_child_signals_mask (&prev_mask);
return;
}
ret = my_waitpid (child_pid, &status, 0);
if (ret != child_pid)
warning (_("linux_test_for_tracefork: failed to wait for killed child"));
else if (!WIFSIGNALED (status))
warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
"killed child"), status);
restore_child_signals_mask (&prev_mask);
return;
}
/* Check whether PTRACE_O_TRACEVFORKDONE is available. */
ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
linux_supports_tracevforkdone_flag = (ret == 0);
ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
if (ret != 0)
warning (_("linux_test_for_tracefork: failed to resume child"));
ret = my_waitpid (child_pid, &status, 0);
if (ret == child_pid && WIFSTOPPED (status)
&& status >> 16 == PTRACE_EVENT_FORK)
{
second_pid = 0;
ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
if (ret == 0 && second_pid != 0)
{
int second_status;
linux_supports_tracefork_flag = 1;
my_waitpid (second_pid, &second_status, 0);
ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
if (ret != 0)
warning (_("linux_test_for_tracefork: failed to kill second child"));
my_waitpid (second_pid, &status, 0);
}
}
else
warning (_("linux_test_for_tracefork: unexpected result from waitpid "
"(%d, status 0x%x)"), ret, status);
ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
if (ret != 0)
warning (_("linux_test_for_tracefork: failed to kill child"));
my_waitpid (child_pid, &status, 0);
restore_child_signals_mask (&prev_mask);
}
/* Return non-zero iff we have tracefork functionality available.
This function also sets linux_supports_tracefork_flag. */
static int
linux_supports_tracefork (int pid)
{
if (linux_supports_tracefork_flag == -1)
linux_test_for_tracefork (pid);
return linux_supports_tracefork_flag;
}
static int
linux_supports_tracevforkdone (int pid)
{
if (linux_supports_tracefork_flag == -1)
linux_test_for_tracefork (pid);
return linux_supports_tracevforkdone_flag;
}
void
linux_enable_event_reporting (ptid_t ptid)
{
int pid = ptid_get_lwp (ptid);
int options;
if (pid == 0)
pid = ptid_get_pid (ptid);
if (! linux_supports_tracefork (pid))
return;
options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
| PTRACE_O_TRACECLONE;
if (linux_supports_tracevforkdone (pid))
options |= PTRACE_O_TRACEVFORKDONE;
/* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
read-only process state. */
ptrace (PTRACE_SETOPTIONS, pid, 0, options);
}
static void
linux_child_post_attach (int pid)
{
linux_enable_event_reporting (pid_to_ptid (pid));
check_for_thread_db ();
}
static void
linux_child_post_startup_inferior (ptid_t ptid)
{
linux_enable_event_reporting (ptid);
check_for_thread_db ();
}
static int
linux_child_follow_fork (struct target_ops *ops, int follow_child)
{
sigset_t prev_mask;
int has_vforked;
int parent_pid, child_pid;
block_child_signals (&prev_mask);
has_vforked = (inferior_thread ()->pending_follow.kind
== TARGET_WAITKIND_VFORKED);
parent_pid = ptid_get_lwp (inferior_ptid);
if (parent_pid == 0)
parent_pid = ptid_get_pid (inferior_ptid);
child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
if (! follow_child)
{
/* We're already attached to the parent, by default. */
/* Before detaching from the child, remove all breakpoints from
it. If we forked, then this has already been taken care of
by infrun.c. If we vforked however, any breakpoint inserted
in the parent is visible in the child, even those added while
stopped in a vfork catchpoint. This won't actually modify
the breakpoint list, but will physically remove the
breakpoints from the child. This will remove the breakpoints
from the parent also, but they'll be reinserted below. */
if (has_vforked)
detach_breakpoints (child_pid);
/* Detach new forked process? */
if (detach_fork)
{
if (info_verbose || debug_linux_nat)
{
target_terminal_ours ();
fprintf_filtered (gdb_stdlog,
"Detaching after fork from child process %d.\n",
child_pid);
}
ptrace (PTRACE_DETACH, child_pid, 0, 0);
}
else
{
struct fork_info *fp;
struct inferior *parent_inf, *child_inf;
/* Add process to GDB's tables. */
child_inf = add_inferior (child_pid);
parent_inf = current_inferior ();
child_inf->attach_flag = parent_inf->attach_flag;
copy_terminal_info (child_inf, parent_inf);
/* Retain child fork in ptrace (stopped) state. */
fp = find_fork_pid (child_pid);
if (!fp)
fp = add_fork (child_pid);
fork_save_infrun_state (fp, 0);
}
if (has_vforked)
{
gdb_assert (linux_supports_tracefork_flag >= 0);
if (linux_supports_tracevforkdone (0))
{
int status;
ptrace (PTRACE_CONT, parent_pid, 0, 0);
my_waitpid (parent_pid, &status, __WALL);
if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
warning (_("Unexpected waitpid result %06x when waiting for "
"vfork-done"), status);
}
else
{
/* We can't insert breakpoints until the child has
finished with the shared memory region. We need to
wait until that happens. Ideal would be to just
call:
- ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
- waitpid (parent_pid, &status, __WALL);
However, most architectures can't handle a syscall
being traced on the way out if it wasn't traced on
the way in.
We might also think to loop, continuing the child
until it exits or gets a SIGTRAP. One problem is
that the child might call ptrace with PTRACE_TRACEME.
There's no simple and reliable way to figure out when
the vforked child will be done with its copy of the
shared memory. We could step it out of the syscall,
two instructions, let it go, and then single-step the
parent once. When we have hardware single-step, this
would work; with software single-step it could still
be made to work but we'd have to be able to insert
single-step breakpoints in the child, and we'd have
to insert -just- the single-step breakpoint in the
parent. Very awkward.
In the end, the best we can do is to make sure it
runs for a little while. Hopefully it will be out of
range of any breakpoints we reinsert. Usually this
is only the single-step breakpoint at vfork's return
point. */
usleep (10000);
}
/* Since we vforked, breakpoints were removed in the parent
too. Put them back. */
reattach_breakpoints (parent_pid);
}
}
else
{
struct thread_info *tp;
struct inferior *parent_inf, *child_inf;
/* Before detaching from the parent, remove all breakpoints from it. */
remove_breakpoints ();
if (info_verbose || debug_linux_nat)
{
target_terminal_ours ();
fprintf_filtered (gdb_stdlog,
"Attaching after fork to child process %d.\n",
child_pid);
}
/* Add the new inferior first, so that the target_detach below
doesn't unpush the target. */
child_inf = add_inferior (child_pid);
parent_inf = current_inferior ();
child_inf->attach_flag = parent_inf->attach_flag;
copy_terminal_info (child_inf, parent_inf);
/* If we're vforking, we may want to hold on to the parent until
the child exits or execs. At exec time we can remove the old
breakpoints from the parent and detach it; at exit time we
could do the same (or even, sneakily, resume debugging it - the
child's exec has failed, or something similar).
This doesn't clean up "properly", because we can't call
target_detach, but that's OK; if the current target is "child",
then it doesn't need any further cleanups, and lin_lwp will
generally not encounter vfork (vfork is defined to fork
in libpthread.so).
The holding part is very easy if we have VFORKDONE events;
but keeping track of both processes is beyond GDB at the
moment. So we don't expose the parent to the rest of GDB.
Instead we quietly hold onto it until such time as we can
safely resume it. */
if (has_vforked)
{
linux_parent_pid = parent_pid;
detach_inferior (parent_pid);
}
else if (!detach_fork)
{
struct fork_info *fp;
/* Retain parent fork in ptrace (stopped) state. */
fp = find_fork_pid (parent_pid);
if (!fp)
fp = add_fork (parent_pid);
fork_save_infrun_state (fp, 0);
/* Also add an entry for the child fork. */
fp = find_fork_pid (child_pid);
if (!fp)
fp = add_fork (child_pid);
fork_save_infrun_state (fp, 0);
}
else
target_detach (NULL, 0);
inferior_ptid = ptid_build (child_pid, child_pid, 0);
linux_nat_switch_fork (inferior_ptid);
check_for_thread_db ();
}
restore_child_signals_mask (&prev_mask);
return 0;
}
static void
linux_child_insert_fork_catchpoint (int pid)
{
if (! linux_supports_tracefork (pid))
error (_("Your system does not support fork catchpoints."));
}
static void
linux_child_insert_vfork_catchpoint (int pid)
{
if (!linux_supports_tracefork (pid))
error (_("Your system does not support vfork catchpoints."));
}
static void
linux_child_insert_exec_catchpoint (int pid)
{
if (!linux_supports_tracefork (pid))
error (_("Your system does not support exec catchpoints."));
}
/* On GNU/Linux there are no real LWP's. The closest thing to LWP's
are processes sharing the same VM space. A multi-threaded process
is basically a group of such processes. However, such a grouping
is almost entirely a user-space issue; the kernel doesn't enforce
such a grouping at all (this might change in the future). In
general, we'll rely on the threads library (i.e. the GNU/Linux
Threads library) to provide such a grouping.
It is perfectly well possible to write a multi-threaded application
without the assistance of a threads library, by using the clone
system call directly. This module should be able to give some
rudimentary support for debugging such applications if developers
specify the CLONE_PTRACE flag in the clone system call, and are
using the Linux kernel 2.4 or above.
Note that there are some peculiarities in GNU/Linux that affect
this code:
- In general one should specify the __WCLONE flag to waitpid in
order to make it report events for any of the cloned processes
(and leave it out for the initial process). However, if a cloned
process has exited the exit status is only reported if the
__WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
we cannot use it since GDB must work on older systems too.
- When a traced, cloned process exits and is waited for by the
debugger, the kernel reassigns it to the original parent and
keeps it around as a "zombie". Somehow, the GNU/Linux Threads
library doesn't notice this, which leads to the "zombie problem":
When debugged a multi-threaded process that spawns a lot of
threads will run out of processes, even if the threads exit,
because the "zombies" stay around. */
/* List of known LWPs. */
struct lwp_info *lwp_list;
/* Original signal mask. */
static sigset_t normal_mask;
/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
_initialize_linux_nat. */
static sigset_t suspend_mask;
/* Signals to block to make that sigsuspend work. */
static sigset_t blocked_mask;
/* SIGCHLD action. */
struct sigaction sigchld_action;
/* Block child signals (SIGCHLD and linux threads signals), and store
the previous mask in PREV_MASK. */
static void
block_child_signals (sigset_t *prev_mask)
{
/* Make sure SIGCHLD is blocked. */
if (!sigismember (&blocked_mask, SIGCHLD))
sigaddset (&blocked_mask, SIGCHLD);
sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
}
/* Restore child signals mask, previously returned by
block_child_signals. */
static void
restore_child_signals_mask (sigset_t *prev_mask)
{
sigprocmask (SIG_SETMASK, prev_mask, NULL);
}
/* Prototypes for local functions. */
static int stop_wait_callback (struct lwp_info *lp, void *data);
static int linux_thread_alive (ptid_t ptid);
static char *linux_child_pid_to_exec_file (int pid);
static int cancel_breakpoint (struct lwp_info *lp);
/* Convert wait status STATUS to a string. Used for printing debug
messages only. */
static char *
status_to_str (int status)
{
static char buf[64];
if (WIFSTOPPED (status))
snprintf (buf, sizeof (buf), "%s (stopped)",
strsignal (WSTOPSIG (status)));
else if (WIFSIGNALED (status))
snprintf (buf, sizeof (buf), "%s (terminated)",
strsignal (WSTOPSIG (status)));
else
snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
return buf;
}
/* Initialize the list of LWPs. Note that this module, contrary to
what GDB's generic threads layer does for its thread list,
re-initializes the LWP lists whenever we mourn or detach (which
doesn't involve mourning) the inferior. */
static void
init_lwp_list (void)
{
struct lwp_info *lp, *lpnext;
for (lp = lwp_list; lp; lp = lpnext)
{
lpnext = lp->next;
xfree (lp);
}
lwp_list = NULL;
}
/* Remove all LWPs belong to PID from the lwp list. */
static void
purge_lwp_list (int pid)
{
struct lwp_info *lp, *lpprev, *lpnext;
lpprev = NULL;
for (lp = lwp_list; lp; lp = lpnext)
{
lpnext = lp->next;
if (ptid_get_pid (lp->ptid) == pid)
{
if (lp == lwp_list)
lwp_list = lp->next;
else
lpprev->next = lp->next;
xfree (lp);
}
else
lpprev = lp;
}
}
/* Return the number of known LWPs in the tgid given by PID. */
static int
num_lwps (int pid)
{
int count = 0;
struct lwp_info *lp;
for (lp = lwp_list; lp; lp = lp->next)
if (ptid_get_pid (lp->ptid) == pid)
count++;
return count;
}
/* Add the LWP specified by PID to the list. Return a pointer to the
structure describing the new LWP. The LWP should already be stopped
(with an exception for the very first LWP). */
static struct lwp_info *
add_lwp (ptid_t ptid)
{
struct lwp_info *lp;
gdb_assert (is_lwp (ptid));
lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
memset (lp, 0, sizeof (struct lwp_info));
lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
lp->ptid = ptid;
lp->next = lwp_list;
lwp_list = lp;
if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
linux_nat_new_thread (ptid);
return lp;
}
/* Remove the LWP specified by PID from the list. */
static void
delete_lwp (ptid_t ptid)
{
struct lwp_info *lp, *lpprev;
lpprev = NULL;
for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
if (ptid_equal (lp->ptid, ptid))
break;
if (!lp)
return;
if (lpprev)
lpprev->next = lp->next;
else
lwp_list = lp->next;
xfree (lp);
}
/* Return a pointer to the structure describing the LWP corresponding
to PID. If no corresponding LWP could be found, return NULL. */
static struct lwp_info *
find_lwp_pid (ptid_t ptid)
{
struct lwp_info *lp;
int lwp;
if (is_lwp (ptid))
lwp = GET_LWP (ptid);
else
lwp = GET_PID (ptid);
for (lp = lwp_list; lp; lp = lp->next)
if (lwp == GET_LWP (lp->ptid))
return lp;
return NULL;
}
/* Returns true if PTID matches filter FILTER. FILTER can be the wild
card MINUS_ONE_PTID (all ptid match it); can be a ptid representing
a process (ptid_is_pid returns true), in which case, all lwps of
that give process match, lwps of other process do not; or, it can
represent a specific thread, in which case, only that thread will
match true. PTID must represent an LWP, it can never be a wild
card. */
static int
ptid_match (ptid_t ptid, ptid_t filter)
{
/* Since both parameters have the same type, prevent easy mistakes
from happening. */
gdb_assert (!ptid_equal (ptid, minus_one_ptid)
&& !ptid_equal (ptid, null_ptid));
if (ptid_equal (filter, minus_one_ptid))
return 1;
if (ptid_is_pid (filter)
&& ptid_get_pid (ptid) == ptid_get_pid (filter))
return 1;
else if (ptid_equal (ptid, filter))
return 1;
return 0;
}
/* Call CALLBACK with its second argument set to DATA for every LWP in
the list. If CALLBACK returns 1 for a particular LWP, return a
pointer to the structure describing that LWP immediately.
