/* Intel 387 floating point stuff. Copyright 1988, 1989, 1991, 1992, 1993, 1994, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "doublest.h" #include "floatformat.h" #include "frame.h" #include "gdbcore.h" #include "inferior.h" #include "language.h" #include "regcache.h" #include "value.h" #include "gdb_assert.h" #include "gdb_string.h" #include "i386-tdep.h" #include "i387-tdep.h" /* Implement the `info float' layout based on the register definitions in `tm-i386.h'. */ /* Print the floating point number specified by RAW. */ static void print_i387_value (char *raw, struct ui_file *file) { DOUBLEST value; /* Using extract_typed_floating here might affect the representation of certain numbers such as NaNs, even if GDB is running natively. This is fine since our caller already detects such special numbers and we print the hexadecimal representation anyway. */ value = extract_typed_floating (raw, builtin_type_i387_ext); /* We try to print 19 digits. The last digit may or may not contain garbage, but we'd better print one too many. We need enough room to print the value, 1 position for the sign, 1 for the decimal point, 19 for the digits and 6 for the exponent adds up to 27. */ #ifdef PRINTF_HAS_LONG_DOUBLE fprintf_filtered (file, " %-+27.19Lg", (long double) value); #else fprintf_filtered (file, " %-+27.19g", (double) value); #endif } /* Print the classification for the register contents RAW. */ static void print_i387_ext (unsigned char *raw, struct ui_file *file) { int sign; int integer; unsigned int exponent; unsigned long fraction[2]; sign = raw[9] & 0x80; integer = raw[7] & 0x80; exponent = (((raw[9] & 0x7f) << 8) | raw[8]); fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]); fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16) | (raw[5] << 8) | raw[4]); if (exponent == 0x7fff && integer) { if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000) /* Infinity. */ fprintf_filtered (file, " %cInf", (sign ? '-' : '+')); else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000) /* Real Indefinite (QNaN). */ fputs_unfiltered (" Real Indefinite (QNaN)", file); else if (fraction[1] & 0x40000000) /* QNaN. */ fputs_filtered (" QNaN", file); else /* SNaN. */ fputs_filtered (" SNaN", file); } else if (exponent < 0x7fff && exponent > 0x0000 && integer) /* Normal. */ print_i387_value (raw, file); else if (exponent == 0x0000) { /* Denormal or zero. */ print_i387_value (raw, file); if (integer) /* Pseudo-denormal. */ fputs_filtered (" Pseudo-denormal", file); else if (fraction[0] || fraction[1]) /* Denormal. */ fputs_filtered (" Denormal", file); } else /* Unsupported. */ fputs_filtered (" Unsupported", file); } /* Print the status word STATUS. */ static void print_i387_status_word (unsigned int status, struct ui_file *file) { fprintf_filtered (file, "Status Word: %s", local_hex_string_custom (status, "04")); fputs_filtered (" ", file); fprintf_filtered (file, " %s", (status & 0x0001) ? "IE" : " "); fprintf_filtered (file, " %s", (status & 0x0002) ? "DE" : " "); fprintf_filtered (file, " %s", (status & 0x0004) ? "ZE" : " "); fprintf_filtered (file, " %s", (status & 0x0008) ? "OE" : " "); fprintf_filtered (file, " %s", (status & 