/* Low level Unix child interface to ptrace, for GDB when running under Unix. Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "frame.h" #include "inferior.h" #include "target.h" #include "gdb_string.h" #ifdef USG #include #endif #include #include #include #include #ifndef NO_PTRACE_H #ifdef PTRACE_IN_WRONG_PLACE #include #else #include #endif #endif /* NO_PTRACE_H */ #if !defined (PT_READ_I) #define PT_READ_I 1 /* Read word from text space */ #endif #if !defined (PT_READ_D) #define PT_READ_D 2 /* Read word from data space */ #endif #if !defined (PT_READ_U) #define PT_READ_U 3 /* Read word from kernel user struct */ #endif #if !defined (PT_WRITE_I) #define PT_WRITE_I 4 /* Write word to text space */ #endif #if !defined (PT_WRITE_D) #define PT_WRITE_D 5 /* Write word to data space */ #endif #if !defined (PT_WRITE_U) #define PT_WRITE_U 6 /* Write word to kernel user struct */ #endif #if !defined (PT_CONTINUE) #define PT_CONTINUE 7 /* Continue after signal */ #endif #if !defined (PT_STEP) #define PT_STEP 9 /* Set flag for single stepping */ #endif #if !defined (PT_KILL) #define PT_KILL 8 /* Send child a SIGKILL signal */ #endif #ifndef PT_ATTACH #define PT_ATTACH PTRACE_ATTACH #endif #ifndef PT_DETACH #define PT_DETACH PTRACE_DETACH #endif #include "gdbcore.h" #ifndef NO_SYS_FILE #include #endif #if 0 /* Don't think this is used anymore. On the sequent (not sure whether it's dynix or ptx or both), it is included unconditionally by sys/user.h and not protected against multiple inclusion. */ #include "gdb_stat.h" #endif #if !defined (FETCH_INFERIOR_REGISTERS) #include /* Probably need to poke the user structure */ #if defined (KERNEL_U_ADDR_BSD) #include /* For struct nlist */ #endif /* KERNEL_U_ADDR_BSD. */ #endif /* !FETCH_INFERIOR_REGISTERS */ /* This function simply calls ptrace with the given arguments. It exists so that all calls to ptrace are isolated in this machine-dependent file. */ int call_ptrace (request, pid, addr, data) int request, pid; PTRACE_ARG3_TYPE addr; int data; { return ptrace (request, pid, addr, data #if defined (FIVE_ARG_PTRACE) /* Deal with HPUX 8.0 braindamage. We never use the calls which require the fifth argument. */ , 0 #endif ); } #if defined (DEBUG_PTRACE) || defined (FIVE_ARG_PTRACE) /* For the rest of the file, use an extra level of indirection */ /* This lets us breakpoint usefully on call_ptrace. */ #define ptrace call_ptrace #endif void kill_inferior () { if (inferior_pid == 0) return; /* ptrace PT_KILL only works if process is stopped!!! So stop it with a real signal first, if we can. FIXME: This is bogus. When the inferior is not stopped, GDB should just be waiting for it. Either the following line is unecessary, or there is some problem elsewhere in GDB which causes us to get here when the inferior is not stopped. */ kill (inferior_pid, SIGKILL); ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0); wait ((int *)0); target_mourn_inferior (); } #ifndef CHILD_RESUME /* Resume execution of the inferior process. If STEP is nonzero, single-step it. If SIGNAL is nonzero, give it that signal. */ void child_resume (pid, step, signal) int pid; int step; enum target_signal signal; { errno = 0; if (pid == -1) /* Resume all threads. */ /* I think this only gets used in the non-threaded case, where "resume all threads" and "resume inferior_pid" are the same. */ pid = inferior_pid; /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where it was. (If GDB wanted it to start some other way, we have already written a new PC value to the child.) If this system does not support PT_STEP, a higher level function will have called single_step() to transmute the step request into a continue request (by setting breakpoints on all possible successor instructions), so we don't have to worry about that here. */ if (step) ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1, target_signal_to_host (signal)); else ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1, target_signal_to_host (signal)); if (errno) perror_with_name ("ptrace"); } #endif /* CHILD_RESUME */ #ifdef