Otherwise return NULL. */
struct lwp_info *
iterate_over_lwps (ptid_t filter,
int (*callback) (struct lwp_info *, void *),
void *data)
{
struct lwp_info *lp, *lpnext;
for (lp = lwp_list; lp; lp = lpnext)
{
lpnext = lp->next;
if (ptid_match (lp->ptid, filter))
{
if ((*callback) (lp, data))
return lp;
}
}
return NULL;
}
/* Update our internal state when changing from one fork (checkpoint,
et cetera) to another indicated by NEW_PTID. We can only switch
single-threaded applications, so we only create one new LWP, and
the previous list is discarded. */
void
linux_nat_switch_fork (ptid_t new_ptid)
{
struct lwp_info *lp;
init_lwp_list ();
lp = add_lwp (new_ptid);
lp->stopped = 1;
init_thread_list ();
add_thread_silent (new_ptid);
}
/* Handle the exit of a single thread LP. */
static void
exit_lwp (struct lwp_info *lp)
{
struct thread_info *th = find_thread_ptid (lp->ptid);
if (th)
{
if (print_thread_events)
printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
delete_thread (lp->ptid);
}
delete_lwp (lp->ptid);
}
/* Return an lwp's tgid, found in `/proc/PID/status'. */
int
linux_proc_get_tgid (int lwpid)
{
FILE *status_file;
char buf[100];
int tgid = -1;
snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
status_file = fopen (buf, "r");
if (status_file != NULL)
{
while (fgets (buf, sizeof (buf), status_file))
{
if (strncmp (buf, "Tgid:", 5) == 0)
{
tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
break;
}
}
fclose (status_file);
}
return tgid;
}
/* Detect `T (stopped)' in `/proc/PID/status'.
Other states including `T (tracing stop)' are reported as false. */
static int
pid_is_stopped (pid_t pid)
{
FILE *status_file;
char buf[100];
int retval = 0;
snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
status_file = fopen (buf, "r");
if (status_file != NULL)
{
int have_state = 0;
while (fgets (buf, sizeof (buf), status_file))
{
if (strncmp (buf, "State:", 6) == 0)
{
have_state = 1;
break;
}
}
if (have_state && strstr (buf, "T (stopped)") != NULL)
retval = 1;
fclose (status_file);
}
return retval;
}
/* Wait for the LWP specified by LP, which we have just attached to.
Returns a wait status for that LWP, to cache. */
static int
linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
int *signalled)
{
pid_t new_pid, pid = GET_LWP (ptid);
int status;
if (pid_is_stopped (pid))
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LNPAW: Attaching to a stopped process\n");
/* The process is definitely stopped. It is in a job control
stop, unless the kernel predates the TASK_STOPPED /
TASK_TRACED distinction, in which case it might be in a
ptrace stop. Make sure it is in a ptrace stop; from there we
can kill it, signal it, et cetera.
First make sure there is a pending SIGSTOP. Since we are
already attached, the process can not transition from stopped
to running without a PTRACE_CONT; so we know this signal will
go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
probably already in the queue (unless this kernel is old
enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
is not an RT signal, it can only be queued once. */
kill_lwp (pid, SIGSTOP);
/* Finally, resume the stopped process. This will deliver the SIGSTOP
(or a higher priority signal, just like normal PTRACE_ATTACH). */
ptrace (PTRACE_CONT, pid, 0, 0);
}
/* Make sure the initial process is stopped. The user-level threads
layer might want to poke around in the inferior, and that won't
work if things haven't stabilized yet. */
new_pid = my_waitpid (pid, &status, 0);
if (new_pid == -1 && errno == ECHILD)
{
if (first)
warning (_("%s is a cloned process"), target_pid_to_str (ptid));
/* Try again with __WCLONE to check cloned processes. */
new_pid = my_waitpid (pid, &status, __WCLONE);
*cloned = 1;
}
gdb_assert (pid == new_pid && WIFSTOPPED (status));
if (WSTOPSIG (status) != SIGSTOP)
{
*signalled = 1;
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LNPAW: Received %s after attaching\n",
status_to_str (status));
}
return status;
}
/* Attach to the LWP specified by PID. Return 0 if successful or -1
if the new LWP could not be attached. */
int
lin_lwp_attach_lwp (ptid_t ptid)
{
struct lwp_info *lp;
sigset_t prev_mask;
gdb_assert (is_lwp (ptid));
block_child_signals (&prev_mask);
lp = find_lwp_pid (ptid);
/* We assume that we're already attached to any LWP that has an id
equal to the overall process id, and to any LWP that is already
in our list of LWPs. If we're not seeing exit events from threads
and we've had PID wraparound since we last tried to stop all threads,
this assumption might be wrong; fortunately, this is very unlikely
to happen. */
if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
{
int status, cloned = 0, signalled = 0;
if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
{
/* If we fail to attach to the thread, issue a warning,
but continue. One way this can happen is if thread
creation is interrupted; as of Linux kernel 2.6.19, a
bug may place threads in the thread list and then fail
to create them. */
warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
safe_strerror (errno));
restore_child_signals_mask (&prev_mask);
return -1;
}
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
target_pid_to_str (ptid));
status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
lp = add_lwp (ptid);
lp->stopped = 1;
lp->cloned = cloned;
lp->signalled = signalled;
if (WSTOPSIG (status) != SIGSTOP)
{
lp->resumed = 1;
lp->status = status;
}
target_post_attach (GET_LWP (lp->ptid));
if (debug_linux_nat)
{
fprintf_unfiltered (gdb_stdlog,
"LLAL: waitpid %s received %s\n",
target_pid_to_str (ptid),
status_to_str (status));
}
}
else
{
/* We assume that the LWP representing the original process is
already stopped. Mark it as stopped in the data structure
that the GNU/linux ptrace layer uses to keep track of
threads. Note that this won't have already been done since
the main thread will have, we assume, been stopped by an
attach from a different layer. */
if (lp == NULL)
lp = add_lwp (ptid);
lp->stopped = 1;
}
restore_child_signals_mask (&prev_mask);
return 0;
}
static void
linux_nat_create_inferior (struct target_ops *ops,
char *exec_file, char *allargs, char **env,
int from_tty)
{
#ifdef HAVE_PERSONALITY
int personality_orig = 0, personality_set = 0;
#endif /* HAVE_PERSONALITY */
/* The fork_child mechanism is synchronous and calls target_wait, so
we have to mask the async mode. */
#ifdef HAVE_PERSONALITY
if (disable_randomization)
{
errno = 0;
personality_orig = personality (0xffffffff);
if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
{
personality_set = 1;
personality (personality_orig | ADDR_NO_RANDOMIZE);
}
if (errno != 0 || (personality_set
&& !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
warning (_("Error disabling address space randomization: %s"),
safe_strerror (errno));
}
#endif /* HAVE_PERSONALITY */
linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
#ifdef HAVE_PERSONALITY
if (personality_set)
{
errno = 0;
personality (personality_orig);
if (errno != 0)
warning (_("Error restoring address space randomization: %s"),
safe_strerror (errno));
}
#endif /* HAVE_PERSONALITY */
}
static void
linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
{
struct lwp_info *lp;
int status;
ptid_t ptid;
linux_ops->to_attach (ops, args, from_tty);
/* The ptrace base target adds the main thread with (pid,0,0)
format. Decorate it with lwp info. */
ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
thread_change_ptid (inferior_ptid, ptid);
/* Add the initial process as the first LWP to the list. */
lp = add_lwp (ptid);
status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
&lp->signalled);
lp->stopped = 1;
/* Save the wait status to report later. */
lp->resumed = 1;
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LNA: waitpid %ld, saving status %s\n",
(long) GET_PID (lp->ptid), status_to_str (status));
lp->status = status;
if (target_can_async_p ())
target_async (inferior_event_handler, 0);
}
/* Get pending status of LP. */
static int
get_pending_status (struct lwp_info *lp, int *status)
{
struct target_waitstatus last;
ptid_t last_ptid;
get_last_target_status (&last_ptid, &last);
/* If this lwp is the ptid that GDB is processing an event from, the
signal will be in stop_signal. Otherwise, we may cache pending
events in lp->status while trying to stop all threads (see
stop_wait_callback). */
*status = 0;
if (non_stop)
{
enum target_signal signo = TARGET_SIGNAL_0;
if (is_executing (lp->ptid))
{
/* If the core thought this lwp was executing --- e.g., the
executing property hasn't been updated yet, but the
thread has been stopped with a stop_callback /
stop_wait_callback sequence (see linux_nat_detach for
example) --- we can only have pending events in the local
queue. */
signo = target_signal_from_host (WSTOPSIG (lp->status));
}
else
{
/* If the core knows the thread is not executing, then we
have the last signal recorded in
thread_info->stop_signal. */
struct thread_info *tp = find_thread_ptid (lp->ptid);
signo = tp->stop_signal;
}
if (signo != TARGET_SIGNAL_0
&& !signal_pass_state (signo))
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog, "\
GPT: lwp %s had signal %s, but it is in no pass state\n",
target_pid_to_str (lp->ptid),
target_signal_to_string (signo));
}
else
{
if (signo != TARGET_SIGNAL_0)
*status = W_STOPCODE (target_signal_to_host (signo));
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"GPT: lwp %s as pending signal %s\n",
target_pid_to_str (lp->ptid),
target_signal_to_string (signo));
}
}
else
{
if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
{
struct thread_info *tp = find_thread_ptid (lp->ptid);
if (tp->stop_signal != TARGET_SIGNAL_0
&& signal_pass_state (tp->stop_signal))
*status = W_STOPCODE (target_signal_to_host (tp->stop_signal));
}
else
*status = lp->status;
}
return 0;
}
static int
detach_callback (struct lwp_info *lp, void *data)
{
gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
if (debug_linux_nat && lp->status)
fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
strsignal (WSTOPSIG (lp->status)),
target_pid_to_str (lp->ptid));
/* If there is a pending SIGSTOP, get rid of it. */
if (lp->signalled)
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"DC: Sending SIGCONT to %s\n",
target_pid_to_str (lp->ptid));
kill_lwp (GET_LWP (lp->ptid), SIGCONT);
lp->signalled = 0;
}
/* We don't actually detach from the LWP that has an id equal to the
overall process id just yet. */
if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
{
int status = 0;
/* Pass on any pending signal for this LWP. */
get_pending_status (lp, &status);
errno = 0;
if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
WSTOPSIG (status)) < 0)
error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
safe_strerror (errno));
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"PTRACE_DETACH (%s, %s, 0) (OK)\n",
target_pid_to_str (lp->ptid),
strsignal (WSTOPSIG (status)));
delete_lwp (lp->ptid);
}
return 0;
}
static void
linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
{
int pid;
int status;
enum target_signal sig;
struct lwp_info *main_lwp;
pid = GET_PID (inferior_ptid);
if (target_can_async_p ())
linux_nat_async (NULL, 0);
/* Stop all threads before detaching. ptrace requires that the
thread is stopped to sucessfully detach. */
iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
/* ... and wait until all of them have reported back that
they're no longer running. */
iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
/* Only the initial process should be left right now. */
gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
main_lwp = find_lwp_pid (pid_to_ptid (pid));
/* Pass on any pending signal for the last LWP. */
if ((args == NULL || *args == '\0')
&& get_pending_status (main_lwp, &status) != -1
&& WIFSTOPPED (status))
{
/* Put the signal number in ARGS so that inf_ptrace_detach will
pass it along with PTRACE_DETACH. */
args = alloca (8);
sprintf (args, "%d", (int) WSTOPSIG (status));
fprintf_unfiltered (gdb_stdlog,
"LND: Sending signal %s to %s\n",
args,
target_pid_to_str (main_lwp->ptid));
}
delete_lwp (main_lwp->ptid);
if (forks_exist_p ())
{
/* Multi-fork case. The current inferior_ptid is being detached
from, but there are other viable forks to debug. Detach from
the current fork, and context-switch to the first
available. */
linux_fork_detach (args, from_tty);
if (non_stop && target_can_async_p ())
target_async (inferior_event_handler, 0);
}
else
linux_ops->to_detach (ops, args, from_tty);
}
/* Resume LP. */
static int
resume_callback (struct lwp_info *lp, void *data)
{
if (lp->stopped && lp->status == 0)
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
target_pid_to_str (lp->ptid));
linux_ops->to_resume (linux_ops,
pid_to_ptid (GET_LWP (lp->ptid)),
0, TARGET_SIGNAL_0);
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
target_pid_to_str (lp->ptid));
lp->stopped = 0;
