/* Intel 386 target-dependent stuff.
Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
#include "defs.h"
#include "opcode/i386.h"
#include "arch-utils.h"
#include "command.h"
#include "dummy-frame.h"
#include "dwarf2-frame.h"
#include "doublest.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "inferior.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdbtypes.h"
#include "objfiles.h"
#include "osabi.h"
#include "regcache.h"
#include "reggroups.h"
#include "regset.h"
#include "symfile.h"
#include "symtab.h"
#include "target.h"
#include "value.h"
#include "dis-asm.h"
#include "gdb_assert.h"
#include "gdb_string.h"
#include "i386-tdep.h"
#include "i387-tdep.h"
#include "record.h"
#include
/* Register names. */
static char *i386_register_names[] =
{
"eax", "ecx", "edx", "ebx",
"esp", "ebp", "esi", "edi",
"eip", "eflags", "cs", "ss",
"ds", "es", "fs", "gs",
"st0", "st1", "st2", "st3",
"st4", "st5", "st6", "st7",
"fctrl", "fstat", "ftag", "fiseg",
"fioff", "foseg", "fooff", "fop",
"xmm0", "xmm1", "xmm2", "xmm3",
"xmm4", "xmm5", "xmm6", "xmm7",
"mxcsr"
};
static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
/* Register names for MMX pseudo-registers. */
static char *i386_mmx_names[] =
{
"mm0", "mm1", "mm2", "mm3",
"mm4", "mm5", "mm6", "mm7"
};
static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
static int
i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
{
int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
if (mm0_regnum < 0)
return 0;
return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
}
/* SSE register? */
static int
i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (I387_NUM_XMM_REGS (tdep) == 0)
return 0;
return (I387_XMM0_REGNUM (tdep) <= regnum
&& regnum < I387_MXCSR_REGNUM (tdep));
}
static int
i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (I387_NUM_XMM_REGS (tdep) == 0)
return 0;
return (regnum == I387_MXCSR_REGNUM (tdep));
}
/* FP register? */
int
i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (I387_ST0_REGNUM (tdep) < 0)
return 0;
return (I387_ST0_REGNUM (tdep) <= regnum
&& regnum < I387_FCTRL_REGNUM (tdep));
}
int
i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (I387_ST0_REGNUM (tdep) < 0)
return 0;
return (I387_FCTRL_REGNUM (tdep) <= regnum
&& regnum < I387_XMM0_REGNUM (tdep));
}
/* Return the name of register REGNUM. */
const char *
i386_register_name (struct gdbarch *gdbarch, int regnum)
{
if (i386_mmx_regnum_p (gdbarch, regnum))
return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
if (regnum >= 0 && regnum < i386_num_register_names)
return i386_register_names[regnum];
return NULL;
}
/* Convert a dbx register number REG to the appropriate register
number used by GDB. */
static int
i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* This implements what GCC calls the "default" register map
(dbx_register_map[]). */
if (reg >= 0 && reg <= 7)
{
/* General-purpose registers. The debug info calls %ebp
register 4, and %esp register 5. */
if (reg == 4)
return 5;
else if (reg == 5)
return 4;
else return reg;
}
else if (reg >= 12 && reg <= 19)
{
/* Floating-point registers. */
return reg - 12 + I387_ST0_REGNUM (tdep);
}
else if (reg >= 21 && reg <= 28)
{
/* SSE registers. */
return reg - 21 + I387_XMM0_REGNUM (tdep);
}
else if (reg >= 29 && reg <= 36)
{
/* MMX registers. */
return reg - 29 + I387_MM0_REGNUM (tdep);
}
/* This will hopefully provoke a warning. */
return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
}
/* Convert SVR4 register number REG to the appropriate register number
used by GDB. */
static int
i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* This implements the GCC register map that tries to be compatible
with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
/* The SVR4 register numbering includes %eip and %eflags, and
numbers the floating point registers differently. */
if (reg >= 0 && reg <= 9)
{
/* General-purpose registers. */
return reg;
}
else if (reg >= 11 && reg <= 18)
{
/* Floating-point registers. */
return reg - 11 + I387_ST0_REGNUM (tdep);
}
else if (reg >= 21 && reg <= 36)
{
/* The SSE and MMX registers have the same numbers as with dbx. */
return i386_dbx_reg_to_regnum (gdbarch, reg);
}
switch (reg)
{
case 37: return I387_FCTRL_REGNUM (tdep);
case 38: return I387_FSTAT_REGNUM (tdep);
case 39: return I387_MXCSR_REGNUM (tdep);
case 40: return I386_ES_REGNUM;
case 41: return I386_CS_REGNUM;
case 42: return I386_SS_REGNUM;
case 43: return I386_DS_REGNUM;
case 44: return I386_FS_REGNUM;
case 45: return I386_GS_REGNUM;
}
/* This will hopefully provoke a warning. */
return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
}
/* This is the variable that is set with "set disassembly-flavor", and
its legitimate values. */
static const char att_flavor[] = "att";
static const char intel_flavor[] = "intel";
static const char *valid_flavors[] =
{
att_flavor,
intel_flavor,
NULL
};
static const char *disassembly_flavor = att_flavor;
/* Use the program counter to determine the contents and size of a
breakpoint instruction. Return a pointer to a string of bytes that
encode a breakpoint instruction, store the length of the string in
*LEN and optionally adjust *PC to point to the correct memory
location for inserting the breakpoint.
On the i386 we have a single breakpoint that fits in a single byte
and can be inserted anywhere.
This function is 64-bit safe. */
static const gdb_byte *
i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
{
static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
*len = sizeof (break_insn);
return break_insn;
}
/* Displaced instruction handling. */
/* Skip the legacy instruction prefixes in INSN.
Not all prefixes are valid for any particular insn
but we needn't care, the insn will fault if it's invalid.
The result is a pointer to the first opcode byte,
or NULL if we run off the end of the buffer. */
static gdb_byte *
i386_skip_prefixes (gdb_byte *insn, size_t max_len)
{
gdb_byte *end = insn + max_len;
while (insn < end)
{
switch (*insn)
{
case DATA_PREFIX_OPCODE:
case ADDR_PREFIX_OPCODE:
case CS_PREFIX_OPCODE:
case DS_PREFIX_OPCODE:
case ES_PREFIX_OPCODE:
case FS_PREFIX_OPCODE:
case GS_PREFIX_OPCODE:
case SS_PREFIX_OPCODE:
case LOCK_PREFIX_OPCODE:
case REPE_PREFIX_OPCODE:
case REPNE_PREFIX_OPCODE:
++insn;
continue;
default:
return insn;
}
}
return NULL;
}
static int
i386_absolute_jmp_p (const gdb_byte *insn)
{
/* jmp far (absolute address in operand) */
if (insn[0] == 0xea)
return 1;
if (insn[0] == 0xff)
{
/* jump near, absolute indirect (/4) */
if ((insn[1] & 0x38) == 0x20)
return 1;
/* jump far, absolute indirect (/5) */
if ((insn[1] & 0x38) == 0x28)
return 1;
}
return 0;
}
static int
i386_absolute_call_p (const gdb_byte *insn)
{
/* call far, absolute */
if (insn[0] == 0x9a)
return 1;
if (insn[0] == 0xff)
{
/* Call near, absolute indirect (/2) */
if ((insn[1] & 0x38) == 0x10)
return 1;
/* Call far, absolute indirect (/3) */
if ((insn[1] & 0x38) == 0x18)
return 1;
}
return 0;
}
static int
i386_ret_p (const gdb_byte *insn)
{
switch (insn[0])
{
case 0xc2: /* ret near, pop N bytes */
case 0xc3: /* ret near */
case 0xca: /* ret far, pop N bytes */
case 0xcb: /* ret far */
case 0xcf: /* iret */
return 1;
default:
return 0;
}
}
static int
i386_call_p (const gdb_byte *insn)
{
if (i386_absolute_call_p (insn))
return 1;
/* call near, relative */
if (insn[0] == 0xe8)
return 1;
return 0;
}
/* Return non-zero if INSN is a system call, and set *LENGTHP to its
length in bytes. Otherwise, return zero. */
static int
i386_syscall_p (const gdb_byte *insn, ULONGEST *lengthp)
{
if (insn[0] == 0xcd)
{
*lengthp = 2;
return 1;
}
return 0;
}
/* Fix up the state of registers and memory after having single-stepped
a displaced instruction. */
void
i386_displaced_step_fixup (struct gdbarch *gdbarch,
struct displaced_step_closure *closure,
CORE_ADDR from, CORE_ADDR to,
struct regcache *regs)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
/* The offset we applied to the instruction's address.
