/* Native-dependent code for Lynx running on i386's, for GDB. Copyright 1988, 1989, 1991, 1992, 1993 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "defs.h" #include "frame.h" #include "inferior.h" #include "gdbcore.h" #include "target.h" #include #include "/usr/include/sys/wait.h" /* these values indicate the offset of the named register in the econtext structure */ #define EAX 10 #define ECX 9 #define EDX 8 #define EBX 7 #define ESP 16 #define EBP 5 #define ESI 4 #define EDI 3 #define EIP 13 #define EFL 15 #define CS 14 #define SS 17 #define DS 2 #define ES 1 /* Currently these are not being used. So set them to 0 */ #define FS 0 #define GS 0 /* this table must line up with REGISTER_NAMES in m-i386.h */ static unsigned int regmap[] = { EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, EIP, EFL, CS, SS, DS, ES, FS, GS, }; /* Return the address in the core dump or inferior of register REGNO. BLOCKEND is the address of the econtext structure */ static unsigned int register_addr (regno, blockend) int regno, blockend; { if (regno < 0 || regno >= NUM_REGS) error ("Invalid register number %d.", regno); return (blockend + regmap[regno] * sizeof (long)); } /* Fetch one register. */ static void fetch_register (regno, offset, bpid) int regno, bpid; unsigned int offset; { unsigned int regaddr; char buf[MAX_REGISTER_RAW_SIZE]; char mess[128]; /* For messages */ int i; regaddr = register_addr (regno, offset); for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int)) { errno = 0; *(int *) &buf[i] = ptrace (PTRACE_PEEKTHREAD, bpid, (PTRACE_ARG3_TYPE) regaddr, 0); regaddr += sizeof (int); if (errno != 0) { sprintf (mess, "reading register %s (#%d)", reg_names[regno], regno); perror_with_name (mess); } } supply_register (regno, buf); } /* Store our register values back into the inferior. If REGNO is -1, do this for all registers. Otherwise, REGNO specifies which register (so we can save time). */ static void store_register (regno, offset, bpid) int regno, bpid; unsigned int offset; { unsigned int regaddr; char mess[128]; extern char registers[]; int i; regaddr = register_addr (regno, offset); for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int)) { errno = 0; ptrace (PTRACE_POKEUSER, bpid, (PTRACE_ARG3_TYPE) regaddr, *(int *) ®isters[REGISTER_BYTE (regno) + i]); if (errno != 0) { sprintf (mess, "writing register number %d(%d)", regno, i); perror_with_name (mess); } regaddr += sizeof(int); } } /* return an offset for use with register_addr() */ static unsigned int fetch_offset (pid) int pid; { struct st_entry s; unsigned int specpage_off, offset = (char *) &s.ecp - (char *) &s; errno = 0; specpage_off = ptrace (PTRACE_THREADUSER, pid, (PTRACE_ARG3_TYPE) 0, 0); if (errno != 0) perror_with_name ("ptrace"); errno = 0; offset = ptrace (PTRACE_PEEKTHREAD, pid, (PTRACE_ARG3_TYPE) offset, 0) - specpage_off; if (errno != 0) perror_with_name ("ptrace"); return offset; } /* Fetch all registers, or just one, from the child process. */ void fetch_inferior_registers (regno) int regno; { unsigned int offset = fetch_offset (inferior_pid); if (regno == -1) { for (regno = 0; regno < NUM_REGS; regno++) fetch_register (regno, offset, inferior_pid); } else fetch_register (regno, offset, inferior_pid); } /* Store all registers, or just one, to the child process. */ void store_inferior_registers (regno) int regno; { unsigned int offset = fetch_offset (inferior_pid); if (regno == -1) { for (regno = 0; regno < NUM_REGS; regno++) store_register (regno, offset, inferior_pid); } else store_register (regno, offset, inferior_pid); } /* Extract the register values out of the core file and store them where `read_register' will find them. CORE_REG_SECT points to the register values themselves, read into memory. CORE_REG_SIZE is the size of that area. WHICH says which set of registers we are handling (0 = int, 2 = float on machines where they are discontiguous). REG_ADDR is the offset from u.u_ar0 to the register values relative to core_reg_sect. This is used with old-fashioned core files to locate the registers in a large upage-plus-stack ".reg" section. Original upage address X is at location core_reg_sect+x+reg_addr. */ void fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr) char *core_reg_sect; unsigned core_reg_size; int which; unsigned reg_addr; { struct st_entry s; unsigned int regno, addr; for (regno = 0; regno < NUM_REGS; regno++) { addr = register_addr (regno, (char *) &s.ec - (char *) &s); supply_register (regno, core_reg_sect + addr); } } /* Wait for child to do something. Return pid of child, or -1 in case of error; store status through argument pointer STATUS. */ int child_wait (status) int *status; { int pid; int save_errno; int thread; while (1) { int sig; if (attach_flag) set_sigint_trap(); /* Causes SIGINT to be passed on to the attached process. */ pid = wait (status); save_errno = errno; if (attach_flag) clear_sigint_trap(); if (pid == -1) { if (save_errno == EINTR) continue; fprintf (stderr, "Child process unexpectedly missing: %s.\n", safe_strerror (save_errno)); *status = 42; /* Claim it exited with signal 42 */ return -1; } if (pid != PIDGET (inferior_pid)) /* Some other process?!? */ continue; /* thread = WIFTID (*status);*/ thread = *status >> 16; /* Initial thread value can only be acquired via wait, so we have to resort to this hack. */ if (TIDGET (inferior_pid) == 0) { inferior_pid = BUILDPID (inferior_pid, thread); add_thread (inferior_pid); } pid = BUILDPID (pid, thread); return pid; } } /* Return the PC of the caller from the call frame. Assumes the subr prologue has already been executed, and the frame pointer setup. If this is the outermost frame, we check to see if we are in a system call by examining the previous instruction. If so, then the return PC is actually at SP+4 because system calls use a different calling sequence. */ CORE_ADDR i386lynx_saved_pc_after_call (frame) struct frame_info *frame; { char opcode[7]; static const char call_inst[] = {0x9a, 0, 0, 0, 0, 8, 0}; /* lcall 0x8,0x0 */ read_memory (frame->pc - 7, opcode, 7); if (memcmp (opcode, call_inst, 7) == 0) return read_memory_integer (read_register (SP_REGNUM) + 4, 4); return read_memory_integer (read_register (SP_REGNUM), 4); } /* Convert a Lynx process ID to a string. Returns the string in a static buffer. */ char * i386lynx_pid_to_str (pid) int pid; { static char buf[40]; sprintf (buf, "process %d thread %d", PIDGET (pid), TIDGET (pid)); return buf; }