lp->step = 0;
memset (&lp->siginfo, 0, sizeof (lp->siginfo));
}
else if (lp->stopped && debug_linux_nat)
fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
target_pid_to_str (lp->ptid));
else if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
target_pid_to_str (lp->ptid));
return 0;
}
static int
resume_clear_callback (struct lwp_info *lp, void *data)
{
lp->resumed = 0;
return 0;
}
static int
resume_set_callback (struct lwp_info *lp, void *data)
{
lp->resumed = 1;
return 0;
}
static void
linux_nat_resume (struct target_ops *ops,
ptid_t ptid, int step, enum target_signal signo)
{
sigset_t prev_mask;
struct lwp_info *lp;
int resume_many;
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
step ? "step" : "resume",
target_pid_to_str (ptid),
signo ? strsignal (signo) : "0",
target_pid_to_str (inferior_ptid));
block_child_signals (&prev_mask);
/* A specific PTID means `step only this process id'. */
resume_many = (ptid_equal (minus_one_ptid, ptid)
|| ptid_is_pid (ptid));
if (!non_stop)
{
/* Mark the lwps we're resuming as resumed. */
iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
iterate_over_lwps (ptid, resume_set_callback, NULL);
}
else
iterate_over_lwps (minus_one_ptid, resume_set_callback, NULL);
/* See if it's the current inferior that should be handled
specially. */
if (resume_many)
lp = find_lwp_pid (inferior_ptid);
else
lp = find_lwp_pid (ptid);
gdb_assert (lp != NULL);
/* Remember if we're stepping. */
lp->step = step;
/* If we have a pending wait status for this thread, there is no
point in resuming the process. But first make sure that
linux_nat_wait won't preemptively handle the event - we
should never take this short-circuit if we are going to
leave LP running, since we have skipped resuming all the
other threads. This bit of code needs to be synchronized
with linux_nat_wait. */
if (lp->status && WIFSTOPPED (lp->status))
{
int saved_signo;
struct inferior *inf;
inf = find_inferior_pid (ptid_get_pid (lp->ptid));
gdb_assert (inf);
saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
/* Defer to common code if we're gaining control of the
inferior. */
if (inf->stop_soon == NO_STOP_QUIETLY
&& signal_stop_state (saved_signo) == 0
&& signal_print_state (saved_signo) == 0
&& signal_pass_state (saved_signo) == 1)
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLR: Not short circuiting for ignored "
"status 0x%x\n", lp->status);
/* FIXME: What should we do if we are supposed to continue
this thread with a signal? */
gdb_assert (signo == TARGET_SIGNAL_0);
signo = saved_signo;
lp->status = 0;
}
}
if (lp->status)
{
/* FIXME: What should we do if we are supposed to continue
this thread with a signal? */
gdb_assert (signo == TARGET_SIGNAL_0);
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLR: Short circuiting for status 0x%x\n",
lp->status);
restore_child_signals_mask (&prev_mask);
if (target_can_async_p ())
{
target_async (inferior_event_handler, 0);
/* Tell the event loop we have something to process. */
async_file_mark ();
}
return;
}
/* Mark LWP as not stopped to prevent it from being continued by
resume_callback. */
lp->stopped = 0;
if (resume_many)
iterate_over_lwps (ptid, resume_callback, NULL);
/* Convert to something the lower layer understands. */
ptid = pid_to_ptid (GET_LWP (lp->ptid));
linux_ops->to_resume (linux_ops, ptid, step, signo);
memset (&lp->siginfo, 0, sizeof (lp->siginfo));
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLR: %s %s, %s (resume event thread)\n",
step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
target_pid_to_str (ptid),
signo ? strsignal (signo) : "0");
restore_child_signals_mask (&prev_mask);
if (target_can_async_p ())
target_async (inferior_event_handler, 0);
}
/* Issue kill to specified lwp. */
static int tkill_failed;
static int
kill_lwp (int lwpid, int signo)
{
errno = 0;
/* Use tkill, if possible, in case we are using nptl threads. If tkill
fails, then we are not using nptl threads and we should be using kill. */
#ifdef HAVE_TKILL_SYSCALL
if (!tkill_failed)
{
int ret = syscall (__NR_tkill, lwpid, signo);
if (errno != ENOSYS)
return ret;
errno = 0;
tkill_failed = 1;
}
#endif
return kill (lwpid, signo);
}
/* Handle a GNU/Linux extended wait response. If we see a clone
event, we need to add the new LWP to our list (and not report the
trap to higher layers). This function returns non-zero if the
event should be ignored and we should wait again. If STOPPING is
true, the new LWP remains stopped, otherwise it is continued. */
static int
linux_handle_extended_wait (struct lwp_info *lp, int status,
int stopping)
{
int pid = GET_LWP (lp->ptid);
struct target_waitstatus *ourstatus = &lp->waitstatus;
struct lwp_info *new_lp = NULL;
int event = status >> 16;
if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
|| event == PTRACE_EVENT_CLONE)
{
unsigned long new_pid;
int ret;
ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
/* If we haven't already seen the new PID stop, wait for it now. */
if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
{
/* The new child has a pending SIGSTOP. We can't affect it until it
hits the SIGSTOP, but we're already attached. */
ret = my_waitpid (new_pid, &status,
(event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
if (ret == -1)
perror_with_name (_("waiting for new child"));
else if (ret != new_pid)
internal_error (__FILE__, __LINE__,
_("wait returned unexpected PID %d"), ret);
else if (!WIFSTOPPED (status))
internal_error (__FILE__, __LINE__,
_("wait returned unexpected status 0x%x"), status);
}
ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
if (event == PTRACE_EVENT_FORK)
ourstatus->kind = TARGET_WAITKIND_FORKED;
else if (event == PTRACE_EVENT_VFORK)
ourstatus->kind = TARGET_WAITKIND_VFORKED;
else
{
struct cleanup *old_chain;
ourstatus->kind = TARGET_WAITKIND_IGNORE;
new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
new_lp->cloned = 1;
new_lp->stopped = 1;
if (WSTOPSIG (status) != SIGSTOP)
{
/* This can happen if someone starts sending signals to
the new thread before it gets a chance to run, which
have a lower number than SIGSTOP (e.g. SIGUSR1).
This is an unlikely case, and harder to handle for
fork / vfork than for clone, so we do not try - but
we handle it for clone events here. We'll send
the other signal on to the thread below. */
new_lp->signalled = 1;
}
else
status = 0;
if (non_stop)
{
/* Add the new thread to GDB's lists as soon as possible
so that:
1) the frontend doesn't have to wait for a stop to
display them, and,
2) we tag it with the correct running state. */
/* If the thread_db layer is active, let it know about
this new thread, and add it to GDB's list. */
if (!thread_db_attach_lwp (new_lp->ptid))
{
/* We're not using thread_db. Add it to GDB's
list. */
target_post_attach (GET_LWP (new_lp->ptid));
add_thread (new_lp->ptid);
}
if (!stopping)
{
set_running (new_lp->ptid, 1);
set_executing (new_lp->ptid, 1);
}
}
if (!stopping)
{
new_lp->stopped = 0;
new_lp->resumed = 1;
ptrace (PTRACE_CONT, new_pid, 0,
status ? WSTOPSIG (status) : 0);
}
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LHEW: Got clone event from LWP %ld, resuming\n",
GET_LWP (lp->ptid));
ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
return 1;
}
return 0;
}
if (event == PTRACE_EVENT_EXEC)
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LHEW: Got exec event from LWP %ld\n",
GET_LWP (lp->ptid));
ourstatus->kind = TARGET_WAITKIND_EXECD;
ourstatus->value.execd_pathname
= xstrdup (linux_child_pid_to_exec_file (pid));
if (linux_parent_pid)
{
detach_breakpoints (linux_parent_pid);
ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
linux_parent_pid = 0;
}
/* At this point, all inserted breakpoints are gone. Doing this
as soon as we detect an exec prevents the badness of deleting
a breakpoint writing the current "shadow contents" to lift
the bp. That shadow is NOT valid after an exec.
Note that we have to do this after the detach_breakpoints
call above, otherwise breakpoints wouldn't be lifted from the
parent on a vfork, because detach_breakpoints would think
that breakpoints are not inserted. */
mark_breakpoints_out ();
return 0;
}
internal_error (__FILE__, __LINE__,
_("unknown ptrace event %d"), event);
}
/* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
exited. */
static int
wait_lwp (struct lwp_info *lp)
{
pid_t pid;
int status;
int thread_dead = 0;
gdb_assert (!lp->stopped);
gdb_assert (lp->status == 0);
pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
if (pid == -1 && errno == ECHILD)
{
pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
if (pid == -1 && errno == ECHILD)
{
/* The thread has previously exited. We need to delete it
now because, for some vendor 2.4 kernels with NPTL
support backported, there won't be an exit event unless
it is the main thread. 2.6 kernels will report an exit
event for each thread that exits, as expected. */
thread_dead = 1;
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
target_pid_to_str (lp->ptid));
}
}
if (!thread_dead)
{
gdb_assert (pid == GET_LWP (lp->ptid));
if (debug_linux_nat)
{
fprintf_unfiltered (gdb_stdlog,
"WL: waitpid %s received %s\n",
target_pid_to_str (lp->ptid),
status_to_str (status));
}
}
/* Check if the thread has exited. */
if (WIFEXITED (status) || WIFSIGNALED (status))
{
thread_dead = 1;
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
target_pid_to_str (lp->ptid));
}
if (thread_dead)
{
exit_lwp (lp);
return 0;
}
gdb_assert (WIFSTOPPED (status));
/* Handle GNU/Linux's extended waitstatus for trace events. */
if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"WL: Handling extended status 0x%06x\n",
status);
if (linux_handle_extended_wait (lp, status, 1))
return wait_lwp (lp);
}
return status;
}
/* Save the most recent siginfo for LP. This is currently only called
for SIGTRAP; some ports use the si_addr field for
target_stopped_data_address. In the future, it may also be used to
restore the siginfo of requeued signals. */
static void
save_siginfo (struct lwp_info *lp)
{
errno = 0;
ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
(PTRACE_TYPE_ARG3) 0, &lp->siginfo);
if (errno != 0)
memset (&lp->siginfo, 0, sizeof (lp->siginfo));
}
/* Send a SIGSTOP to LP. */
static int
stop_callback (struct lwp_info *lp, void *data)
{
if (!lp->stopped && !lp->signalled)
{
int ret;
if (debug_linux_nat)
{
fprintf_unfiltered (gdb_stdlog,
"SC: kill %s ****\n",
target_pid_to_str (lp->ptid));
}
errno = 0;
ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
if (debug_linux_nat)
{
fprintf_unfiltered (gdb_stdlog,
"SC: lwp kill %d %s\n",
ret,
errno ? safe_strerror (errno) : "ERRNO-OK");
}
lp->signalled = 1;
gdb_assert (lp->status == 0);
}
return 0;
}
/* Return non-zero if LWP PID has a pending SIGINT. */
static int
linux_nat_has_pending_sigint (int pid)
{
sigset_t pending, blocked, ignored;
int i;
linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
if (sigismember (&pending, SIGINT)
&& !sigismember (&ignored, SIGINT))
return 1;
return 0;
}
/* Set a flag in LP indicating that we should ignore its next SIGINT. */
static int
set_ignore_sigint (struct lwp_info *lp, void *data)
{
/* If a thread has a pending SIGINT, consume it; otherwise, set a
flag to consume the next one. */
if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
&& WSTOPSIG (lp->status) == SIGINT)
lp->status = 0;
else
lp->ignore_sigint = 1;
return 0;
}
/* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
This function is called after we know the LWP has stopped; if the LWP
stopped before the expected SIGINT was delivered, then it will never have
arrived. Also, if the signal was delivered to a shared queue and consumed
by a different thread, it will never be delivered to this LWP. */
static void
maybe_clear_ignore_sigint (struct lwp_info *lp)
{
if (!lp->ignore_sigint)
return;
if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"MCIS: Clearing bogus flag for %s\n",
target_pid_to_str (lp->ptid));
lp->ignore_sigint = 0;
}
}
/* Wait until LP is stopped. */
static int
stop_wait_callback (struct lwp_info *lp, void *data)
{
if (!lp->stopped)
{
int status;
status = wait_lwp (lp);
if (status == 0)
return 0;
if (lp->ignore_sigint && WIFSTOPPED (status)
&& WSTOPSIG (status) == SIGINT)
{
lp->ignore_sigint = 0;
errno = 0;
ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
target_pid_to_str (lp->ptid),
errno ? safe_strerror (errno) : "OK");
return stop_wait_callback (lp, NULL);
}
maybe_clear_ignore_sigint (lp);
if (WSTOPSIG (status) != SIGSTOP)
{
if (WSTOPSIG (status) == SIGTRAP)
{
/* If a LWP other than the LWP that we're reporting an
event for has hit a GDB breakpoint (as opposed to
some random trap signal), then just arrange for it to
hit it again later. We don't keep the SIGTRAP status
and don't forward the SIGTRAP signal to the LWP. We
will handle the current event, eventually we will
resume all LWPs, and this one will get its breakpoint
trap again.