This could well be negative (when viewed as a signed 32-bit
value), but ULONGEST won't reflect that, so take care when
applying it. */
ULONGEST insn_offset = to - from;
/* Since we use simple_displaced_step_copy_insn, our closure is a
copy of the instruction. */
gdb_byte *insn = (gdb_byte *) closure;
/* The start of the insn, needed in case we see some prefixes. */
gdb_byte *insn_start = insn;
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: fixup (%s, %s), "
"insn = 0x%02x 0x%02x ...\n",
paddress (gdbarch, from), paddress (gdbarch, to),
insn[0], insn[1]);
/* The list of issues to contend with here is taken from
resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
Yay for Free Software! */
/* Relocate the %eip, if necessary. */
/* The instruction recognizers we use assume any leading prefixes
have been skipped. */
{
/* This is the size of the buffer in closure. */
size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
/* If there are too many prefixes, just ignore the insn.
It will fault when run. */
if (opcode != NULL)
insn = opcode;
}
/* Except in the case of absolute or indirect jump or call
instructions, or a return instruction, the new eip is relative to
the displaced instruction; make it relative. Well, signal
handler returns don't need relocation either, but we use the
value of %eip to recognize those; see below. */
if (! i386_absolute_jmp_p (insn)
&& ! i386_absolute_call_p (insn)
&& ! i386_ret_p (insn))
{
ULONGEST orig_eip;
ULONGEST insn_len;
regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
/* A signal trampoline system call changes the %eip, resuming
execution of the main program after the signal handler has
returned. That makes them like 'return' instructions; we
shouldn't relocate %eip.
But most system calls don't, and we do need to relocate %eip.
Our heuristic for distinguishing these cases: if stepping
over the system call instruction left control directly after
the instruction, the we relocate --- control almost certainly
doesn't belong in the displaced copy. Otherwise, we assume
the instruction has put control where it belongs, and leave
it unrelocated. Goodness help us if there are PC-relative
system calls. */
if (i386_syscall_p (insn, &insn_len)
&& orig_eip != to + (insn - insn_start) + insn_len)
{
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: syscall changed %%eip; "
"not relocating\n");
}
else
{
ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
/* If we just stepped over a breakpoint insn, we don't backup
the pc on purpose; this is to match behaviour without
stepping. */
regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: "
"relocated %%eip from %s to %s\n",
paddress (gdbarch, orig_eip),
paddress (gdbarch, eip));
}
}
/* If the instruction was PUSHFL, then the TF bit will be set in the
pushed value, and should be cleared. We'll leave this for later,
since GDB already messes up the TF flag when stepping over a
pushfl. */
/* If the instruction was a call, the return address now atop the
stack is the address following the copied instruction. We need
to make it the address following the original instruction. */
if (i386_call_p (insn))
{
ULONGEST esp;
ULONGEST retaddr;
const ULONGEST retaddr_len = 4;
regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
retaddr = (retaddr - insn_offset) & 0xffffffffUL;
write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
if (debug_displaced)
fprintf_unfiltered (gdb_stdlog,
"displaced: relocated return addr at %s to %s\n",
paddress (gdbarch, esp),
paddress (gdbarch, retaddr));
}
}
#ifdef I386_REGNO_TO_SYMMETRY
#error "The Sequent Symmetry is no longer supported."
#endif
/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
and %esp "belong" to the calling function. Therefore these
registers should be saved if they're going to be modified. */
/* The maximum number of saved registers. This should include all
registers mentioned above, and %eip. */
#define I386_NUM_SAVED_REGS I386_NUM_GREGS
struct i386_frame_cache
{
/* Base address. */
CORE_ADDR base;
LONGEST sp_offset;
CORE_ADDR pc;
/* Saved registers. */
CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
CORE_ADDR saved_sp;
int saved_sp_reg;
int pc_in_eax;
/* Stack space reserved for local variables. */
long locals;
};
/* Allocate and initialize a frame cache. */
static struct i386_frame_cache *
i386_alloc_frame_cache (void)
{
struct i386_frame_cache *cache;
int i;
cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
/* Base address. */
cache->base = 0;
cache->sp_offset = -4;
cache->pc = 0;
/* Saved registers. We initialize these to -1 since zero is a valid
offset (that's where %ebp is supposed to be stored). */
for (i = 0; i < I386_NUM_SAVED_REGS; i++)
cache->saved_regs[i] = -1;
cache->saved_sp = 0;
cache->saved_sp_reg = -1;
cache->pc_in_eax = 0;
/* Frameless until proven otherwise. */
cache->locals = -1;
return cache;
}
/* If the instruction at PC is a jump, return the address of its
target. Otherwise, return PC. */
static CORE_ADDR
i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte op;
long delta = 0;
int data16 = 0;
target_read_memory (pc, &op, 1);
if (op == 0x66)
{
data16 = 1;
op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
}
switch (op)
{
case 0xe9:
/* Relative jump: if data16 == 0, disp32, else disp16. */
if (data16)
{
delta = read_memory_integer (pc + 2, 2, byte_order);
/* Include the size of the jmp instruction (including the
0x66 prefix). */
delta += 4;
}
else
{
delta = read_memory_integer (pc + 1, 4, byte_order);
/* Include the size of the jmp instruction. */
delta += 5;
}
break;
case 0xeb:
/* Relative jump, disp8 (ignore data16). */
delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
delta += data16 + 2;
break;
}
return pc + delta;
}
/* Check whether PC points at a prologue for a function returning a
structure or union. If so, it updates CACHE and returns the
address of the first instruction after the code sequence that
removes the "hidden" argument from the stack or CURRENT_PC,
whichever is smaller. Otherwise, return PC. */
static CORE_ADDR
i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
struct i386_frame_cache *cache)
{
/* Functions that return a structure or union start with:
popl %eax 0x58
xchgl %eax, (%esp) 0x87 0x04 0x24
or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
(the System V compiler puts out the second `xchg' instruction,
and the assembler doesn't try to optimize it, so the 'sib' form
gets generated). This sequence is used to get the address of the
return buffer for a function that returns a structure. */
static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
gdb_byte buf[4];
gdb_byte op;
if (current_pc <= pc)
return pc;
target_read_memory (pc, &op, 1);
if (op != 0x58) /* popl %eax */
return pc;
target_read_memory (pc + 1, buf, 4);
if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
return pc;