0x0010) ? "UE" : " "); fprintf_filtered (file, " %s", (status & 0x0020) ? "PE" : " "); fputs_filtered (" ", file); fprintf_filtered (file, " %s", (status & 0x0080) ? "ES" : " "); fputs_filtered (" ", file); fprintf_filtered (file, " %s", (status & 0x0040) ? "SF" : " "); fputs_filtered (" ", file); fprintf_filtered (file, " %s", (status & 0x0100) ? "C0" : " "); fprintf_filtered (file, " %s", (status & 0x0200) ? "C1" : " "); fprintf_filtered (file, " %s", (status & 0x0400) ? "C2" : " "); fprintf_filtered (file, " %s", (status & 0x4000) ? "C3" : " "); fputs_filtered ("\n", file); fprintf_filtered (file, " TOP: %d\n", ((status >> 11) & 7)); } /* Print the control word CONTROL. */ static void print_i387_control_word (unsigned int control, struct ui_file *file) { fprintf_filtered (file, "Control Word: %s", local_hex_string_custom (control, "04")); fputs_filtered (" ", file); fprintf_filtered (file, " %s", (control & 0x0001) ? "IM" : " "); fprintf_filtered (file, " %s", (control & 0x0002) ? "DM" : " "); fprintf_filtered (file, " %s", (control & 0x0004) ? "ZM" : " "); fprintf_filtered (file, " %s", (control & 0x0008) ? "OM" : " "); fprintf_filtered (file, " %s", (control & 0x0010) ? "UM" : " "); fprintf_filtered (file, " %s", (control & 0x0020) ? "PM" : " "); fputs_filtered ("\n", file); fputs_filtered (" PC: ", file); switch ((control >> 8) & 3) { case 0: fputs_filtered ("Single Precision (24-bits)\n", file); break; case 1: fputs_filtered ("Reserved\n", file); break; case 2: fputs_filtered ("Double Precision (53-bits)\n", file); break; case 3: fputs_filtered ("Extended Precision (64-bits)\n", file); break; } fputs_filtered (" RC: ", file); switch ((control >> 10) & 3) { case 0: fputs_filtered ("Round to nearest\n", file); break; case 1: fputs_filtered ("Round down\n", file); break; case 2: fputs_filtered ("Round up\n", file); break; case 3: fputs_filtered ("Round toward zero\n", file); break; } } /* Print out the i387 floating point state. Note that we ignore FRAME in the code below. That's OK since floating-point registers are never saved on the stack. */ void i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, struct frame_info *frame, const char *args) { char buf[4]; ULONGEST fctrl; ULONGEST fstat; ULONGEST ftag; ULONGEST fiseg; ULONGEST fioff; ULONGEST foseg; ULONGEST fooff; ULONGEST fop; int fpreg; int top; fctrl = get_frame_register_unsigned (frame, FCTRL_REGNUM); fstat = get_frame_register_unsigned (frame, FSTAT_REGNUM); ftag = get_frame_register_unsigned (frame, FTAG_REGNUM); fiseg = get_frame_register_unsigned (frame, FISEG_REGNUM); fioff = get_frame_register_unsigned (frame, FIOFF_REGNUM); foseg = get_frame_register_unsigned (frame, FOSEG_REGNUM); fooff = get_frame_register_unsigned (frame, FOOFF_REGNUM); fop = get_frame_register_unsigned (frame, FOP_REGNUM); top = ((fstat >> 11) & 7); for (fpreg = 7; fpreg >= 0; fpreg--) { unsigned char raw[FPU_REG_RAW_SIZE]; int tag = (ftag >> (fpreg * 2)) & 3; int i; fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg); switch (tag) { case 0: fputs_filtered ("Valid ", file); break; case 1: fputs_filtered ("Zero ", file); break; case 2: fputs_filtered ("Special ", file); break; case 3: fputs_filtered ("Empty ", file); break; } get_frame_register (frame, (fpreg + 8 - top) % 8 + FP0_REGNUM, raw); fputs_filtered ("0x", file); for (i = 9; i >= 0; i--) fprintf_filtered (file, "%02x", raw[i]); if (tag != 3) print_i387_ext (raw, file); fputs_filtered ("\n", file); } fputs_filtered ("\n", file); print_i387_status_word (fstat, file); print_i387_control_word (fctrl, file); fprintf_filtered (file, "Tag Word: %s\n", local_hex_string_custom (ftag, "04")); fprintf_filtered (file, "Instruction Pointer: %s:", local_hex_string_custom (fiseg, "02")); fprintf_filtered (file, "%s\n", local_hex_string_custom (fioff, "08")); fprintf_filtered (file, "Operand Pointer: %s:", local_hex_string_custom (foseg, "02")); fprintf_filtered (file, "%s\n", local_hex_string_custom (fooff, "08")); fprintf_filtered (file, "Opcode: %s\n", local_hex_string_custom (fop ? (fop | 0xd800) : 0, "04")); } /* Read a value of type TYPE from register REGNUM in frame FRAME, and return its contents in TO. */ void i387_register_to_value (struct frame_info *frame, int regnum, struct type *type, void *to) { char from[I386_MAX_REGISTER_SIZE]; gdb_assert (i386_fp_regnum_p (regnum)); /* We only support floating-point values. */ if (TYPE_CODE (type) != TYPE_CODE_FLT) { warning ("Cannot convert floating-point register value " "to non-floating-point type."); return; } /* Convert to TYPE. This should be a no-op if TYPE is equivalent to the extended floating-point format used by the FPU. */ get_frame_register (frame, regnum, from); convert_typed_floating (from, builtin_type_i387_ext, to, type); } /* Write the contents FROM of a value of type TYPE into register REGNUM in frame FRAME. */ void i387_value_to_register (struct frame_info *frame, int regnum, struct type *type, const void *from) { char to[I386_MAX_REGISTER_SIZE]; gdb_assert (i386_fp_regnum_p (regnum)); /* We only support floating-point values. */ if (TYPE_CODE (type) != TYPE_CODE_FLT) { warning ("Cannot convert non-floating-point type " "to floating-point register value."); return; } /* Convert from TYPE. This should be a no-op if TYPE is equivalent to the extended floating-point format used by the FPU. */ convert_typed_floating (from, type, to, builtin_type_i387_ext); put_frame_register (frame, regnum, to); } /* Handle FSAVE and FXSAVE formats. */ /* At fsave_offset[REGNUM] you'll find the offset to the location in the data structure used by the "fsave" instruction where GDB register REGNUM is stored. */ static int fsave_offset[] = { 28 + 0 * FPU_REG_RAW_SIZE, /* FP0_REGNUM through ... */ 28 + 1 * FPU_REG_RAW_SIZE, 28 + 2 * FPU_REG_RAW_SIZE, 28 + 3 * FPU_REG_RAW_SIZE, 28 + 4 * FPU_REG_RAW_SIZE, 28 + 5 * FPU_REG_RAW_SIZE, 28 + 6 * FPU_REG_RAW_SIZE, 28 + 7 * FPU_REG_RAW_SIZE, /* ... FP7_REGNUM. */ 0, /* FCTRL_REGNUM (16 bits). */ 4, /* FSTAT_REGNUM (16 bits). */ 8, /* FTAG_REGNUM (16 bits). */ 16, /* FISEG_REGNUM (16 bits). */ 12, /* FIOFF_REGNUM. */ 24, /* FOSEG_REGNUM. */ 20, /* FOOFF_REGNUM. */ 18 /* FOP_REGNUM (bottom 11 bits). */ }; #define FSAVE_ADDR(fsave, regnum) (fsave + fsave_offset[regnum - FP0_REGNUM]) /* Fill register REGNUM in GDB's register array with the appropriate value from *FSAVE. This function masks off any of the reserved bits