If we do not do this, then we run the risk that the
user will delete or disable the breakpoint, but the
thread will have already tripped on it. */
/* Save the trap's siginfo in case we need it later. */
save_siginfo (lp);
/* Now resume this LWP and get the SIGSTOP event. */
errno = 0;
ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
if (debug_linux_nat)
{
fprintf_unfiltered (gdb_stdlog,
"PTRACE_CONT %s, 0, 0 (%s)\n",
target_pid_to_str (lp->ptid),
errno ? safe_strerror (errno) : "OK");
fprintf_unfiltered (gdb_stdlog,
"SWC: Candidate SIGTRAP event in %s\n",
target_pid_to_str (lp->ptid));
}
/* Hold this event/waitstatus while we check to see if
there are any more (we still want to get that SIGSTOP). */
stop_wait_callback (lp, NULL);
/* Hold the SIGTRAP for handling by linux_nat_wait. If
there's another event, throw it back into the
queue. */
if (lp->status)
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"SWC: kill %s, %s\n",
target_pid_to_str (lp->ptid),
status_to_str ((int) status));
kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
}
/* Save the sigtrap event. */
lp->status = status;
return 0;
}
else
{
/* The thread was stopped with a signal other than
SIGSTOP, and didn't accidentally trip a breakpoint. */
if (debug_linux_nat)
{
fprintf_unfiltered (gdb_stdlog,
"SWC: Pending event %s in %s\n",
status_to_str ((int) status),
target_pid_to_str (lp->ptid));
}
/* Now resume this LWP and get the SIGSTOP event. */
errno = 0;
ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
target_pid_to_str (lp->ptid),
errno ? safe_strerror (errno) : "OK");
/* Hold this event/waitstatus while we check to see if
there are any more (we still want to get that SIGSTOP). */
stop_wait_callback (lp, NULL);
/* If the lp->status field is still empty, use it to
hold this event. If not, then this event must be
returned to the event queue of the LWP. */
if (lp->status)
{
if (debug_linux_nat)
{
fprintf_unfiltered (gdb_stdlog,
"SWC: kill %s, %s\n",
target_pid_to_str (lp->ptid),
status_to_str ((int) status));
}
kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
}
else
lp->status = status;
return 0;
}
}
else
{
/* We caught the SIGSTOP that we intended to catch, so
there's no SIGSTOP pending. */
lp->stopped = 1;
lp->signalled = 0;
}
}
return 0;
}
/* Return non-zero if LP has a wait status pending. */
static int
status_callback (struct lwp_info *lp, void *data)
{
/* Only report a pending wait status if we pretend that this has
indeed been resumed. */
/* We check for lp->waitstatus in addition to lp->status, because we
can have pending process exits recorded in lp->waitstatus, and
W_EXITCODE(0,0) == 0. */
return ((lp->status != 0
|| lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
&& lp->resumed);
}
/* Return non-zero if LP isn't stopped. */
static int
running_callback (struct lwp_info *lp, void *data)
{
return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
}
/* Count the LWP's that have had events. */
static int
count_events_callback (struct lwp_info *lp, void *data)
{
int *count = data;
gdb_assert (count != NULL);
/* Count only resumed LWPs that have a SIGTRAP event pending. */
if (lp->status != 0 && lp->resumed
&& WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
(*count)++;
return 0;
}
/* Select the LWP (if any) that is currently being single-stepped. */
static int
select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
{
if (lp->step && lp->status != 0)
return 1;
else
return 0;
}
/* Select the Nth LWP that has had a SIGTRAP event. */
static int
select_event_lwp_callback (struct lwp_info *lp, void *data)
{
int *selector = data;
gdb_assert (selector != NULL);
/* Select only resumed LWPs that have a SIGTRAP event pending. */
if (lp->status != 0 && lp->resumed
&& WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
if ((*selector)-- == 0)
return 1;
return 0;
}
static int
cancel_breakpoint (struct lwp_info *lp)
{
/* Arrange for a breakpoint to be hit again later. We don't keep
the SIGTRAP status and don't forward the SIGTRAP signal to the
LWP. We will handle the current event, eventually we will resume
this LWP, and this breakpoint will trap again.
If we do not do this, then we run the risk that the user will
delete or disable the breakpoint, but the LWP will have already
tripped on it. */
struct regcache *regcache = get_thread_regcache (lp->ptid);
struct gdbarch *gdbarch = get_regcache_arch (regcache);
CORE_ADDR pc;
pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
if (breakpoint_inserted_here_p (pc))
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"CB: Push back breakpoint for %s\n",
target_pid_to_str (lp->ptid));
/* Back up the PC if necessary. */
if (gdbarch_decr_pc_after_break (gdbarch))
regcache_write_pc (regcache, pc);
return 1;
}
return 0;
}
static int
cancel_breakpoints_callback (struct lwp_info *lp, void *data)
{
struct lwp_info *event_lp = data;
/* Leave the LWP that has been elected to receive a SIGTRAP alone. */
if (lp == event_lp)
return 0;
/* If a LWP other than the LWP that we're reporting an event for has
hit a GDB breakpoint (as opposed to some random trap signal),
then just arrange for it to hit it again later. We don't keep
the SIGTRAP status and don't forward the SIGTRAP signal to the
LWP. We will handle the current event, eventually we will resume
all LWPs, and this one will get its breakpoint trap again.
If we do not do this, then we run the risk that the user will
delete or disable the breakpoint, but the LWP will have already
tripped on it. */
if (lp->status != 0
&& WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
&& cancel_breakpoint (lp))
/* Throw away the SIGTRAP. */
lp->status = 0;
return 0;
}
/* Select one LWP out of those that have events pending. */
static void
select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
{
int num_events = 0;
int random_selector;
struct lwp_info *event_lp;
/* Record the wait status for the original LWP. */
(*orig_lp)->status = *status;
/* Give preference to any LWP that is being single-stepped. */
event_lp = iterate_over_lwps (filter,
select_singlestep_lwp_callback, NULL);
if (event_lp != NULL)
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"SEL: Select single-step %s\n",
target_pid_to_str (event_lp->ptid));
}
else
{
/* No single-stepping LWP. Select one at random, out of those
which have had SIGTRAP events. */
/* First see how many SIGTRAP events we have. */
iterate_over_lwps (filter, count_events_callback, &num_events);
/* Now randomly pick a LWP out of those that have had a SIGTRAP. */
random_selector = (int)
((num_events * (double) rand ()) / (RAND_MAX + 1.0));
if (debug_linux_nat && num_events > 1)
fprintf_unfiltered (gdb_stdlog,
"SEL: Found %d SIGTRAP events, selecting #%d\n",
num_events, random_selector);
event_lp = iterate_over_lwps (filter,
select_event_lwp_callback,
&random_selector);
}
if (event_lp != NULL)
{
/* Switch the event LWP. */
*orig_lp = event_lp;
*status = event_lp->status;
}
/* Flush the wait status for the event LWP. */
(*orig_lp)->status = 0;
}
/* Return non-zero if LP has been resumed. */
static int
resumed_callback (struct lwp_info *lp, void *data)
{
return lp->resumed;
}
/* Stop an active thread, verify it still exists, then resume it. */
static int
stop_and_resume_callback (struct lwp_info *lp, void *data)
{
struct lwp_info *ptr;
if (!lp->stopped && !lp->signalled)
{
stop_callback (lp, NULL);
stop_wait_callback (lp, NULL);
/* Resume if the lwp still exists. */
for (ptr = lwp_list; ptr; ptr = ptr->next)
if (lp == ptr)
{
resume_callback (lp, NULL);
resume_set_callback (lp, NULL);
}
}
return 0;
}
/* Check if we should go on and pass this event to common code.
Return the affected lwp if we are, or NULL otherwise. */
static struct lwp_info *
linux_nat_filter_event (int lwpid, int status, int options)
{
struct lwp_info *lp;
lp = find_lwp_pid (pid_to_ptid (lwpid));
/* Check for stop events reported by a process we didn't already
know about - anything not already in our LWP list.
If we're expecting to receive stopped processes after
fork, vfork, and clone events, then we'll just add the
new one to our list and go back to waiting for the event
to be reported - the stopped process might be returned
from waitpid before or after the event is. */
if (WIFSTOPPED (status) && !lp)
{
linux_record_stopped_pid (lwpid, status);
return NULL;
}
/* Make sure we don't report an event for the exit of an LWP not in
our list, i.e. not part of the current process. This can happen
if we detach from a program we original forked and then it
exits. */
if (!WIFSTOPPED (status) && !lp)
return NULL;
/* NOTE drow/2003-06-17: This code seems to be meant for debugging
CLONE_PTRACE processes which do not use the thread library -
otherwise we wouldn't find the new LWP this way. That doesn't
currently work, and the following code is currently unreachable
due to the two blocks above. If it's fixed some day, this code
should be broken out into a function so that we can also pick up
LWPs from the new interface. */
if (!lp)
{
lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
if (options & __WCLONE)
lp->cloned = 1;
gdb_assert (WIFSTOPPED (status)
&& WSTOPSIG (status) == SIGSTOP);
lp->signalled = 1;
if (!in_thread_list (inferior_ptid))
{
inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
GET_PID (inferior_ptid));
add_thread (inferior_ptid);
}
add_thread (lp->ptid);
}
/* Save the trap's siginfo in case we need it later. */
if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
save_siginfo (lp);
/* Handle GNU/Linux's extended waitstatus for trace events. */
if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLW: Handling extended status 0x%06x\n",
status);
if (linux_handle_extended_wait (lp, status, 0))
return NULL;
}
/* Check if the thread has exited. */
if ((WIFEXITED (status) || WIFSIGNALED (status))
&& num_lwps (GET_PID (lp->ptid)) > 1)
{
/* If this is the main thread, we must stop all threads and verify
if they are still alive. This is because in the nptl thread model
on Linux 2.4, there is no signal issued for exiting LWPs
other than the main thread. We only get the main thread exit
signal once all child threads have already exited. If we
stop all the threads and use the stop_wait_callback to check
if they have exited we can determine whether this signal
should be ignored or whether it means the end of the debugged
application, regardless of which threading model is being
used. */
if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
{
lp->stopped = 1;
iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
stop_and_resume_callback, NULL);
}
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLW: %s exited.\n",
target_pid_to_str (lp->ptid));
if (num_lwps (GET_PID (lp->ptid)) > 1)
{
/* If there is at least one more LWP, then the exit signal
was not the end of the debugged application and should be
ignored. */
exit_lwp (lp);
return NULL;
}
}
/* Check if the current LWP has previously exited. In the nptl
thread model, LWPs other than the main thread do not issue
signals when they exit so we must check whenever the thread has
stopped. A similar check is made in stop_wait_callback(). */
if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
{
ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLW: %s exited.\n",
target_pid_to_str (lp->ptid));
exit_lwp (lp);
/* Make sure there is at least one thread running. */
gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
/* Discard the event. */
return NULL;
}
/* Make sure we don't report a SIGSTOP that we sent ourselves in
an attempt to stop an LWP. */
if (lp->signalled
&& WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLW: Delayed SIGSTOP caught for %s.\n",
target_pid_to_str (lp->ptid));
/* This is a delayed SIGSTOP. */
lp->signalled = 0;
registers_changed ();
linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
lp->step, TARGET_SIGNAL_0);
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
lp->step ?
"PTRACE_SINGLESTEP" : "PTRACE_CONT",
target_pid_to_str (lp->ptid));
lp->stopped = 0;
gdb_assert (lp->resumed);
/* Discard the event. */
return NULL;
}
/* Make sure we don't report a SIGINT that we have already displayed
for another thread. */
if (lp->ignore_sigint
&& WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLW: Delayed SIGINT caught for %s.\n",
target_pid_to_str (lp->ptid));
/* This is a delayed SIGINT. */
lp->ignore_sigint = 0;
registers_changed ();
linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
lp->step, TARGET_SIGNAL_0);
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLW: %s %s, 0, 0 (discard SIGINT)\n",
lp->step ?