if (current_pc == pc)
{
cache->sp_offset += 4;
return current_pc;
}
if (current_pc == pc + 1)
{
cache->pc_in_eax = 1;
return current_pc;
}
if (buf[1] == proto1[1])
return pc + 4;
else
return pc + 5;
}
static CORE_ADDR
i386_skip_probe (CORE_ADDR pc)
{
/* A function may start with
pushl constant
call _probe
addl $4, %esp
followed by
pushl %ebp
etc. */
gdb_byte buf[8];
gdb_byte op;
target_read_memory (pc, &op, 1);
if (op == 0x68 || op == 0x6a)
{
int delta;
/* Skip past the `pushl' instruction; it has either a one-byte or a
four-byte operand, depending on the opcode. */
if (op == 0x68)
delta = 5;
else
delta = 2;
/* Read the following 8 bytes, which should be `call _probe' (6
bytes) followed by `addl $4,%esp' (2 bytes). */
read_memory (pc + delta, buf, sizeof (buf));
if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
pc += delta + sizeof (buf);
}
return pc;
}
/* GCC 4.1 and later, can put code in the prologue to realign the
stack pointer. Check whether PC points to such code, and update
CACHE accordingly. Return the first instruction after the code
sequence or CURRENT_PC, whichever is smaller. If we don't
recognize the code, return PC. */
static CORE_ADDR
i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
struct i386_frame_cache *cache)
{
/* There are 2 code sequences to re-align stack before the frame
gets set up:
1. Use a caller-saved saved register:
leal 4(%esp), %reg
andl $-XXX, %esp
pushl -4(%reg)
2. Use a callee-saved saved register:
pushl %reg
leal 8(%esp), %reg
andl $-XXX, %esp
pushl -4(%reg)
"andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
0x83 0xe4 0xf0 andl $-16, %esp
0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
*/
gdb_byte buf[14];
int reg;
int offset, offset_and;
static int regnums[8] = {
I386_EAX_REGNUM, /* %eax */
I386_ECX_REGNUM, /* %ecx */
I386_EDX_REGNUM, /* %edx */
I386_EBX_REGNUM, /* %ebx */
I386_ESP_REGNUM, /* %esp */
I386_EBP_REGNUM, /* %ebp */
I386_ESI_REGNUM, /* %esi */
I386_EDI_REGNUM /* %edi */
};
if (target_read_memory (pc, buf, sizeof buf))
return pc;
/* Check caller-saved saved register. The first instruction has
to be "leal 4(%esp), %reg". */
if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
{
/* MOD must be binary 10 and R/M must be binary 100. */
if ((buf[1] & 0xc7) != 0x44)
return pc;
/* REG has register number. */
reg = (buf[1] >> 3) & 7;
offset = 4;
}
else
{
/* Check callee-saved saved register. The first instruction
has to be "pushl %reg". */
if ((buf[0] & 0xf8) != 0x50)
return pc;
/* Get register. */
reg = buf[0] & 0x7;
/* The next instruction has to be "leal 8(%esp), %reg". */
if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
return pc;
/* MOD must be binary 10 and R/M must be binary 100. */
if ((buf[2] & 0xc7) != 0x44)
return pc;
/* REG has register number. Registers in pushl and leal have to
be the same. */
if (reg != ((buf[2] >> 3) & 7))
return pc;
offset = 5;
}
/* Rigister can't be %esp nor %ebp. */
if (reg == 4 || reg == 5)
return pc;
/* The next instruction has to be "andl $-XXX, %esp". */
if (buf[offset + 1] != 0xe4
|| (buf[offset] != 0x81 && buf[offset] != 0x83))
return pc;
offset_and = offset;
offset += buf[offset] == 0x81 ? 6 : 3;
/* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
0xfc. REG must be binary 110 and MOD must be binary 01. */
if (buf[offset] != 0xff
|| buf[offset + 2] != 0xfc
|| (buf[offset + 1] & 0xf8) != 0x70)
return pc;
/* R/M has register. Registers in leal and pushl have to be the
same. */
if (reg != (buf[offset + 1] & 7))
return pc;
if (current_pc > pc + offset_and)
cache->saved_sp_reg = regnums[reg];
return min (pc + offset + 3, current_pc);
}
/* Maximum instruction length we need to handle. */
#define I386_MAX_MATCHED_INSN_LEN 6
/* Instruction description. */
struct i386_insn
{
size_t len;
gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
};
/* Search for the instruction at PC in the list SKIP_INSNS. Return
the first instruction description that matches. Otherwise, return
NULL. */
static struct i386_insn *
i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
{
struct i386_insn *insn;
gdb_byte op;
target_read_memory (pc, &op, 1);
for (insn = skip_insns; insn->len > 0; insn++)
{
if ((op & insn->mask[0]) == insn->insn[0])
{
gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
int insn_matched = 1;
size_t i;
gdb_assert (insn->len > 1);
gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
target_read_memory (pc + 1, buf, insn->len - 1);
for (i = 1; i < insn->len; i++)
{
if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
insn_matched = 0;
}
if (insn_matched)
return insn;
}
}
return NULL;
}
/* Some special instructions that might be migrated by GCC into the
part of the prologue that sets up the new stack frame. Because the
stack frame hasn't been setup yet, no registers have been saved
yet, and only the scratch registers %eax, %ecx and %edx can be
touched. */
struct i386_insn i386_frame_setup_skip_insns[] =
{
/* Check for `movb imm8, r' and `movl imm32, r'.
??? Should we handle 16-bit operand-sizes here? */
/* `movb imm8, %al' and `movb imm8, %ah' */
/* `movb imm8, %cl' and `movb imm8, %ch' */
{ 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
/* `movb imm8, %dl' and `movb imm8, %dh' */
{ 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
/* `movl imm32, %eax' and `movl imm32, %ecx' */
{ 5, { 0xb8 }, { 0xfe } },
/* `movl imm32, %edx' */
{ 5, { 0xba }, { 0xff } },
/* Check for `mov imm32, r32'. Note that there is an alternative
encoding for `mov m32, %eax'.
??? Should we handle SIB adressing here?
??? Should we handle 16-bit operand-sizes here? */
/* `movl m32, %eax' */
{ 5, { 0xa1 }, { 0xff } },
/* `movl m32, %eax' and `mov; m32, %ecx' */
{ 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
/* `movl m32, %edx' */
{ 6, { 0x89, 0x15 }, {0xff, 0xff } },
/* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
Because of the symmetry, there are actually two ways to encode
these instructions; opcode bytes 0x29 and 0x2b for `subl' and
opcode bytes 0x31 and 0x33 for `xorl'. */
/* `subl %eax, %eax' */
{ 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
/* `subl %ecx, %ecx' */
{ 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
/* `subl %edx, %edx' */
{ 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
/* `xorl %eax, %eax' */
{ 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
/* `xorl %ecx, %ecx' */
{ 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
/* `xorl %edx, %edx' */
{ 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
{ 0 }
};
/* Check whether PC points to a no-op instruction. */
static CORE_ADDR
i386_skip_noop (CORE_ADDR pc)
{
gdb_byte op;
int check = 1;
target_read_memory (pc, &op, 1);
while (check)
{
check = 0;
/* Ignore `nop' instruction. */
if (op == 0x90)
{
pc += 1;
target_read_memory (pc, &op, 1);
check = 1;
}
/* Ignore no-op instruction `mov %edi, %edi'.