ATTACH_DETACH /* Start debugging the process whose number is PID. */ int attach (pid) int pid; { errno = 0; ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0); if (errno) perror_with_name ("ptrace"); attach_flag = 1; return pid; } /* Stop debugging the process whose number is PID and continue it with signal number SIGNAL. SIGNAL = 0 means just continue it. */ void detach (signal) int signal; { errno = 0; ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal); if (errno) perror_with_name ("ptrace"); attach_flag = 0; } #endif /* ATTACH_DETACH */ /* Default the type of the ptrace transfer to int. */ #ifndef PTRACE_XFER_TYPE #define PTRACE_XFER_TYPE int #endif /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0 to get the offset in the core file of the register values. */ #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS) /* Get kernel_u_addr using BSD-style nlist(). */ CORE_ADDR kernel_u_addr; #endif /* KERNEL_U_ADDR_BSD. */ void _initialize_kernel_u_addr () { #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS) struct nlist names[2]; names[0].n_un.n_name = "_u"; names[1].n_un.n_name = NULL; if (nlist ("/vmunix", names) == 0) kernel_u_addr = names[0].n_value; else fatal ("Unable to get kernel u area address."); #endif /* KERNEL_U_ADDR_BSD. */ } #if !defined (FETCH_INFERIOR_REGISTERS) #if !defined (offsetof) #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER) #endif /* U_REGS_OFFSET is the offset of the registers within the u area. */ #if !defined (U_REGS_OFFSET) #define U_REGS_OFFSET \ ptrace (PT_READ_U, inferior_pid, \ (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \ - KERNEL_U_ADDR #endif /* Registers we shouldn't try to fetch. */ #if !defined (CANNOT_FETCH_REGISTER) #define CANNOT_FETCH_REGISTER(regno) 0 #endif /* Fetch one register. */ static void fetch_register (regno) int regno; { /* This isn't really an address. But ptrace thinks of it as one. */ CORE_ADDR regaddr; char buf[MAX_REGISTER_RAW_SIZE]; char mess[128]; /* For messages */ register int i; /* Offset of registers within the u area. */ unsigned int offset; if (CANNOT_FETCH_REGISTER (regno)) { memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */ supply_register (regno, buf); return; } offset = U_REGS_OFFSET; regaddr = register_addr (regno, offset); for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE)) { errno = 0; *(PTRACE_XFER_TYPE *) &buf[i] = ptrace (PT_READ_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0); regaddr += sizeof (PTRACE_XFER_TYPE); if (errno != 0) { sprintf (mess, "reading register %s (#%d)", reg_names[regno], regno); perror_with_name (mess); } } supply_register (regno, buf); } /* Fetch all registers, or just one, from the child process. */ void fetch_inferior_registers (regno) int regno; { int numregs; if (regno == -1) { numregs = ARCH_NUM_REGS; for (regno = 0; regno < numregs; regno++) fetch_register (regno); } else fetch_register (regno); } /* Registers we shouldn't try to store. */ #if !defined (CANNOT_STORE_REGISTER) #define CANNOT_STORE_REGISTER(regno) 0 #endif /* Store our register values back into the inferior. If REGNO is -1, do this for all registers. Otherwise, REGNO specifies which register (so we can save time). */ void store_inferior_registers (regno) int regno; { /* This isn't really an address. But ptrace thinks of it as one. */ CORE_ADDR regaddr; char buf[80]; register int i, numregs; unsigned int offset = U_REGS_OFFSET; if (regno >= 0) { regaddr = register_addr (regno, offset); for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(PTRACE_XFER_TYPE)) { errno = 0; ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, *(PTRACE_XFER_TYPE *) ®isters[REGISTER_BYTE (regno) + i]); if (errno != 0) { sprintf (buf, "writing register number %d(%d)", regno, i); perror_with_name (buf); } regaddr += sizeof(PTRACE_XFER_TYPE); } } else { numregs = ARCH_NUM_REGS; for (regno = 0; regno < numregs; regno++) { if (CANNOT_STORE_REGISTER (regno)) continue; regaddr = register_addr (regno, offset); for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(PTRACE_XFER_TYPE)) { errno = 0; ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, *(PTRACE_XFER_TYPE *) ®isters[REGISTER_BYTE (regno) + i]); if (errno != 0) { sprintf (buf, "writing register number %d(%d)", regno, i); perror_with_name (buf); } regaddr += sizeof(PTRACE_XFER_TYPE); } } } } #endif /* !defined (FETCH_INFERIOR_REGISTERS). */ #if !defined (CHILD_XFER_MEMORY) /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory in the NEW_SUN_PTRACE case. It ought to be straightforward. But it appears that writing did not write the data that I specified. I cannot understand where it got the data that it actually did write. */ /* Copy LEN bytes to or from inferior's memory starting at MEMADDR to debugger memory starting at MYADDR. Copy to inferior if WRITE is nonzero. Returns the length copied, which is either the LEN argument or zero. This xfer function does not do partial moves, since child_ops doesn't allow memory operations to cross below us in the target stack anyway. */ int child_xfer_memory (memaddr, myaddr, len, write, target) CORE_ADDR memaddr; char *myaddr; int len; int write; struct target_ops *target; /* ignored */ { register int i; /* Round starting address down to longword boundary. */ register CORE_ADDR addr = memaddr & - sizeof (PTRACE_XFER_TYPE); /* Round ending address up; get number of longwords that makes. */ register int count = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE); /* Allocate buffer of that many longwords. */ register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE)); if (write) { /* Fill start and end extra bytes of buffer with existing memory data. */ if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE)) { /* Need part of initial word -- fetch it. */ buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0); } if (count > 1) /* FIXME, avoid if even boundary */ { buffer[count - 1] = ptrace (PT_READ_I, inferior_pid, ((PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))), 0); } /* Copy data to be written over corresponding part of buffer */ memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len); /* Write the entire buffer. */ for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE)) { errno = 0; ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]); if (errno) { /* Using the appropriate one (I or D) is necessary for Gould NP1, at least. */ errno = 0; ptrace (PT_WRITE_I, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]); } if (errno) return 0; } } else { /* Read all the longwords */ for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE)) { errno = 0; buffer[i] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0); if (errno) return 0; QUIT; } /* Copy appropriate bytes out of the buffer. */ memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len); } return len; } static void udot_info () { int udot_off; /* Offset into user struct */ int udot_val; /* Value from user struct at udot_off */ char mess[128]; /* For messages */ if (!target_has_execution) { error ("The program is not being run."); } #if !defined (KERNEL_U_SIZE) /* Adding support for this command is easy. Typically you just add a routine, called "kernel_u_size" that returns the size of the user struct, to the appropriate *-nat.c file and then add to the native config file "#define KERNEL_U_SIZE kernel_u_size()" */ error ("Don't know how large ``struct user'' is in this version of gdb."); #else for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val)) { if ((udot_off % 24) == 0) { if (udot_off > 0) { printf_filtered ("\n"); } printf_filtered ("%04x:", udot_off); } udot_val = ptrace (PT_READ_U, inferior_pid, (PTRACE_ARG3_TYPE) udot_off, 0); if (errno != 0) { sprintf (mess, "\nreading user struct at offset 0x%x", udot_off); perror_with_name (mess); } /* Avoid using nonportable (?) "*" in print specs */ printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val); } printf_filtered ("\n"); #endif } void _initialize_infptrace () { add_info ("udot", udot_info, "Print contents of kernel ``struct user'' for current child."); } #endif /* !defined (CHILD_XFER_MEMORY). */