"PTRACE_SINGLESTEP" : "PTRACE_CONT",
target_pid_to_str (lp->ptid));
lp->stopped = 0;
gdb_assert (lp->resumed);
/* Discard the event. */
return NULL;
}
/* An interesting event. */
gdb_assert (lp);
return lp;
}
static ptid_t
linux_nat_wait_1 (struct target_ops *ops,
ptid_t ptid, struct target_waitstatus *ourstatus,
int target_options)
{
static sigset_t prev_mask;
struct lwp_info *lp = NULL;
int options = 0;
int status = 0;
pid_t pid;
if (debug_linux_nat_async)
fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
/* The first time we get here after starting a new inferior, we may
not have added it to the LWP list yet - this is the earliest
moment at which we know its PID. */
if (ptid_is_pid (inferior_ptid))
{
/* Upgrade the main thread's ptid. */
thread_change_ptid (inferior_ptid,
BUILD_LWP (GET_PID (inferior_ptid),
GET_PID (inferior_ptid)));
lp = add_lwp (inferior_ptid);
lp->resumed = 1;
}
/* Make sure SIGCHLD is blocked. */
block_child_signals (&prev_mask);
if (ptid_equal (ptid, minus_one_ptid))
pid = -1;
else if (ptid_is_pid (ptid))
/* A request to wait for a specific tgid. This is not possible
with waitpid, so instead, we wait for any child, and leave
children we're not interested in right now with a pending
status to report later. */
pid = -1;
else
pid = GET_LWP (ptid);
retry:
lp = NULL;
status = 0;
/* Make sure there is at least one LWP that has been resumed. */
gdb_assert (iterate_over_lwps (ptid, resumed_callback, NULL));
/* First check if there is a LWP with a wait status pending. */
if (pid == -1)
{
/* Any LWP that's been resumed will do. */
lp = iterate_over_lwps (ptid, status_callback, NULL);
if (lp)
{
status = lp->status;
lp->status = 0;
if (debug_linux_nat && status)
fprintf_unfiltered (gdb_stdlog,
"LLW: Using pending wait status %s for %s.\n",
status_to_str (status),
target_pid_to_str (lp->ptid));
}
/* But if we don't find one, we'll have to wait, and check both
cloned and uncloned processes. We start with the cloned
processes. */
options = __WCLONE | WNOHANG;
}
else if (is_lwp (ptid))
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLW: Waiting for specific LWP %s.\n",
target_pid_to_str (ptid));
/* We have a specific LWP to check. */
lp = find_lwp_pid (ptid);
gdb_assert (lp);
status = lp->status;
lp->status = 0;
if (debug_linux_nat && status)
fprintf_unfiltered (gdb_stdlog,
"LLW: Using pending wait status %s for %s.\n",
status_to_str (status),
target_pid_to_str (lp->ptid));
/* If we have to wait, take into account whether PID is a cloned
process or not. And we have to convert it to something that
the layer beneath us can understand. */
options = lp->cloned ? __WCLONE : 0;
pid = GET_LWP (ptid);
/* We check for lp->waitstatus in addition to lp->status,
because we can have pending process exits recorded in
lp->status and W_EXITCODE(0,0) == 0. We should probably have
an additional lp->status_p flag. */
if (status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
lp = NULL;
}
if (lp && lp->signalled)
{
/* A pending SIGSTOP may interfere with the normal stream of
events. In a typical case where interference is a problem,
we have a SIGSTOP signal pending for LWP A while
single-stepping it, encounter an event in LWP B, and take the
pending SIGSTOP while trying to stop LWP A. After processing
the event in LWP B, LWP A is continued, and we'll never see
the SIGTRAP associated with the last time we were
single-stepping LWP A. */
/* Resume the thread. It should halt immediately returning the
pending SIGSTOP. */
registers_changed ();
linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
lp->step, TARGET_SIGNAL_0);
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
target_pid_to_str (lp->ptid));
lp->stopped = 0;
gdb_assert (lp->resumed);
/* This should catch the pending SIGSTOP. */
stop_wait_callback (lp, NULL);
}
if (!target_can_async_p ())
{
/* Causes SIGINT to be passed on to the attached process. */
set_sigint_trap ();
}
/* Translate generic target_wait options into waitpid options. */
if (target_options & TARGET_WNOHANG)
options |= WNOHANG;
while (lp == NULL)
{
pid_t lwpid;
lwpid = my_waitpid (pid, &status, options);
if (lwpid > 0)
{
gdb_assert (pid == -1 || lwpid == pid);
if (debug_linux_nat)
{
fprintf_unfiltered (gdb_stdlog,
"LLW: waitpid %ld received %s\n",
(long) lwpid, status_to_str (status));
}
lp = linux_nat_filter_event (lwpid, status, options);
if (lp
&& ptid_is_pid (ptid)
&& ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
{
if (debug_linux_nat)
fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
ptid_get_lwp (lp->ptid), status);
if (WIFSTOPPED (status))
{
if (WSTOPSIG (status) != SIGSTOP)
{
lp->status = status;
stop_callback (lp, NULL);
/* Resume in order to collect the sigstop. */
ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
stop_wait_callback (lp, NULL);
}
else
{
lp->stopped = 1;
lp->signalled = 0;
}
}
else if (WIFEXITED (status) || WIFSIGNALED (status))
{
if (debug_linux_nat)
fprintf (stderr, "Process %ld exited while stopping LWPs\n",
ptid_get_lwp (lp->ptid));
/* This was the last lwp in the process. Since
events are serialized to GDB core, and we can't
report this one right now, but GDB core and the
other target layers will want to be notified
about the exit code/signal, leave the status
pending for the next time we're able to report
it. */
lp->status = status;
/* Prevent trying to stop this thread again. We'll
never try to resume it because it has a pending
status. */
lp->stopped = 1;
/* Dead LWP's aren't expected to reported a pending
sigstop. */
lp->signalled = 0;
/* Store the pending event in the waitstatus as
well, because W_EXITCODE(0,0) == 0. */
store_waitstatus (&lp->waitstatus, status);
}
/* Keep looking. */
lp = NULL;
continue;
}
if (lp)
break;
else
{
if (pid == -1)
{
/* waitpid did return something. Restart over. */
options |= __WCLONE;
}
continue;
}
}
if (pid == -1)
{
/* Alternate between checking cloned and uncloned processes. */
options ^= __WCLONE;
/* And every time we have checked both:
In async mode, return to event loop;
In sync mode, suspend waiting for a SIGCHLD signal. */
if (options & __WCLONE)
{
if (target_options & TARGET_WNOHANG)
{
/* No interesting event. */
ourstatus->kind = TARGET_WAITKIND_IGNORE;
if (debug_linux_nat_async)
fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
restore_child_signals_mask (&prev_mask);
return minus_one_ptid;
}
sigsuspend (&suspend_mask);
}
}
/* We shouldn't end up here unless we want to try again. */
gdb_assert (lp == NULL);
}
if (!target_can_async_p ())
clear_sigint_trap ();
gdb_assert (lp);
/* Don't report signals that GDB isn't interested in, such as
signals that are neither printed nor stopped upon. Stopping all
threads can be a bit time-consuming so if we want decent
performance with heavily multi-threaded programs, especially when
they're using a high frequency timer, we'd better avoid it if we
can. */
if (WIFSTOPPED (status))
{
int signo = target_signal_from_host (WSTOPSIG (status));
struct inferior *inf;
inf = find_inferior_pid (ptid_get_pid (lp->ptid));
gdb_assert (inf);
/* Defer to common code if we get a signal while
single-stepping, since that may need special care, e.g. to
skip the signal handler, or, if we're gaining control of the
inferior. */
if (!lp->step
&& inf->stop_soon == NO_STOP_QUIETLY
&& signal_stop_state (signo) == 0
&& signal_print_state (signo) == 0
&& signal_pass_state (signo) == 1)
{
/* FIMXE: kettenis/2001-06-06: Should we resume all threads
here? It is not clear we should. GDB may not expect
other threads to run. On the other hand, not resuming
newly attached threads may cause an unwanted delay in
getting them running. */
registers_changed ();
linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
lp->step, signo);
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLW: %s %s, %s (preempt 'handle')\n",
lp->step ?
"PTRACE_SINGLESTEP" : "PTRACE_CONT",
target_pid_to_str (lp->ptid),
signo ? strsignal (signo) : "0");
lp->stopped = 0;
goto retry;
}
if (!non_stop)
{
/* Only do the below in all-stop, as we currently use SIGINT
to implement target_stop (see linux_nat_stop) in
non-stop. */
if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
{
/* If ^C/BREAK is typed at the tty/console, SIGINT gets
forwarded to the entire process group, that is, all LWPs
will receive it - unless they're using CLONE_THREAD to
share signals. Since we only want to report it once, we
mark it as ignored for all LWPs except this one. */
iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
set_ignore_sigint, NULL);
lp->ignore_sigint = 0;
}
else
maybe_clear_ignore_sigint (lp);
}
}
/* This LWP is stopped now. */
lp->stopped = 1;
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
status_to_str (status), target_pid_to_str (lp->ptid));
if (!non_stop)
{
/* Now stop all other LWP's ... */
iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
/* ... and wait until all of them have reported back that
they're no longer running. */
iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
/* If we're not waiting for a specific LWP, choose an event LWP
from among those that have had events. Giving equal priority
to all LWPs that have had events helps prevent
starvation. */
if (pid == -1)
select_event_lwp (ptid, &lp, &status);
}
/* Now that we've selected our final event LWP, cancel any
breakpoints in other LWPs that have hit a GDB breakpoint. See
the comment in cancel_breakpoints_callback to find out why. */
iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLW: trap ptid is %s.\n",
target_pid_to_str (lp->ptid));
}
if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
{
*ourstatus = lp->waitstatus;
lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
}
else
store_waitstatus (ourstatus, status);
if (debug_linux_nat_async)
fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
restore_child_signals_mask (&prev_mask);
return lp->ptid;
}
static ptid_t
linux_nat_wait (struct target_ops *ops,
ptid_t ptid, struct target_waitstatus *ourstatus,
int target_options)
{
ptid_t event_ptid;
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
/* Flush the async file first. */
if (target_can_async_p ())
async_file_flush ();
event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
/* If we requested any event, and something came out, assume there
may be more. If we requested a specific lwp or process, also
assume there may be more. */
if (target_can_async_p ()
&& (ourstatus->kind != TARGET_WAITKIND_IGNORE
|| !ptid_equal (ptid, minus_one_ptid)))
async_file_mark ();
/* Get ready for the next event. */
if (target_can_async_p ())
target_async (inferior_event_handler, 0);
return event_ptid;
}
static int
kill_callback (struct lwp_info *lp, void *data)
{
errno = 0;
ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"KC: PTRACE_KILL %s, 0, 0 (%s)\n",
target_pid_to_str (lp->ptid),
errno ? safe_strerror (errno) : "OK");
return 0;
}
static int
kill_wait_callback (struct lwp_info *lp, void *data)
{
pid_t pid;
/* We must make sure that there are no pending events (delayed
SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
program doesn't interfere with any following debugging session. */
/* For cloned processes we must check both with __WCLONE and
without, since the exit status of a cloned process isn't reported
with __WCLONE. */
if (lp->cloned)
{
do
{
pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
if (pid != (pid_t) -1)
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"KWC: wait %s received unknown.\n",
target_pid_to_str (lp->ptid));
/* The Linux kernel sometimes fails to kill a thread
completely after PTRACE_KILL; that goes from the stop
point in do_fork out to the one in
get_signal_to_deliever and waits again. So kill it
again. */
kill_callback (lp, NULL);
}
}
while (pid == GET_LWP (lp->ptid));
gdb_assert (pid == -1 && errno == ECHILD);
}
do
{
pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
if (pid != (pid_t) -1)
{
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"KWC: wait %s received unk.\n",
target_pid_to_str (lp->ptid));
/* See the call to kill_callback above. */
kill_callback (lp, NULL);
}
}
while (pid == GET_LWP (lp->ptid));
gdb_assert (pid == -1 && errno == ECHILD);
return 0;
}
static void
linux_nat_kill (struct target_ops *ops)
{
struct target_waitstatus last;
ptid_t last_ptid;
int status;
/* If we're stopped while forking and we haven't followed yet,
kill the other task. We need to do this first because the
parent will be sleeping if this is a vfork. */
get_last_target_status (&last_ptid, &last);
if (last.kind == TARGET_WAITKIND_FORKED
|| last.kind == TARGET_WAITKIND_VFORKED)
{
ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
wait (&status);
}
if (forks_exist_p ())
linux_fork_killall ();
else
{
ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
/* Stop all threads before killing them, since ptrace requires
that the thread is stopped to sucessfully PTRACE_KILL. */
iterate_over_lwps (ptid, stop_callback, NULL);
/* ... and wait until all of them have reported back that
they're no longer running. */
iterate_over_lwps (ptid, stop_wait_callback, NULL);
/* Kill all LWP's ... */
iterate_over_lwps (ptid, kill_callback, NULL);
/* ... and wait until we've flushed all events. */
iterate_over_lwps (ptid, kill_wait_callback, NULL);
}
target_mourn_inferior ();
}
static void
linux_nat_mourn_inferior (struct target_ops *ops)
{
purge_lwp_list (ptid_get_pid (inferior_ptid));
if (! forks_exist_p ())
/* Normal case, no other forks available. */
linux_ops->to_mourn_inferior (ops);
else
/* Multi-fork case. The current inferior_ptid has exited, but
there are other viable forks to debug. Delete the exiting
one and context-switch to the first available. */
linux_fork_mourn_inferior ();
}
/* Convert a native/host siginfo object, into/from the siginfo in the
layout of the inferiors' architecture. */
static void
siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
{
int done = 0;
if (linux_nat_siginfo_fixup != NULL)
done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
/* If there was no callback, or the callback didn't do anything,
then just do a straight memcpy. */
if (!done)
{
if (direction == 1)
memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
else
memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
}
}
static LONGEST
linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
const char *annex, gdb_byte *readbuf,
const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
int pid;
struct siginfo siginfo;
gdb_byte inf_siginfo[sizeof (struct siginfo)];
gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
gdb_assert (readbuf || writebuf);
pid = GET_LWP (inferior_ptid);
if (pid == 0)
pid = GET_PID (inferior_ptid);
if (offset > sizeof (siginfo))
return -1;
errno = 0;
ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
if (errno != 0)
return -1;
/* When GDB is built as a 64-bit application, ptrace writes into
SIGINFO an object with 64-bit layout. Since debugging a 32-bit
inferior with a 64-bit GDB should look the same as debugging it
with a 32-bit GDB, we need to convert it. GDB core always sees
the converted layout, so any read/write will have to be done
post-conversion. */
siginfo_fixup (&siginfo, inf_siginfo, 0);
if (offset + len > sizeof (siginfo))
len = sizeof (siginfo) - offset;
if (readbuf != NULL)
memcpy (readbuf, inf_siginfo + offset, len);
else
{
memcpy (inf_siginfo + offset, writebuf, len);
/* Convert back to ptrace layout before flushing it out. */
siginfo_fixup (&siginfo, inf_siginfo, 1);
errno = 0;
ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
if (errno != 0)
return -1;
}
return len;
}
static LONGEST
linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
const char *annex, gdb_byte *readbuf,
const gdb_byte *writebuf,
ULONGEST offset, LONGEST len)
{
struct cleanup *old_chain;
LONGEST xfer;
if (object == TARGET_OBJECT_SIGNAL_INFO)
return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
offset, len);
/* The target is connected but no live inferior is selected. Pass
this request down to a lower stratum (e.g., the executable
file). */
if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
return 0;
old_chain = save_inferior_ptid ();
if (is_lwp (inferior_ptid))
inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
offset, len);
do_cleanups (old_chain);
return xfer;
}
static int
linux_thread_alive (ptid_t ptid)
{
int err;
gdb_assert (is_lwp (ptid));
/* Send signal 0 instead of anything ptrace, because ptracing a
running thread errors out claiming that the thread doesn't
exist. */
err = kill_lwp (GET_LWP (ptid), 0);
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LLTA: KILL(SIG0) %s (%s)\n",
target_pid_to_str (ptid),
err ? safe_strerror (err) : "OK");
if (err != 0)
return 0;
return 1;
}
static int
linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
{
return linux_thread_alive (ptid);
}
static char *
linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
{
static char buf[64];
if (is_lwp (ptid)
&& (GET_PID (ptid) != GET_LWP (ptid)
|| num_lwps (GET_PID (ptid)) > 1))
{
snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
return buf;
}
return normal_pid_to_str (ptid);
}
/* Accepts an integer PID; Returns a string representing a file that
can be opened to get the symbols for the child process. */
static char *
linux_child_pid_to_exec_file (int pid)
{
char *name1, *name2;
name1 = xmalloc (MAXPATHLEN);
name2 = xmalloc (MAXPATHLEN);
make_cleanup (xfree, name1);
make_cleanup (xfree, name2);
memset (name2, 0, MAXPATHLEN);
sprintf (name1, "/proc/%d/exe", pid);
if (readlink (name1, name2, MAXPATHLEN) > 0)
return name2;
else
return name1;
}
/* Service function for corefiles and info proc. */
static int
read_mapping (FILE *mapfile,
long long *addr,
long long *endaddr,
char *permissions,
long long *offset,
char *device, long long *inode, char *filename)
{
int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
addr, endaddr, permissions, offset, device, inode);
filename[0] = '\0';
if (ret > 0 && ret != EOF)
{
/* Eat everything up to EOL for the filename. This will prevent
weird filenames (such as one with embedded whitespace) from
confusing this code. It also makes this code more robust in
respect to annotations the kernel may add after the filename.