Microsoft system dlls often start with
a `mov %edi,%edi' instruction.
The 5 bytes before the function start are
filled with `nop' instructions.
This pattern can be used for hot-patching:
The `mov %edi, %edi' instruction can be replaced by a
near jump to the location of the 5 `nop' instructions
which can be replaced by a 32-bit jump to anywhere
in the 32-bit address space. */
else if (op == 0x8b)
{
target_read_memory (pc + 1, &op, 1);
if (op == 0xff)
{
pc += 2;
target_read_memory (pc, &op, 1);
check = 1;
}
}
}
return pc;
}
/* Check whether PC points at a code that sets up a new stack frame.
If so, it updates CACHE and returns the address of the first
instruction after the sequence that sets up the frame or LIMIT,
whichever is smaller. If we don't recognize the code, return PC. */
static CORE_ADDR
i386_analyze_frame_setup (struct gdbarch *gdbarch,
CORE_ADDR pc, CORE_ADDR limit,
struct i386_frame_cache *cache)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct i386_insn *insn;
gdb_byte op;
int skip = 0;
if (limit <= pc)
return limit;
target_read_memory (pc, &op, 1);
if (op == 0x55) /* pushl %ebp */
{
/* Take into account that we've executed the `pushl %ebp' that
starts this instruction sequence. */
cache->saved_regs[I386_EBP_REGNUM] = 0;
cache->sp_offset += 4;
pc++;
/* If that's all, return now. */
if (limit <= pc)
return limit;
/* Check for some special instructions that might be migrated by
GCC into the prologue and skip them. At this point in the
prologue, code should only touch the scratch registers %eax,
%ecx and %edx, so while the number of posibilities is sheer,
it is limited.
Make sure we only skip these instructions if we later see the
`movl %esp, %ebp' that actually sets up the frame. */
while (pc + skip < limit)
{
insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
if (insn == NULL)
break;
skip += insn->len;
}
/* If that's all, return now. */
if (limit <= pc + skip)
return limit;
target_read_memory (pc + skip, &op, 1);
/* Check for `movl %esp, %ebp' -- can be written in two ways. */
switch (op)
{
case 0x8b:
if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
!= 0xec)
return pc;
break;
case 0x89:
if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
!= 0xe5)
return pc;
break;
default:
return pc;
}
/* OK, we actually have a frame. We just don't know how large
it is yet. Set its size to zero. We'll adjust it if
necessary. We also now commit to skipping the special
instructions mentioned before. */
cache->locals = 0;
pc += (skip + 2);
/* If that's all, return now. */
if (limit <= pc)
return limit;
/* Check for stack adjustment
subl $XXX, %esp
NOTE: You can't subtract a 16-bit immediate from a 32-bit
reg, so we don't have to worry about a data16 prefix. */
target_read_memory (pc, &op, 1);
if (op == 0x83)
{
/* `subl' with 8-bit immediate. */
if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
/* Some instruction starting with 0x83 other than `subl'. */
return pc;
/* `subl' with signed 8-bit immediate (though it wouldn't
make sense to be negative). */
cache->locals = read_memory_integer (pc + 2, 1, byte_order);
return pc + 3;
}
else if (op == 0x81)
{
/* Maybe it is `subl' with a 32-bit immediate. */
if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
/* Some instruction starting with 0x81 other than `subl'. */
return pc;
/* It is `subl' with a 32-bit immediate. */
cache->locals = read_memory_integer (pc + 2, 4, byte_order);
return pc + 6;
}
else
{
/* Some instruction other than `subl'. */
return pc;
}
}
else if (op == 0xc8) /* enter */
{
cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
return pc + 4;
}
return pc;
}
/* Check whether PC points at code that saves registers on the stack.
If so, it updates CACHE and returns the address of the first
instruction after the register saves or CURRENT_PC, whichever is
smaller. Otherwise, return PC. */
static CORE_ADDR
i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
struct i386_frame_cache *cache)
{
CORE_ADDR offset = 0;
gdb_byte op;
int i;
if (cache->locals > 0)
offset -= cache->locals;
for (i = 0; i < 8 && pc < current_pc; i++)
{
target_read_memory (pc, &op, 1);
if (op < 0x50 || op > 0x57)
break;
offset -= 4;
cache->saved_regs[op - 0x50] = offset;
cache->sp_offset += 4;
pc++;
}
return pc;
}
/* Do a full analysis of the prologue at PC and update CACHE
accordingly. Bail out early if CURRENT_PC is reached. Return the
address where the analysis stopped.
We handle these cases:
The startup sequence can be at the start of the function, or the
function can start with a branch to startup code at the end.
%ebp can be set up with either the 'enter' instruction, or "pushl
%ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
once used in the System V compiler).
Local space is allocated just below the saved %ebp by either the
'enter' instruction, or by "subl $, %esp". 'enter' has a
16-bit unsigned argument for space to allocate, and the 'addl'
instruction could have either a signed byte, or 32-bit immediate.
Next, the registers used by this function are pushed. With the
System V compiler they will always be in the order: %edi, %esi,
%ebx (and sometimes a harmless bug causes it to also save but not
restore %eax); however, the code below is willing to see the pushes
in any order, and will handle up to 8 of them.