in *FSAVE. */ void i387_supply_register (int regnum, char *fsave) { if (fsave == NULL) { supply_register (regnum, NULL); return; } /* Most of the FPU control registers occupy only 16 bits in the fsave area. Give those a special treatment. */ if (regnum >= FPC_REGNUM && regnum != FIOFF_REGNUM && regnum != FOOFF_REGNUM) { unsigned char val[4]; memcpy (val, FSAVE_ADDR (fsave, regnum), 2); val[2] = val[3] = 0; if (regnum == FOP_REGNUM) val[1] &= ((1 << 3) - 1); supply_register (regnum, val); } else supply_register (regnum, FSAVE_ADDR (fsave, regnum)); } /* Fill GDB's register array with the floating-point register values in *FSAVE. This function masks off any of the reserved bits in *FSAVE. */ void i387_supply_fsave (char *fsave) { int i; for (i = FP0_REGNUM; i < XMM0_REGNUM; i++) i387_supply_register (i, fsave); } /* Fill register REGNUM (if it is a floating-point register) in *FSAVE with the value in GDB's register array. If REGNUM is -1, do this for all registers. This function doesn't touch any of the reserved bits in *FSAVE. */ void i387_fill_fsave (char *fsave, int regnum) { int i; for (i = FP0_REGNUM; i < XMM0_REGNUM; i++) if (regnum == -1 || regnum == i) { /* Most of the FPU control registers occupy only 16 bits in the fsave area. Give those a special treatment. */ if (i >= FPC_REGNUM && i != FIOFF_REGNUM && i != FOOFF_REGNUM) { unsigned char buf[4]; regcache_collect (i, buf); if (i == FOP_REGNUM) { /* The opcode occupies only 11 bits. Make sure we don't touch the other bits. */ buf[1] &= ((1 << 3) - 1); buf[1] |= ((FSAVE_ADDR (fsave, i))[1] & ~((1 << 3) - 1)); } memcpy (FSAVE_ADDR (fsave, i), buf, 2); } else regcache_collect (i, FSAVE_ADDR (fsave, i)); } } /* At fxsave_offset[REGNUM] you'll find the offset to the location in the data structure used by the "fxsave" instruction where GDB register REGNUM is stored. */ static int fxsave_offset[] = { 32, /* FP0_REGNUM through ... */ 48, 64, 80, 96, 112, 128, 144, /* ... FP7_REGNUM (80 bits each). */ 0, /* FCTRL_REGNUM (16 bits). */ 2, /* FSTAT_REGNUM (16 bits). */ 4, /* FTAG_REGNUM (16 bits). */ 12, /* FISEG_REGNUM (16 bits). */ 8, /* FIOFF_REGNUM. */ 20, /* FOSEG_REGNUM (16 bits). */ 16, /* FOOFF_REGNUM. */ 6, /* FOP_REGNUM (bottom 11 bits). */ 160 + 0 * 16, /* XMM0_REGNUM through ... */ 160 + 1 * 16, 160 + 2 * 16, 160 + 3 * 16, 160 + 4 * 16, 160 + 5 * 16, 160 + 6 * 16, 160 + 7 * 16, 160 + 8 * 16, 160 + 9 * 16, 160 + 10 * 16, 160 + 11 * 16, 160 + 12 * 16, 160 + 13 * 16, 160 + 14 * 16, 160 + 15 * 16, /* ... XMM15_REGNUM (128 bits each). */ 24 /* MXCSR_REGNUM. */ }; /* FIXME: kettenis/20030430: We made an unfortunate choice in putting %mxcsr after the SSE registers %xmm0-%xmm7 instead of before, since it makes supporting the registers %xmm8-%xmm15 on x86-64 a bit involved. Hack around it by explicitly overriding the offset for %mxcsr here. */ #define FXSAVE_ADDR(fxsave, regnum) \ ((regnum == MXCSR_REGNUM) ? (fxsave + 24) : \ (fxsave + fxsave_offset[regnum - FP0_REGNUM])) static int i387_tag (unsigned char *raw); /* Fill GDB's register array with the floating-point and SSE register values in *FXSAVE. This function masks off any of the reserved bits in *FXSAVE. */ void i387_supply_fxsave (char *fxsave) { int i, last_regnum = MXCSR_REGNUM; if (gdbarch_tdep (current_gdbarch)->num_xmm_regs == 0) last_regnum = FOP_REGNUM; for (i = FP0_REGNUM; i <= last_regnum; i++) { if (fxsave == NULL) { supply_register (i, NULL); continue; } /* Most of the FPU control registers occupy only 16 bits in the fxsave area. Give those a special treatment. */ if (i >= FPC_REGNUM && i < XMM0_REGNUM && i != FIOFF_REGNUM && i != FOOFF_REGNUM) { unsigned char val[4]; memcpy (val, FXSAVE_ADDR (fxsave, i), 2); val[2] = val[3] = 0; if (i == FOP_REGNUM) val[1] &= ((1 << 3) - 1); else if (i== FTAG_REGNUM) { /* The fxsave area contains a simplified version of the tag word. We have to look at the actual 80-bit FP data to recreate the traditional i387 tag word. */ unsigned long ftag = 0; int fpreg; int top; top = (((FXSAVE_ADDR (fxsave, FSTAT_REGNUM))[1] >> 3) & 0x7); for (fpreg = 7; fpreg >= 0; fpreg--) { int tag; if (val[0] & (1 << fpreg)) { int regnum = (fpreg + 8 - top) % 8 + FP0_REGNUM; tag = i387_tag (FXSAVE_ADDR (fxsave, regnum)); } else tag = 3; /* Empty */ ftag |= tag << (2 * fpreg); } val[0] = ftag & 0xff; val[1] = (ftag >> 8) & 0xff; } supply_register (i, val); } else supply_register (i, FXSAVE_ADDR (fxsave, i)); } } /* Fill register REGNUM (if it is a floating-point or SSE register) in *FXSAVE with the value in GDB's register array. If REGNUM is -1, do this for all registers. This function doesn't touch any of the reserved bits in *FXSAVE. */ void i387_fill_fxsave (char *fxsave, int regnum) { int i, last_regnum = MXCSR_REGNUM; if (gdbarch_tdep (current_gdbarch)->num_xmm_regs == 0) last_regnum = FOP_REGNUM; for (i = FP0_REGNUM; i <= last_regnum; i++) if (regnum == -1 || regnum == i) { /* Most of the FPU control registers occupy only 16 bits in the fxsave area. Give those a special treatment. */ if (i >= FPC_REGNUM && i < XMM0_REGNUM && i != FIOFF_REGNUM && i != FOOFF_REGNUM) { unsigned char buf[4]; regcache_collect (i, buf); if (i == FOP_REGNUM) { /* The opcode occupies only 11 bits. Make sure we don't touch the other bits. */ buf[1] &= ((1 << 3) - 1); buf[1] |= ((FXSAVE_ADDR (fxsave, i))[1] & ~((1 << 3) - 1)); } else if (i == FTAG_REGNUM) { /* Converting back is much easier. */ unsigned short ftag; int fpreg; ftag = (buf[1] << 8) | buf[0]; buf[0] = 0; buf[1] = 0; for (fpreg = 7; fpreg >= 0; fpreg--) { int tag = (ftag >> (fpreg * 2)) & 3; if (tag != 3) buf[0] |= (1 << fpreg); } } memcpy (FXSAVE_ADDR (fxsave, i), buf, 2); } else regcache_collect (i, FXSAVE_ADDR (fxsave, i)); } } /* Recreate the FTW (tag word) valid bits from the 80-bit FP data in *RAW. */ static int i387_tag (unsigned char *raw) { int integer; unsigned int exponent; unsigned long fraction[2]; integer = raw[7] & 0x80; exponent = (((raw[9] & 0x7f) << 8) | raw[8]); fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]); fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16) | (raw[5] << 8) | raw[4]); if (exponent == 0x7fff) { /* Special. */ return (2); } else if (exponent == 0x0000) { if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer) { /* Zero. */ return (1); } else { /* Special. */ return (2); } } else { if (integer) { /* Valid. */ return (0); } else { /* Special. */ return (2); } } }