Note the filename is used for informational purposes
only. */
ret += fscanf (mapfile, "%[^\n]\n", filename);
}
return (ret != 0 && ret != EOF);
}
/* Fills the "to_find_memory_regions" target vector. Lists the memory
regions in the inferior for a corefile. */
static int
linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
unsigned long,
int, int, int, void *), void *obfd)
{
int pid = PIDGET (inferior_ptid);
char mapsfilename[MAXPATHLEN];
FILE *mapsfile;
long long addr, endaddr, size, offset, inode;
char permissions[8], device[8], filename[MAXPATHLEN];
int read, write, exec;
int ret;
struct cleanup *cleanup;
/* Compose the filename for the /proc memory map, and open it. */
sprintf (mapsfilename, "/proc/%d/maps", pid);
if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
error (_("Could not open %s."), mapsfilename);
cleanup = make_cleanup_fclose (mapsfile);
if (info_verbose)
fprintf_filtered (gdb_stdout,
"Reading memory regions from %s\n", mapsfilename);
/* Now iterate until end-of-file. */
while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
&offset, &device[0], &inode, &filename[0]))
{
size = endaddr - addr;
/* Get the segment's permissions. */
read = (strchr (permissions, 'r') != 0);
write = (strchr (permissions, 'w') != 0);
exec = (strchr (permissions, 'x') != 0);
if (info_verbose)
{
fprintf_filtered (gdb_stdout,
"Save segment, %lld bytes at 0x%s (%c%c%c)",
size, paddr_nz (addr),
read ? 'r' : ' ',
write ? 'w' : ' ', exec ? 'x' : ' ');
if (filename[0])
fprintf_filtered (gdb_stdout, " for %s", filename);
fprintf_filtered (gdb_stdout, "\n");
}
/* Invoke the callback function to create the corefile
segment. */
func (addr, size, read, write, exec, obfd);
}
do_cleanups (cleanup);
return 0;
}
static int
find_signalled_thread (struct thread_info *info, void *data)
{
if (info->stop_signal != TARGET_SIGNAL_0
&& ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
return 1;
return 0;
}
static enum target_signal
find_stop_signal (void)
{
struct thread_info *info =
iterate_over_threads (find_signalled_thread, NULL);
if (info)
return info->stop_signal;
else
return TARGET_SIGNAL_0;
}
/* Records the thread's register state for the corefile note
section. */
static char *
linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
char *note_data, int *note_size,
enum target_signal stop_signal)
{
gdb_gregset_t gregs;
gdb_fpregset_t fpregs;
unsigned long lwp = ptid_get_lwp (ptid);
struct regcache *regcache = get_thread_regcache (ptid);
struct gdbarch *gdbarch = get_regcache_arch (regcache);
const struct regset *regset;
int core_regset_p;
struct cleanup *old_chain;
struct core_regset_section *sect_list;
char *gdb_regset;
old_chain = save_inferior_ptid ();
inferior_ptid = ptid;
target_fetch_registers (regcache, -1);
do_cleanups (old_chain);
core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
sect_list = gdbarch_core_regset_sections (gdbarch);
if (core_regset_p
&& (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
sizeof (gregs))) != NULL
&& regset->collect_regset != NULL)
regset->collect_regset (regset, regcache, -1,
&gregs, sizeof (gregs));
else
fill_gregset (regcache, &gregs, -1);
note_data = (char *) elfcore_write_prstatus (obfd,
note_data,
note_size,
lwp,
stop_signal, &gregs);
/* The loop below uses the new struct core_regset_section, which stores
the supported section names and sizes for the core file. Note that
note PRSTATUS needs to be treated specially. But the other notes are
structurally the same, so they can benefit from the new struct. */
if (core_regset_p && sect_list != NULL)
while (sect_list->sect_name != NULL)
{
/* .reg was already handled above. */
if (strcmp (sect_list->sect_name, ".reg") == 0)
{
sect_list++;
continue;
}
regset = gdbarch_regset_from_core_section (gdbarch,
sect_list->sect_name,
sect_list->size);
gdb_assert (regset && regset->collect_regset);
gdb_regset = xmalloc (sect_list->size);
regset->collect_regset (regset, regcache, -1,
gdb_regset, sect_list->size);
note_data = (char *) elfcore_write_register_note (obfd,
note_data,
note_size,
sect_list->sect_name,
gdb_regset,
sect_list->size);
xfree (gdb_regset);
sect_list++;
}
/* For architectures that does not have the struct core_regset_section
implemented, we use the old method. When all the architectures have
the new support, the code below should be deleted. */
else
{
if (core_regset_p
&& (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
sizeof (fpregs))) != NULL
&& regset->collect_regset != NULL)
regset->collect_regset (regset, regcache, -1,
&fpregs, sizeof (fpregs));
else
fill_fpregset (regcache, &fpregs, -1);
note_data = (char *) elfcore_write_prfpreg (obfd,
note_data,
note_size,
&fpregs, sizeof (fpregs));
}
return note_data;
}
struct linux_nat_corefile_thread_data
{
bfd *obfd;
char *note_data;
int *note_size;
int num_notes;
enum target_signal stop_signal;
};
/* Called by gdbthread.c once per thread. Records the thread's
register state for the corefile note section. */
static int
linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
{
struct linux_nat_corefile_thread_data *args = data;
args->note_data = linux_nat_do_thread_registers (args->obfd,
ti->ptid,
args->note_data,
args->note_size,
args->stop_signal);
args->num_notes++;
return 0;
}
/* Fills the "to_make_corefile_note" target vector. Builds the note
section for a corefile, and returns it in a malloc buffer. */
static char *
linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
{
struct linux_nat_corefile_thread_data thread_args;
struct cleanup *old_chain;
/* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
char fname[16] = { '\0' };
/* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
char psargs[80] = { '\0' };
char *note_data = NULL;
ptid_t current_ptid = inferior_ptid;
ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
gdb_byte *auxv;
int auxv_len;
if (get_exec_file (0))
{
strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
strncpy (psargs, get_exec_file (0), sizeof (psargs));
if (get_inferior_args ())
{
char *string_end;
char *psargs_end = psargs + sizeof (psargs);
/* linux_elfcore_write_prpsinfo () handles zero unterminated
strings fine. */
string_end = memchr (psargs, 0, sizeof (psargs));
if (string_end != NULL)
{
*string_end++ = ' ';
strncpy (string_end, get_inferior_args (),
psargs_end - string_end);
}
}
note_data = (char *) elfcore_write_prpsinfo (obfd,
note_data,
note_size, fname, psargs);
}
/* Dump information for threads. */
thread_args.obfd = obfd;
thread_args.note_data = note_data;
thread_args.note_size = note_size;
thread_args.num_notes = 0;
thread_args.stop_signal = find_stop_signal ();
iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
gdb_assert (thread_args.num_notes != 0);
note_data = thread_args.note_data;
auxv_len = target_read_alloc (¤t_target, TARGET_OBJECT_AUXV,
NULL, &auxv);
if (auxv_len > 0)
{
note_data = elfcore_write_note (obfd, note_data, note_size,
"CORE", NT_AUXV, auxv, auxv_len);
xfree (auxv);
}
make_cleanup (xfree, note_data);
return note_data;
}
/* Implement the "info proc" command. */
static void
linux_nat_info_proc_cmd (char *args, int from_tty)
{
/* A long is used for pid instead of an int to avoid a loss of precision
compiler warning from the output of strtoul. */
long pid = PIDGET (inferior_ptid);
FILE *procfile;
char **argv = NULL;
char buffer[MAXPATHLEN];
char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
int cmdline_f = 1;
int cwd_f = 1;
int exe_f = 1;
int mappings_f = 0;
int environ_f = 0;
int status_f = 0;
int stat_f = 0;
int all = 0;
struct stat dummy;
if (args)
{
/* Break up 'args' into an argv array. */
argv = gdb_buildargv (args);
make_cleanup_freeargv (argv);
}
while (argv != NULL && *argv != NULL)
{
if (isdigit (argv[0][0]))
{
pid = strtoul (argv[0], NULL, 10);
}
else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
{
mappings_f = 1;
}
else if (strcmp (argv[0], "status") == 0)
{
status_f = 1;
}
else if (strcmp (argv[0], "stat") == 0)
{
stat_f = 1;
}
else if (strcmp (argv[0], "cmd") == 0)
{
cmdline_f = 1;
}
else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
{
exe_f = 1;
}
else if (strcmp (argv[0], "cwd") == 0)
{
cwd_f = 1;
}
else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
{
all = 1;
}
else
{
/* [...] (future options here) */
}
argv++;
}
if (pid == 0)
error (_("No current process: you must name one."));
sprintf (fname1, "/proc/%ld", pid);
if (stat (fname1, &dummy) != 0)
error (_("No /proc directory: '%s'"), fname1);
printf_filtered (_("process %ld\n"), pid);
if (cmdline_f || all)
{
sprintf (fname1, "/proc/%ld/cmdline", pid);
if ((procfile = fopen (fname1, "r")) != NULL)
{
struct cleanup *cleanup = make_cleanup_fclose (procfile);
if (fgets (buffer, sizeof (buffer), procfile))
printf_filtered ("cmdline = '%s'\n", buffer);
else
warning (_("unable to read '%s'"), fname1);
do_cleanups (cleanup);
}
else
warning (_("unable to open /proc file '%s'"), fname1);
}
if (cwd_f || all)
{
sprintf (fname1, "/proc/%ld/cwd", pid);
memset (fname2, 0, sizeof (fname2));
if (readlink (fname1, fname2, sizeof (fname2)) > 0)
printf_filtered ("cwd = '%s'\n", fname2);
else
warning (_("unable to read link '%s'"), fname1);
}
if (exe_f || all)
{
sprintf (fname1, "/proc/%ld/exe", pid);
memset (fname2, 0, sizeof (fname2));
if (readlink (fname1, fname2, sizeof (fname2)) > 0)
printf_filtered ("exe = '%s'\n", fname2);
else
warning (_("unable to read link '%s'"), fname1);
}
if (mappings_f || all)
{
sprintf (fname1, "/proc/%ld/maps", pid);
if ((procfile = fopen (fname1, "r")) != NULL)
{
long long addr, endaddr, size, offset, inode;
char permissions[8], device[8], filename[MAXPATHLEN];
struct cleanup *cleanup;
cleanup = make_cleanup_fclose (procfile);
printf_filtered (_("Mapped address spaces:\n\n"));
if (gdbarch_addr_bit (target_gdbarch) == 32)
{
printf_filtered ("\t%10s %10s %10s %10s %7s\n",
"Start Addr",
" End Addr",
" Size", " Offset", "objfile");
}
else
{
printf_filtered (" %18s %18s %10s %10s %7s\n",
"Start Addr",
" End Addr",
" Size", " Offset", "objfile");
}
while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
&offset, &device[0], &inode, &filename[0]))
{
size = endaddr - addr;
/* FIXME: carlton/2003-08-27: Maybe the printf_filtered
calls here (and possibly above) should be abstracted
out into their own functions? Andrew suggests using
a generic local_address_string instead to print out
the addresses; that makes sense to me, too. */
if (gdbarch_addr_bit (target_gdbarch) == 32)
{
printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
(unsigned long) addr, /* FIXME: pr_addr */
(unsigned long) endaddr,
(int) size,
(unsigned int) offset,
filename[0] ? filename : "");
}
else
{
printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
(unsigned long) addr, /* FIXME: pr_addr */
(unsigned long) endaddr,
(int) size,
(unsigned int) offset,
filename[0] ? filename : "");
}
}
do_cleanups (cleanup);
}
else