If the setup sequence is at the end of the function, then the next
instruction will be a branch back to the start. */
static CORE_ADDR
i386_analyze_prologue (struct gdbarch *gdbarch,
CORE_ADDR pc, CORE_ADDR current_pc,
struct i386_frame_cache *cache)
{
pc = i386_skip_noop (pc);
pc = i386_follow_jump (gdbarch, pc);
pc = i386_analyze_struct_return (pc, current_pc, cache);
pc = i386_skip_probe (pc);
pc = i386_analyze_stack_align (pc, current_pc, cache);
pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
return i386_analyze_register_saves (pc, current_pc, cache);
}
/* Return PC of first real instruction. */
static CORE_ADDR
i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
static gdb_byte pic_pat[6] =
{
0xe8, 0, 0, 0, 0, /* call 0x0 */
0x5b, /* popl %ebx */
};
struct i386_frame_cache cache;
CORE_ADDR pc;
gdb_byte op;
int i;
cache.locals = -1;
pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
if (cache.locals < 0)
return start_pc;
/* Found valid frame setup. */
/* The native cc on SVR4 in -K PIC mode inserts the following code
to get the address of the global offset table (GOT) into register
%ebx:
call 0x0
popl %ebx
movl %ebx,x(%ebp) (optional)
addl y,%ebx
This code is with the rest of the prologue (at the end of the
function), so we have to skip it to get to the first real
instruction at the start of the function. */
for (i = 0; i < 6; i++)
{
target_read_memory (pc + i, &op, 1);
if (pic_pat[i] != op)
break;
}
if (i == 6)
{
int delta = 6;
target_read_memory (pc + delta, &op, 1);
if (op == 0x89) /* movl %ebx, x(%ebp) */
{
op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
if (op == 0x5d) /* One byte offset from %ebp. */
delta += 3;
else if (op == 0x9d) /* Four byte offset from %ebp. */
delta += 6;
else /* Unexpected instruction. */
delta = 0;
target_read_memory (pc + delta, &op, 1);
}
/* addl y,%ebx */
if (delta > 0 && op == 0x81
&& read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
== 0xc3)
{
pc += delta + 6;
}
}
/* If the function starts with a branch (to startup code at the end)
the last instruction should bring us back to the first
instruction of the real code. */
if (i386_follow_jump (gdbarch, start_pc) != start_pc)
pc = i386_follow_jump (gdbarch, pc);
return pc;
}
/* Check that the code pointed to by PC corresponds to a call to
__main, skip it if so. Return PC otherwise. */
CORE_ADDR
i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte op;
target_read_memory (pc, &op, 1);
if (op == 0xe8)
{
gdb_byte buf[4];
if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
{
/* Make sure address is computed correctly as a 32bit
integer even if CORE_ADDR is 64 bit wide. */
struct minimal_symbol *s;
CORE_ADDR call_dest;
call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
call_dest = call_dest & 0xffffffffU;
s = lookup_minimal_symbol_by_pc (call_dest);
if (s != NULL
&& SYMBOL_LINKAGE_NAME (s) != NULL
&& strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
pc += 5;
}
}
return pc;
}
/* This function is 64-bit safe. */
static CORE_ADDR
i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
gdb_byte buf[8];
frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
}
/* Normal frames. */
static struct i386_frame_cache *
i386_frame_cache (struct frame_info *this_frame, void **this_cache)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct i386_frame_cache *cache;
gdb_byte buf[4];
int i;
if (*this_cache)
return *this_cache;
cache = i386_alloc_frame_cache ();
*this_cache = cache;
/* In principle, for normal frames, %ebp holds the frame pointer,
which holds the base address for the current stack frame.
However, for functions that don't need it, the frame pointer is
optional. For these "frameless" functions the frame pointer is
actually the frame pointer of the calling frame. Signal
trampolines are just a special case of a "frameless" function.
They (usually) share their frame pointer with the frame that was
in progress when the signal occurred. */
get_frame_register (this_frame, I386_EBP_REGNUM, buf);
cache->base = extract_unsigned_integer (buf, 4, byte_order);
if (cache->base == 0)
return cache;
/* For normal frames, %eip is stored at 4(%ebp). */
cache->saved_regs[I386_EIP_REGNUM] = 4;
cache->pc = get_frame_func (this_frame);
if (cache->pc != 0)
i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
cache);
if (cache->saved_sp_reg != -1)
{
/* Saved stack pointer has been saved. */
get_frame_register (this_frame, cache->saved_sp_reg, buf);
cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
}
if (cache->locals < 0)
{
/* We didn't find a valid frame, which means that CACHE->base
currently holds the frame pointer for our calling frame. If
we're at the start of a function, or somewhere half-way its
prologue, the function's frame probably hasn't been fully
setup yet. Try to reconstruct the base address for the stack
frame by looking at the stack pointer. For truly "frameless"
functions this might work too. */
if (cache->saved_sp_reg != -1)
{
/* We're halfway aligning the stack. */
cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
/* This will be added back below. */
cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
}
else
{
get_frame_register (this_frame, I386_ESP_REGNUM, buf);
cache->base = extract_unsigned_integer (buf, 4, byte_order)
+ cache->sp_offset;
}
}
/* Now that we have the base address for the stack frame we can
calculate the value of %esp in the calling frame. */
if (cache->saved_sp == 0)
cache->saved_sp = cache->base + 8;
/* Adjust all the saved registers such that they contain addresses
instead of offsets. */
for (i = 0; i < I386_NUM_SAVED_REGS; i++)
if (cache->saved_regs[i] != -1)
cache->saved_regs[i] += cache->base;
return cache;
}
static void
i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
struct frame_id *this_id)
{
struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
/* This marks the outermost frame. */
if (cache->base == 0)
return;
/* See the end of i386_push_dummy_call. */
(*this_id) = frame_id_build (cache->base + 8, cache->pc);
}
static struct value *
i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
int regnum)
{
struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
gdb_assert (regnum >= 0);
/* The System V ABI says that:
"The flags register contains the system flags, such as the
direction flag and the carry flag. The direction flag must be
set to the forward (that is, zero) direction before entry and
upon exit from a function. Other user flags have no specified
role in the standard calling sequence and are not preserved."
To guarantee the "upon exit" part of that statement we fake a
saved flags register that has its direction flag cleared.
Note that GCC doesn't seem to rely on the fact that the direction
flag is cleared after a function return; it always explicitly
clears the flag before operations where it matters.
FIXME: kettenis/20030316: I'm not quite sure whether this is the
right thing to do. The way we fake the flags register here makes
it impossible to change it. */
if (regnum == I386_EFLAGS_REGNUM)
{
ULONGEST val;
val = get_frame_register_unsigned (this_frame, regnum);
val &= ~(1 << 10);
return frame_unwind_got_constant (this_frame, regnum, val);
}
if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
if (regnum == I386_ESP_REGNUM && cache->saved_sp)
return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
return frame_unwind_got_memory (this_frame, regnum,
cache->saved_regs[regnum]);