warning (_("unable to open /proc file '%s'"), fname1);
}
if (status_f || all)
{
sprintf (fname1, "/proc/%ld/status", pid);
if ((procfile = fopen (fname1, "r")) != NULL)
{
struct cleanup *cleanup = make_cleanup_fclose (procfile);
while (fgets (buffer, sizeof (buffer), procfile) != NULL)
puts_filtered (buffer);
do_cleanups (cleanup);
}
else
warning (_("unable to open /proc file '%s'"), fname1);
}
if (stat_f || all)
{
sprintf (fname1, "/proc/%ld/stat", pid);
if ((procfile = fopen (fname1, "r")) != NULL)
{
int itmp;
char ctmp;
long ltmp;
struct cleanup *cleanup = make_cleanup_fclose (procfile);
if (fscanf (procfile, "%d ", &itmp) > 0)
printf_filtered (_("Process: %d\n"), itmp);
if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
printf_filtered (_("Exec file: %s\n"), buffer);
if (fscanf (procfile, "%c ", &ctmp) > 0)
printf_filtered (_("State: %c\n"), ctmp);
if (fscanf (procfile, "%d ", &itmp) > 0)
printf_filtered (_("Parent process: %d\n"), itmp);
if (fscanf (procfile, "%d ", &itmp) > 0)
printf_filtered (_("Process group: %d\n"), itmp);
if (fscanf (procfile, "%d ", &itmp) > 0)
printf_filtered (_("Session id: %d\n"), itmp);
if (fscanf (procfile, "%d ", &itmp) > 0)
printf_filtered (_("TTY: %d\n"), itmp);
if (fscanf (procfile, "%d ", &itmp) > 0)
printf_filtered (_("TTY owner process group: %d\n"), itmp);
if (fscanf (procfile, "%lu ", <mp) > 0)
printf_filtered (_("Flags: 0x%lx\n"), ltmp);
if (fscanf (procfile, "%lu ", <mp) > 0)
printf_filtered (_("Minor faults (no memory page): %lu\n"),
(unsigned long) ltmp);
if (fscanf (procfile, "%lu ", <mp) > 0)
printf_filtered (_("Minor faults, children: %lu\n"),
(unsigned long) ltmp);
if (fscanf (procfile, "%lu ", <mp) > 0)
printf_filtered (_("Major faults (memory page faults): %lu\n"),
(unsigned long) ltmp);
if (fscanf (procfile, "%lu ", <mp) > 0)
printf_filtered (_("Major faults, children: %lu\n"),
(unsigned long) ltmp);
if (fscanf (procfile, "%ld ", <mp) > 0)
printf_filtered (_("utime: %ld\n"), ltmp);
if (fscanf (procfile, "%ld ", <mp) > 0)
printf_filtered (_("stime: %ld\n"), ltmp);
if (fscanf (procfile, "%ld ", <mp) > 0)
printf_filtered (_("utime, children: %ld\n"), ltmp);
if (fscanf (procfile, "%ld ", <mp) > 0)
printf_filtered (_("stime, children: %ld\n"), ltmp);
if (fscanf (procfile, "%ld ", <mp) > 0)
printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
ltmp);
if (fscanf (procfile, "%ld ", <mp) > 0)
printf_filtered (_("'nice' value: %ld\n"), ltmp);
if (fscanf (procfile, "%lu ", <mp) > 0)
printf_filtered (_("jiffies until next timeout: %lu\n"),
(unsigned long) ltmp);
if (fscanf (procfile, "%lu ", <mp) > 0)
printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
(unsigned long) ltmp);
if (fscanf (procfile, "%ld ", <mp) > 0)
printf_filtered (_("start time (jiffies since system boot): %ld\n"),
ltmp);
if (fscanf (procfile, "%lu ", <mp) > 0)
printf_filtered (_("Virtual memory size: %lu\n"),
(unsigned long) ltmp);
if (fscanf (procfile, "%lu ", <mp) > 0)
printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
if (fscanf (procfile, "%lu ", <mp) > 0)
printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
if (fscanf (procfile, "%lu ", <mp) > 0)
printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
if (fscanf (procfile, "%lu ", <mp) > 0)
printf_filtered (_("End of text: 0x%lx\n"), ltmp);
if (fscanf (procfile, "%lu ", <mp) > 0)
printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
#if 0 /* Don't know how architecture-dependent the rest is...
Anyway the signal bitmap info is available from "status". */
if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
if (fscanf (procfile, "%ld ", <mp) > 0)
printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
if (fscanf (procfile, "%ld ", <mp) > 0)
printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
if (fscanf (procfile, "%ld ", <mp) > 0)
printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
if (fscanf (procfile, "%ld ", <mp) > 0)
printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */
printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
#endif
do_cleanups (cleanup);
}
else
warning (_("unable to open /proc file '%s'"), fname1);
}
}
/* Implement the to_xfer_partial interface for memory reads using the /proc
filesystem. Because we can use a single read() call for /proc, this
can be much more efficient than banging away at PTRACE_PEEKTEXT,
but it doesn't support writes. */
static LONGEST
linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
const char *annex, gdb_byte *readbuf,
const gdb_byte *writebuf,
ULONGEST offset, LONGEST len)
{
LONGEST ret;
int fd;
char filename[64];
if (object != TARGET_OBJECT_MEMORY || !readbuf)
return 0;
/* Don't bother for one word. */
if (len < 3 * sizeof (long))
return 0;
/* We could keep this file open and cache it - possibly one per
thread. That requires some juggling, but is even faster. */
sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
fd = open (filename, O_RDONLY | O_LARGEFILE);
if (fd == -1)
return 0;
/* If pread64 is available, use it. It's faster if the kernel
supports it (only one syscall), and it's 64-bit safe even on
32-bit platforms (for instance, SPARC debugging a SPARC64
application). */
#ifdef HAVE_PREAD64
if (pread64 (fd, readbuf, len, offset) != len)
#else
if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
#endif
ret = 0;
else
ret = len;
close (fd);
return ret;
}
/* Parse LINE as a signal set and add its set bits to SIGS. */
static void
add_line_to_sigset (const char *line, sigset_t *sigs)
{
int len = strlen (line) - 1;
const char *p;
int signum;
if (line[len] != '\n')
error (_("Could not parse signal set: %s"), line);
p = line;
signum = len * 4;
while (len-- > 0)
{
int digit;
if (*p >= '0' && *p <= '9')
digit = *p - '0';
else if (*p >= 'a' && *p <= 'f')
digit = *p - 'a' + 10;
else
error (_("Could not parse signal set: %s"), line);
signum -= 4;
if (digit & 1)
sigaddset (sigs, signum + 1);
if (digit & 2)
sigaddset (sigs, signum + 2);
if (digit & 4)
sigaddset (sigs, signum + 3);
if (digit & 8)
sigaddset (sigs, signum + 4);
p++;
}
}
/* Find process PID's pending signals from /proc/pid/status and set
SIGS to match. */
void
linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
{
FILE *procfile;
char buffer[MAXPATHLEN], fname[MAXPATHLEN];
int signum;
struct cleanup *cleanup;
sigemptyset (pending);
sigemptyset (blocked);
sigemptyset (ignored);
sprintf (fname, "/proc/%d/status", pid);
procfile = fopen (fname, "r");
if (procfile == NULL)
error (_("Could not open %s"), fname);
cleanup = make_cleanup_fclose (procfile);
while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
{
/* Normal queued signals are on the SigPnd line in the status
file. However, 2.6 kernels also have a "shared" pending
queue for delivering signals to a thread group, so check for
a ShdPnd line also.
Unfortunately some Red Hat kernels include the shared pending
queue but not the ShdPnd status field. */
if (strncmp (buffer, "SigPnd:\t", 8) == 0)
add_line_to_sigset (buffer + 8, pending);
else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
add_line_to_sigset (buffer + 8, pending);
else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
add_line_to_sigset (buffer + 8, blocked);
else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
add_line_to_sigset (buffer + 8, ignored);
}
do_cleanups (cleanup);
}
static LONGEST
linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
const char *annex, gdb_byte *readbuf,
const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
/* We make the process list snapshot when the object starts to be
read. */
static const char *buf;
static LONGEST len_avail = -1;
static struct obstack obstack;
DIR *dirp;
gdb_assert (object == TARGET_OBJECT_OSDATA);
if (strcmp (annex, "processes") != 0)
return 0;
gdb_assert (readbuf && !writebuf);
if (offset == 0)
{
if (len_avail != -1 && len_avail != 0)
obstack_free (&obstack, NULL);
len_avail = 0;
buf = NULL;
obstack_init (&obstack);
obstack_grow_str (&obstack, "\n");
dirp = opendir ("/proc");
if (dirp)
{
struct dirent *dp;
while ((dp = readdir (dirp)) != NULL)
{
struct stat statbuf;
char procentry[sizeof ("/proc/4294967295")];
if (!isdigit (dp->d_name[0])
|| NAMELEN (dp) > sizeof ("4294967295") - 1)
continue;
sprintf (procentry, "/proc/%s", dp->d_name);
if (stat (procentry, &statbuf) == 0
&& S_ISDIR (statbuf.st_mode))
{
char *pathname;
FILE *f;
char cmd[MAXPATHLEN + 1];
struct passwd *entry;
pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
entry = getpwuid (statbuf.st_uid);
if ((f = fopen (pathname, "r")) != NULL)
{
size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
if (len > 0)
{
int i;
for (i = 0; i < len; i++)
if (cmd[i] == '\0')
cmd[i] = ' ';
cmd[len] = '\0';
obstack_xml_printf (
&obstack,
"- "
"%s"
"%s"
"%s"
"
",
dp->d_name,
entry ? entry->pw_name : "?",
cmd);
}
fclose (f);
}
xfree (pathname);
}
}
closedir (dirp);
}
obstack_grow_str0 (&obstack, "\n");
buf = obstack_finish (&obstack);
len_avail = strlen (buf);
}
if (offset >= len_avail)
{
/* Done. Get rid of the obstack. */
obstack_free (&obstack, NULL);
buf = NULL;
len_avail = 0;
return 0;
}
if (len > len_avail - offset)
len = len_avail - offset;
memcpy (readbuf, buf + offset, len);
return len;
}
static LONGEST
linux_xfer_partial (struct target_ops *ops, enum target_object object,
const char *annex, gdb_byte *readbuf,
const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
LONGEST xfer;
if (object == TARGET_OBJECT_AUXV)
return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
offset, len);
if (object == TARGET_OBJECT_OSDATA)
return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
offset, len);
xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
offset, len);
if (xfer != 0)
return xfer;
return super_xfer_partial (ops, object, annex, readbuf, writebuf,
offset, len);
}
/* Create a prototype generic GNU/Linux target. The client can override
it with local methods. */
static void
linux_target_install_ops (struct target_ops *t)
{
t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
t->to_post_startup_inferior = linux_child_post_startup_inferior;
t->to_post_attach = linux_child_post_attach;
t->to_follow_fork = linux_child_follow_fork;
t->to_find_memory_regions = linux_nat_find_memory_regions;
t->to_make_corefile_notes = linux_nat_make_corefile_notes;
super_xfer_partial = t->to_xfer_partial;
t->to_xfer_partial = linux_xfer_partial;
}
struct target_ops *
linux_target (void)
{
struct target_ops *t;
t = inf_ptrace_target ();
linux_target_install_ops (t);
return t;
}
struct target_ops *
linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
{
struct target_ops *t;
t = inf_ptrace_trad_target (register_u_offset);
linux_target_install_ops (t);
return t;
}
/* target_is_async_p implementation. */
static int
linux_nat_is_async_p (void)
{
/* NOTE: palves 2008-03-21: We're only async when the user requests
it explicitly with the "set target-async" command.
Someday, linux will always be async. */
if (!target_async_permitted)
return 0;
/* See target.h/target_async_mask. */
return linux_nat_async_mask_value;
}
/* target_can_async_p implementation. */
static int
linux_nat_can_async_p (void)
{
/* NOTE: palves 2008-03-21: We're only async when the user requests
it explicitly with the "set target-async" command.
Someday, linux will always be async. */
if (!target_async_permitted)
return 0;
/* See target.h/target_async_mask. */
return linux_nat_async_mask_value;
}
static int
linux_nat_supports_non_stop (void)
{
return 1;
}
/* True if we want to support multi-process. To be removed when GDB
supports multi-exec. */
int linux_multi_process = 0;
static int
linux_nat_supports_multi_process (void)
{
return linux_multi_process;
}
/* target_async_mask implementation. */
static int
linux_nat_async_mask (int new_mask)
{
int curr_mask = linux_nat_async_mask_value;
if (curr_mask != new_mask)
{
if (new_mask == 0)
{
linux_nat_async (NULL, 0);
linux_nat_async_mask_value = new_mask;
}
else
{
linux_nat_async_mask_value = new_mask;
/* If we're going out of async-mask in all-stop, then the
inferior is stopped. The next resume will call
target_async. In non-stop, the target event source
should be always registered in the event loop. Do so
now. */
if (non_stop)
linux_nat_async (inferior_event_handler, 0);
}
}
return curr_mask;
}
static int async_terminal_is_ours = 1;
/* target_terminal_inferior implementation. */
static void
linux_nat_terminal_inferior (void)
{
if (!target_is_async_p ())
{
/* Async mode is disabled. */
terminal_inferior ();
return;
}
terminal_inferior ();
/* Calls to target_terminal_*() are meant to be idempotent. */
if (!async_terminal_is_ours)
return;
delete_file_handler (input_fd);
async_terminal_is_ours = 0;
set_sigint_trap ();
}
/* target_terminal_ours implementation. */
static void
linux_nat_terminal_ours (void)
{
if (!target_is_async_p ())
{
/* Async mode is disabled. */
terminal_ours ();
return;
}
/* GDB should never give the terminal to the inferior if the
inferior is running in the background (run&, continue&, etc.),
but claiming it sure should. */
terminal_ours ();
if (async_terminal_is_ours)
return;
clear_sigint_trap ();
add_file_handler (input_fd, stdin_event_handler, 0);
async_terminal_is_ours = 1;
}
static void (*async_client_callback) (enum inferior_event_type event_type,
void *context);
static void *async_client_context;
/* SIGCHLD handler that serves two purposes: In non-stop/async mode,
so we notice when any child changes state, and notify the
event-loop; it allows us to use sigsuspend in linux_nat_wait_1
above to wait for the arrival of a SIGCHLD. */
static void
sigchld_handler (int signo)
{
int old_errno = errno;
if (debug_linux_nat_async)
fprintf_unfiltered (gdb_stdlog, "sigchld\n");
if (signo == SIGCHLD
&& linux_nat_event_pipe[0] != -1)
async_file_mark (); /* Let the event loop know that there are
events to handle. */
errno = old_errno;
}
/* Callback registered with the target events file descriptor. */
static void
handle_target_event (int error, gdb_client_data client_data)
{
(*async_client_callback) (INF_REG_EVENT, async_client_context);
}
/* Create/destroy the target events pipe. Returns previous state. */
static int
linux_async_pipe (int enable)
{
int previous = (linux_nat_event_pipe[0] != -1);
if (previous != enable)
{
sigset_t prev_mask;
block_child_signals (&prev_mask);
if (enable)
{
if (pipe (linux_nat_event_pipe) == -1)
internal_error (__FILE__, __LINE__,
"creating event pipe failed.");
fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
}
else
{
close (linux_nat_event_pipe[0]);
close (linux_nat_event_pipe[1]);
linux_nat_event_pipe[0] = -1;
linux_nat_event_pipe[1] = -1;
}
restore_child_signals_mask (&prev_mask);
}
return previous;
}
/* target_async implementation. */
static void
linux_nat_async (void (*callback) (enum inferior_event_type event_type,
void *context), void *context)
{
if (linux_nat_async_mask_value == 0 || !target_async_permitted)
internal_error (__FILE__, __LINE__,
"Calling target_async when async is masked");
if (callback != NULL)
{
async_client_callback = callback;
async_client_context = context;
if (!linux_async_pipe (1))
{
add_file_handler (linux_nat_event_pipe[0],
handle_target_event, NULL);
/* There may be pending events to handle. Tell the event loop
to poll them. */
async_file_mark ();
}
}
else
{
async_client_callback = callback;
async_client_context = context;
delete_file_handler (linux_nat_event_pipe[0]);
linux_async_pipe (0);
}
return;
}
/* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
event came out. */
static int
linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
{
if (!lwp->stopped)
{
int pid, status;
ptid_t ptid = lwp->ptid;
if (debug_linux_nat)
fprintf_unfiltered (gdb_stdlog,
"LNSL: running -> suspending %s\n",
target_pid_to_str (lwp->ptid));
stop_callback (lwp, NULL);
stop_wait_callback (lwp, NULL);
/* If the lwp exits while we try to stop it, there's nothing
else to do. */
lwp = find_lwp_pid (ptid);
if (lwp == NULL)
return 0;
/* If we didn't collect any signal other than SIGSTOP while
stopping the LWP, push a SIGNAL_0 event. In either case, the
event-loop will end up calling target_wait which will collect
these. */
if (lwp->status == 0)
lwp->status = W_STOPCODE (0);
async_file_mark ();
}
else
{
/* Already known to be stopped; do nothing. */
if (debug_linux_nat)
{
if (find_thread_ptid (lwp->ptid)->stop_requested)
fprintf_unfiltered (gdb_stdlog, "\
LNSL: already stopped/stop_requested %s\n",
target_pid_to_str (lwp->ptid));
else
fprintf_unfiltered (gdb_stdlog, "\
LNSL: already stopped/no stop_requested yet %s\n",
target_pid_to_str (lwp->ptid));
}
}
return 0;
}
static void
linux_nat_stop (ptid_t ptid)
{
if (non_stop)
iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
else
linux_ops->to_stop (ptid);
}
static void
linux_nat_close (int quitting)
{
/* Unregister from the event loop. */
if (target_is_async_p ())
target_async (NULL, 0);
/* Reset the async_masking. */
linux_nat_async_mask_value = 1;
if (linux_ops->to_close)
linux_ops->to_close (quitting);
}
void
linux_nat_add_target (struct target_ops *t)
{
/* Save the provided single-threaded target. We save this in a separate
variable because another target we've inherited from (e.g. inf-ptrace)
may have saved a pointer to T; we want to use it for the final
process stratum target. */
linux_ops_saved = *t;
linux_ops = &linux_ops_saved;
/* Override some methods for multithreading. */
t->to_create_inferior = linux_nat_create_inferior;
t->to_attach = linux_nat_attach;
t->to_detach = linux_nat_detach;
t->to_resume = linux_nat_resume;
t->to_wait = linux_nat_wait;
t->to_xfer_partial = linux_nat_xfer_partial;
t->to_kill = linux_nat_kill;
t->to_mourn_inferior = linux_nat_mourn_inferior;
t->to_thread_alive = linux_nat_thread_alive;
t->to_pid_to_str = linux_nat_pid_to_str;
t->to_has_thread_control = tc_schedlock;
t->to_can_async_p = linux_nat_can_async_p;
t->to_is_async_p = linux_nat_is_async_p;
t->to_supports_non_stop = linux_nat_supports_non_stop;
t->to_async = linux_nat_async;
t->to_async_mask = linux_nat_async_mask;
t->to_terminal_inferior = linux_nat_terminal_inferior;
t->to_terminal_ours = linux_nat_terminal_ours;
t->to_close = linux_nat_close;
/* Methods for non-stop support. */
t->to_stop = linux_nat_stop;
t->to_supports_multi_process = linux_nat_supports_multi_process;
/* We don't change the stratum; this target will sit at
process_stratum and thread_db will set at thread_stratum. This
is a little strange, since this is a multi-threaded-capable
target, but we want to be on the stack below thread_db, and we
also want to be used for single-threaded processes. */
add_target (t);
}
/* Register a method to call whenever a new thread is attached. */
void
linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
{
/* Save the pointer. We only support a single registered instance
of the GNU/Linux native target, so we do not need to map this to
T. */
linux_nat_new_thread = new_thread;
}
/* Register a method that converts a siginfo object between the layout
that ptrace returns, and the layout in the architecture of the
inferior. */
void
linux_nat_set_siginfo_fixup (struct target_ops *t,
int (*siginfo_fixup) (struct siginfo *,
gdb_byte *,
int))
{
/* Save the pointer. */
linux_nat_siginfo_fixup = siginfo_fixup;
}
/* Return the saved siginfo associated with PTID. */
struct siginfo *
linux_nat_get_siginfo (ptid_t ptid)
{
struct lwp_info *lp = find_lwp_pid (ptid);
gdb_assert (lp != NULL);
return &lp->siginfo;
}
/* Provide a prototype to silence -Wmissing-prototypes. */
extern initialize_file_ftype _initialize_linux_nat;
void
_initialize_linux_nat (void)
{
sigset_t mask;
add_info ("proc", linux_nat_info_proc_cmd, _("\
Show /proc process information about any running process.\n\
Specify any process id, or use the program being debugged by default.\n\
Specify any of the following keywords for detailed info:\n\
mappings -- list of mapped memory regions.\n\
stat -- list a bunch of random process info.\n\
status -- list a different bunch of random process info.\n\
all -- list all available /proc info."));
add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
&debug_linux_nat, _("\
Set debugging of GNU/Linux lwp module."), _("\
Show debugging of GNU/Linux lwp module."), _("\
Enables printf debugging output."),
NULL,
show_debug_linux_nat,
&setdebuglist, &showdebuglist);
add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
&debug_linux_nat_async, _("\
Set debugging of GNU/Linux async lwp module."), _("\
Show debugging of GNU/Linux async lwp module."), _("\
Enables printf debugging output."),
NULL,
show_debug_linux_nat_async,
&setdebuglist, &showdebuglist);
/* Save this mask as the default. */
sigprocmask (SIG_SETMASK, NULL, &normal_mask);
/* Install a SIGCHLD handler. */
sigchld_action.sa_handler = sigchld_handler;
sigemptyset (&sigchld_action.sa_mask);
sigchld_action.sa_flags = SA_RESTART;
/* Make it the default. */
sigaction (SIGCHLD, &sigchld_action, NULL);
/* Make sure we don't block SIGCHLD during a sigsuspend. */
sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
sigdelset (&suspend_mask, SIGCHLD);
sigemptyset (&blocked_mask);
add_setshow_boolean_cmd ("disable-randomization", class_support,
&disable_randomization, _("\
Set disabling of debuggee's virtual address space randomization."), _("\
Show disabling of debuggee's virtual address space randomization."), _("\
When this mode is on (which is the default), randomization of the virtual\n\
address space is disabled. Standalone programs run with the randomization\n\
enabled by default on some platforms."),
&set_disable_randomization,
&show_disable_randomization,
&setlist, &showlist);
}
/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
the GNU/Linux Threads library and therefore doesn't really belong
here. */
/* Read variable NAME in the target and return its value if found.
Otherwise return zero. It is assumed that the type of the variable
is `int'. */
static int
get_signo (const char *name)
{
struct minimal_symbol *ms;
int signo;
ms = lookup_minimal_symbol (name, NULL, NULL);
if (ms == NULL)
return 0;
if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
sizeof (signo)) != 0)
return 0;
return signo;
}
/* Return the set of signals used by the threads library in *SET. */
void
lin_thread_get_thread_signals (sigset_t *set)
{
struct sigaction action;
int restart, cancel;
sigemptyset (&blocked_mask);
sigemptyset (set);
restart = get_signo ("__pthread_sig_restart");
cancel = get_signo ("__pthread_sig_cancel");
/* LinuxThreads normally uses the first two RT signals, but in some legacy
cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
not provide any way for the debugger to query the signal numbers -
fortunately they don't change! */
if (restart == 0)
restart = __SIGRTMIN;
if (cancel == 0)
cancel = __SIGRTMIN + 1;
sigaddset (set, restart);
sigaddset (set, cancel);
/* The GNU/Linux Threads library makes terminating threads send a
special "cancel" signal instead of SIGCHLD. Make sure we catch
those (to prevent them from terminating GDB itself, which is
likely to be their default action) and treat them the same way as
SIGCHLD. */
action.sa_handler = sigchld_handler;
sigemptyset (&action.sa_mask);
action.sa_flags = SA_RESTART;
sigaction (cancel, &action, NULL);
/* We block the "cancel" signal throughout this code ... */
sigaddset (&blocked_mask, cancel);
sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
/* ... except during a sigsuspend. */
sigdelset (&suspend_mask, cancel);
}