return frame_unwind_got_register (this_frame, regnum, regnum);
}
static const struct frame_unwind i386_frame_unwind =
{
NORMAL_FRAME,
i386_frame_this_id,
i386_frame_prev_register,
NULL,
default_frame_sniffer
};
/* Normal frames, but in a function epilogue. */
/* The epilogue is defined here as the 'ret' instruction, which will
follow any instruction such as 'leave' or 'pop %ebp' that destroys
the function's stack frame. */
static int
i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
gdb_byte insn;
if (target_read_memory (pc, &insn, 1))
return 0; /* Can't read memory at pc. */
if (insn != 0xc3) /* 'ret' instruction. */
return 0;
return 1;
}
static int
i386_epilogue_frame_sniffer (const struct frame_unwind *self,
struct frame_info *this_frame,
void **this_prologue_cache)
{
if (frame_relative_level (this_frame) == 0)
return i386_in_function_epilogue_p (get_frame_arch (this_frame),
get_frame_pc (this_frame));
else
return 0;
}
static struct i386_frame_cache *
i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct i386_frame_cache *cache;
gdb_byte buf[4];
if (*this_cache)
return *this_cache;
cache = i386_alloc_frame_cache ();
*this_cache = cache;
/* Cache base will be %esp plus cache->sp_offset (-4). */
get_frame_register (this_frame, I386_ESP_REGNUM, buf);
cache->base = extract_unsigned_integer (buf, 4,
byte_order) + cache->sp_offset;
/* Cache pc will be the frame func. */
cache->pc = get_frame_pc (this_frame);
/* The saved %esp will be at cache->base plus 8. */
cache->saved_sp = cache->base + 8;
/* The saved %eip will be at cache->base plus 4. */
cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
return cache;
}
static void
i386_epilogue_frame_this_id (struct frame_info *this_frame,
void **this_cache,
struct frame_id *this_id)
{
struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
this_cache);
(*this_id) = frame_id_build (cache->base + 8, cache->pc);
}
static const struct frame_unwind i386_epilogue_frame_unwind =
{
NORMAL_FRAME,
i386_epilogue_frame_this_id,
i386_frame_prev_register,
NULL,
i386_epilogue_frame_sniffer
};
/* Signal trampolines. */
static struct i386_frame_cache *
i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct i386_frame_cache *cache;
CORE_ADDR addr;
gdb_byte buf[4];
if (*this_cache)
return *this_cache;
cache = i386_alloc_frame_cache ();
get_frame_register (this_frame, I386_ESP_REGNUM, buf);
cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
addr = tdep->sigcontext_addr (this_frame);
if (tdep->sc_reg_offset)
{
int i;
gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
for (i = 0; i < tdep->sc_num_regs; i++)
if (tdep->sc_reg_offset[i] != -1)
cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
}
else
{
cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
}
*this_cache = cache;
return cache;
}
static void
i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
struct frame_id *this_id)
{
struct i386_frame_cache *cache =
i386_sigtramp_frame_cache (this_frame, this_cache);
/* See the end of i386_push_dummy_call. */
(*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
}
static struct value *
i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
void **this_cache, int regnum)
{
/* Make sure we've initialized the cache. */
i386_sigtramp_frame_cache (this_frame, this_cache);
return i386_frame_prev_register (this_frame, this_cache, regnum);
}
static int
i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
struct frame_info *this_frame,
void **this_prologue_cache)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
/* We shouldn't even bother if we don't have a sigcontext_addr
handler. */
if (tdep->sigcontext_addr == NULL)
return 0;
if (tdep->sigtramp_p != NULL)
{
if (tdep->sigtramp_p (this_frame))
return 1;
}
if (tdep->sigtramp_start != 0)
{
CORE_ADDR pc = get_frame_pc (this_frame);
gdb_assert (tdep->sigtramp_end != 0);
if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
return 1;
}
return 0;
}
static const struct frame_unwind i386_sigtramp_frame_unwind =
{
SIGTRAMP_FRAME,
i386_sigtramp_frame_this_id,
i386_sigtramp_frame_prev_register,
NULL,
i386_sigtramp_frame_sniffer
};
static CORE_ADDR
i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
return cache->base;
}
static const struct frame_base i386_frame_base =
{
&i386_frame_unwind,
i386_frame_base_address,
i386_frame_base_address,
i386_frame_base_address
};
static struct frame_id
i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
CORE_ADDR fp;
fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
/* See the end of i386_push_dummy_call. */
return frame_id_build (fp + 8, get_frame_pc (this_frame));
}
/* Figure out where the longjmp will land. Slurp the args out of the
stack. We expect the first arg to be a pointer to the jmp_buf
structure from which we extract the address that we will land at.
This address is copied into PC. This routine returns non-zero on
success. */
static int
i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{
gdb_byte buf[4];
CORE_ADDR sp, jb_addr;
struct gdbarch *gdbarch = get_frame_arch (frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
/* If JB_PC_OFFSET is -1, we have no way to find out where the
longjmp will land. */
if (jb_pc_offset == -1)
return 0;
get_frame_register (frame, I386_ESP_REGNUM, buf);
sp = extract_unsigned_integer (buf, 4, byte_order);
if (target_read_memory (sp + 4, buf, 4))
return 0;
jb_addr = extract_unsigned_integer (buf, 4, byte_order);
if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
return 0;
*pc = extract_unsigned_integer (buf, 4, byte_order);
return 1;
}
/* Check whether TYPE must be 16-byte-aligned when passed as a
function argument. 16-byte vectors, _Decimal128 and structures or
unions containing such types must be 16-byte-aligned; other
arguments are 4-byte-aligned. */
static int
i386_16_byte_align_p (struct type *type)
{
type = check_typedef (type);
if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
|| (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
&& TYPE_LENGTH (type) == 16)
return 1;
if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION)
{
int i;
for (i = 0; i < TYPE_NFIELDS (type); i++)
{
if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
return 1;
}
}
return 0;
}
static CORE_ADDR
i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
struct value **args, CORE_ADDR sp, int struct_return,
CORE_ADDR struct_addr)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte buf[4];
int i;
int write_pass;
int args_space = 0;
/* Determine the total space required for arguments and struct
return address in a first pass (allowing for 16-byte-aligned
arguments), then push arguments in a second pass. */
for (write_pass = 0; write_pass < 2; write_pass++)
{
int args_space_used = 0;
int have_16_byte_aligned_arg = 0;
if (struct_return)
{
if (write_pass)
{
/* Push value address. */
store_unsigned_integer (buf, 4, byte_order, struct_addr);
write_memory (sp, buf, 4);
args_space_used += 4;
}
else
args_space += 4;
}
for (i = 0; i < nargs; i++)
{
int len = TYPE_LENGTH (value_enclosing_type (args[i]));
if (write_pass)
{
if (i386_16_byte_align_p (value_enclosing_type (args[i])))
args_space_used = align_up (args_space_used, 16);
write_memory (sp + args_space_used,
value_contents_all (args[i]), len);
/* The System V ABI says that:
"An argument's size is increased, if necessary, to make it a
multiple of [32-bit] words. This may require tail padding,
depending on the size of the argument."
This makes sure the stack stays word-aligned. */
args_space_used += align_up (len, 4);
}
else
{
if (i386_16_byte_align_p (value_enclosing_type (args[i])))
{
args_space = align_up (args_space, 16);
have_16_byte_aligned_arg = 1;
}
args_space += align_up (len, 4);
}
}
if (!write_pass)
{
if (have_16_byte_aligned_arg)
args_space = align_up (args_space, 16);
sp -= args_space;
}
}
/* Store return address. */
sp -= 4;
store_unsigned_integer (buf, 4, byte_order, bp_addr);
write_memory (sp, buf, 4);
/* Finally, update the stack pointer... */
store_unsigned_integer (buf, 4, byte_order, sp);
regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
/* ...and fake a frame pointer. */
regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
/* MarkK wrote: This "+ 8" is all over the place:
(i386_frame_this_id, i386_sigtramp_frame_this_id,
i386_dummy_id). It's there, since all frame unwinders for
a given target have to agree (within a certain margin) on the
definition of the stack address of a frame. Otherwise frame id
comparison might not work correctly. Since DWARF2/GCC uses the
stack address *before* the function call as a frame's CFA. On
the i386, when %ebp is used as a frame pointer, the offset
between the contents %ebp and the CFA as defined by GCC. */
return sp + 8;
}
/* These registers are used for returning integers (and on some
targets also for returning `struct' and `union' values when their
size and alignment match an integer type). */
#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
/* Read, for architecture GDBARCH, a function return value of TYPE
from REGCACHE, and copy that into VALBUF. */
static void
i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
struct regcache *regcache, gdb_byte *valbuf)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
int len = TYPE_LENGTH (type);
gdb_byte buf[I386_MAX_REGISTER_SIZE];
if (TYPE_CODE (type) == TYPE_CODE_FLT)
{
if (tdep->st0_regnum < 0)
{
warning (_("Cannot find floating-point return value."));
memset (valbuf, 0, len);
return;
}
/* Floating-point return values can be found in %st(0). Convert
its contents to the desired type. This is probably not
exactly how it would happen on the target itself, but it is
the best we can do. */
regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
}
else
{
int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
if (len <= low_size)
{
regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
memcpy (valbuf, buf, len);
}
else if (len <= (low_size + high_size))
{
regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
memcpy (valbuf, buf, low_size);
regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
memcpy (valbuf + low_size, buf, len - low_size);
}
else
internal_error (__FILE__, __LINE__,
_("Cannot extract return value of %d bytes long."), len);
}
}
/* Write, for architecture GDBARCH, a function return value of TYPE
from VALBUF into REGCACHE. */
static void
i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
struct regcache *regcache, const gdb_byte *valbuf)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
int len = TYPE_LENGTH (type);
if (TYPE_CODE (type) == TYPE_CODE_FLT)
{
ULONGEST fstat;
gdb_byte buf[I386_MAX_REGISTER_SIZE];
if (tdep->st0_regnum < 0)
{
warning (_("Cannot set floating-point return value."));
return;
}
/* Returning floating-point values is a bit tricky. Apart from
storing the return value in %st(0), we have to simulate the
state of the FPU at function return point. */
/* Convert the value found in VALBUF to the extended
floating-point format used by the FPU. This is probably
not exactly how it would happen on the target itself, but
it is the best we can do. */
convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
/* Set the top of the floating-point register stack to 7. The
actual value doesn't really matter, but 7 is what a normal
function return would end up with if the program started out
with a freshly initialized FPU. */
regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
fstat |= (7 << 11);
regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
/* Mark %st(1) through %st(7) as empty. Since we set the top of
the floating-point register stack to 7, the appropriate value
for the tag word is 0x3fff. */
regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
}
else
{
int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
if (len <= low_size)
regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
else if (len <= (low_size + high_size))
{
regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
len - low_size, valbuf + low_size);
}
else
internal_error (__FILE__, __LINE__,
_("Cannot store return value of %d bytes long."), len);
}
}
/* This is the variable that is set with "set struct-convention", and
its legitimate values. */
static const char default_struct_convention[] = "default";
static const char pcc_struct_convention[] = "pcc";
static const char reg_struct_convention[] = "reg";
static const char *valid_conventions[] =
{
default_struct_convention,
pcc_struct_convention,
reg_struct_convention,
NULL
};
static const char *struct_convention = default_struct_convention;
/* Return non-zero if TYPE, which is assumed to be a structure,
a union type, or an array type, should be returned in registers
for architecture GDBARCH. */
static int
i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum type_code code = TYPE_CODE (type);
int len = TYPE_LENGTH (type);
gdb_assert (code == TYPE_CODE_STRUCT
|| code == TYPE_CODE_UNION
|| code == TYPE_CODE_ARRAY);
if (struct_convention == pcc_struct_convention
|| (struct_convention == default_struct_convention
&& tdep->struct_return == pcc_struct_return))
return 0;
/* Structures consisting of a single `float', `double' or 'long
double' member are returned in %st(0). */
if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
{
type = check_typedef (TYPE_FIELD_TYPE (type, 0));
if (TYPE_CODE (type) == TYPE_CODE_FLT)
return (len == 4 || len == 8 || len == 12);
}
return (len == 1 || len == 2 || len == 4 || len == 8);
}
/* Determine, for architecture GDBARCH, how a return value of TYPE
should be returned. If it is supposed to be returned in registers,
and READBUF is non-zero, read the appropriate value from REGCACHE,
and copy it into READBUF. If WRITEBUF is non-zero, write the value
from WRITEBUF into REGCACHE. */
static enum return_value_convention
i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
struct type *type, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
enum type_code code = TYPE_CODE (type);
if (((code == TYPE_CODE_STRUCT
|| code == TYPE_CODE_UNION
|| code == TYPE_CODE_ARRAY)
&& !i386_reg_struct_return_p (gdbarch, type))
/* 128-bit decimal float uses the struct return convention. */
|| (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
{
/* The System V ABI says that:
"A function that returns a structure or union also sets %eax
to the value of the original address of the caller's area
before it returns. Thus when the caller receives control
again, the address of the returned object resides in register
%eax and can be used to access the object."
So the ABI guarantees that we can always find the return
value just after the function has returned. */
/* Note that the ABI doesn't mention functions returning arrays,
which is something possible in certain languages such as Ada.
In this case, the value is returned as if it was wrapped in
a record, so the convention applied to records also applies
to arrays. */
if (readbuf)
{
ULONGEST addr;
regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
read_memory (addr, readbuf, TYPE_LENGTH (type));
}
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
}
/* This special case is for structures consisting of a single
`float', `double' or 'long double' member. These structures are
returned in %st(0). For these structures, we call ourselves
recursively, changing TYPE into the type of the first member of
the structure. Since that should work for all structures that
have only one member, we don't bother to check the member's type
here. */
if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
{
type = check_typedef (TYPE_FIELD_TYPE (type, 0));
return i386_return_value (gdbarch, func_type, type, regcache,
readbuf, writebuf);
}
if (readbuf)
i386_extract_return_value (gdbarch, type, regcache, readbuf);
if (writebuf)
i386_store_return_value (gdbarch, type, regcache, writebuf);
return RETURN_VALUE_REGISTER_CONVENTION;
}
/* Construct types for ISA-specific registers. */
struct type *
i386_eflags_type (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (!tdep->i386_eflags_type)
{
struct type *type;
type = arch_flags_type (gdbarch, "builtin_type_i386_eflags", 4);
append_flags_type_flag (type, 0, "CF");
append_flags_type_flag (type, 1, NULL);
append_flags_type_flag (type, 2, "PF");
append_flags_type_flag (type, 4, "AF");
append_flags_type_flag (type, 6, "ZF");
append_flags_type_flag (type, 7, "SF");
append_flags_type_flag (type, 8, "TF");
append_flags_type_flag (type, 9, "IF");
append_flags_type_flag (type, 10, "DF");
append_flags_type_flag (type, 11, "OF");
append_flags_type_flag (type, 14, "NT");
append_flags_type_flag (type, 16, "RF");
append_flags_type_flag (type, 17, "VM");
append_flags_type_flag (type, 18, "AC");
append_flags_type_flag (type, 19, "VIF");
append_flags_type_flag (type, 20, "VIP");
append_flags_type_flag (type, 21, "ID");
tdep->i386_eflags_type = type;
}
return tdep->i386_eflags_type;
}
struct type *
i386_mxcsr_type (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (!tdep->i386_mxcsr_type)
{
struct type *type;
type = arch_flags_type (gdbarch, "builtin_type_i386_mxcsr", 4);
append_flags_type_flag (type, 0, "IE");
append_flags_type_flag (type, 1, "DE");
append_flags_type_flag (type, 2, "ZE");
append_flags_type_flag (type, 3, "OE");
append_flags_type_flag (type, 4, "UE");
append_flags_type_flag (type, 5, "PE");
append_flags_type_flag (type, 6, "DAZ");
append_flags_type_flag (type, 7, "IM");
append_flags_type_flag (type, 8, "DM");
append_flags_type_flag (type, 9, "ZM");
append_flags_type_flag (type, 10, "OM");
append_flags_type_flag (type, 11, "UM");
append_flags_type_flag (type, 12, "PM");
append_flags_type_flag (type, 15, "FZ");
tdep->i386_mxcsr_type = type;
}
return tdep->i386_mxcsr_type;
}
struct type *
i387_ext_type (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (!tdep->i387_ext_type)
tdep->i387_ext_type
= arch_float_type (gdbarch, -1, "builtin_type_i387_ext",
floatformats_i387_ext);
return tdep->i387_ext_type;
}
/* Construct vector type for MMX registers. */
struct type *
i386_mmx_type (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (!tdep->i386_mmx_type)
{
const struct builtin_type *bt = builtin_type (gdbarch);
/* The type we're building is this: */
#if 0
union __gdb_builtin_type_vec64i
{
int64_t uint64;
int32_t v2_int32[2];
int16_t v4_int16[4];
int8_t v8_int8[8];
};
#endif
struct type *t;
t = arch_composite_type (gdbarch,
"__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
append_composite_type_field (t, "uint64", bt->builtin_int64);
append_composite_type_field (t, "v2_int32",
init_vector_type (bt->builtin_int32, 2));
append_composite_type_field (t, "v4_int16",
init_vector_type (bt->builtin_int16, 4));
append_composite_type_field (t, "v8_int8",
init_vector_type (bt->builtin_int8, 8));
TYPE_VECTOR (t) = 1;
TYPE_NAME (t) = "builtin_type_vec64i";
tdep->i386_mmx_type = t;
}
return tdep->i386_mmx_type;
}
struct type *
i386_sse_type (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (!tdep->i386_sse_type)
{
const struct builtin_type *bt = builtin_type (gdbarch);
/* The type we're building is this: */
#if 0
union __gdb_builtin_type_vec128i
{
int128_t uint128;
int64_t v2_int64[2];
int32_t v4_int32[4];
int16_t v8_int16[8];
int8_t v16_int8[16];
double v2_double[2];
float v4_float[4];
};
#endif
struct type *t;
t = arch_composite_type (gdbarch,
"__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
append_composite_type_field (t, "v4_float",
init_vector_type (bt->builtin_float, 4));
append_composite_type_field (t, "v2_double",
init_vector_type (bt->builtin_double, 2));
append_composite_type_field (t, "v16_int8",
init_vector_type (bt->builtin_int8, 16));
append_composite_type_field (t, "v8_int16",
init_vector_type (bt->builtin_int16, 8));
append_composite_type_field (t, "v4_int32",
init_vector_type (bt->builtin_int32, 4));
append_composite_type_field (t, "v2_int64",
init_vector_type (bt->builtin_int64, 2));
append_composite_type_field (t, "uint128", bt->builtin_int128);
TYPE_VECTOR (t) = 1;
TYPE_NAME (t) = "builtin_type_vec128i";
tdep->i386_sse_type = t;
}
return tdep->i386_sse_type;
}
/* Return the GDB type object for the "standard" data type of data in
register REGNUM. Perhaps %esi and %edi should go here, but
potentially they could be used for things other than address. */
static struct type *
i386_register_type (struct gdbarch *gdbarch, int regnum)
{
if (regnum == I386_EIP_REGNUM)
return builtin_type (gdbarch)->builtin_func_ptr;
if (regnum == I386_EFLAGS_REGNUM)
return i386_eflags_type (gdbarch);
if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
return builtin_type (gdbarch)->builtin_data_ptr;
if (i386_fp_regnum_p (gdbarch, regnum))
return i387_ext_type (gdbarch);
if (i386_mmx_regnum_p (gdbarch, regnum))
return i386_mmx_type (gdbarch);
if (i386_sse_regnum_p (gdbarch, regnum))
return i386_sse_type (gdbarch);
if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
return i386_mxcsr_type (gdbarch);
return builtin_type (gdbarch)->builtin_int;
}
/* Map a cooked register onto a raw register or memory. For the i386,
the MMX registers need to be mapped onto floating point registers. */
static int
i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
int mmxreg, fpreg;
ULONGEST fstat;
int tos;
mmxreg = regnum - tdep->mm0_regnum;
regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
tos = (fstat >> 11) & 0x7;
fpreg = (mmxreg + tos) % 8;
return (I387_ST0_REGNUM (tdep) + fpreg);
}
static void
i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
int regnum, gdb_byte *buf)
{
if (i386_mmx_regnum_p (gdbarch, regnum))
{
gdb_byte mmx_buf[MAX_REGISTER_SIZE];
int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
/* Extract (always little endian). */
regcache_raw_read (regcache, fpnum, mmx_buf);
memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
}
else
regcache_raw_read (regcache, regnum, buf);
}
static void
i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
int regnum, const gdb_byte *buf)
{
if (i386_mmx_regnum_p (gdbarch, regnum))
{
gdb_byte mmx_buf[MAX_REGISTER_SIZE];
int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
/* Read ... */
regcache_raw_read (regcache, fpnum, mmx_buf);
/* ... Modify ... (always little endian). */
memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
/* ... Write. */
regcache_raw_write (regcache, fpnum, mmx_buf);
}
else
regcache_raw_write (regcache, regnum, buf);
}
/* Return the register number of the register allocated by GCC after
REGNUM, or -1 if there is no such register. */
static int
i386_next_regnum (int regnum)
{
/* GCC allocates the registers in the order:
%eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
Since storing a variable in %esp doesn't make any sense we return
-1 for %ebp and for %esp itself. */
static int next_regnum[] =
{
I386_EDX_REGNUM, /* Slot for %eax. */
I386_EBX_REGNUM, /* Slot for %ecx. */
I386_ECX_REGNUM, /* Slot for %edx. */
I386_ESI_REGNUM, /* Slot for %ebx. */
-1, -1, /* Slots for %esp and %ebp. */
I386_EDI_REGNUM, /* Slot for %esi. */
I386_EBP_REGNUM /* Slot for %edi. */
};
if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
return next_regnum[regnum];
return -1;
}
/* Return nonzero if a value of type TYPE stored in register REGNUM
needs any special handling. */
static int
i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
{
int len = TYPE_LENGTH (type);
/* Values may be spread across multiple registers. Most debugging
formats aren't expressive enough to specify the locations, so
some heuristics is involved. Right now we only handle types that
have a length that is a multiple of the word size, since GCC
doesn't seem to put any other types into registers. */
if (len > 4 && len % 4 == 0)
{
int last_regnum = regnum;
while (len > 4)
{
last_regnum = i386_next_regnum (last_regnum);
len -= 4;
}
if (last_regnum != -1)
return 1;
}
return i387_convert_register_p (gdbarch, regnum, type);
}
/* Read a value of type TYPE from register REGNUM in frame FRAME, and
return its contents in TO. */
static void
i386_register_to_value (struct frame_info *frame, int regnum,
struct type *type, gdb_byte *to)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
int len = TYPE_LENGTH (type);
/* FIXME: kettenis/20030609: What should we do if REGNUM isn't
available in FRAME (i.e. if it wasn't saved)? */
if (i386_fp_regnum_p (gdbarch, regnum))
{
i387_register_to_value (frame, regnum, type, to);
return;
}
/* Read a value spread across multiple registers. */
gdb_assert (len > 4 && len % 4 == 0);
while (len > 0)
{
gdb_assert (regnum != -1);
gdb_assert (register_size (gdbarch, regnum) == 4);
get_frame_register (frame, regnum, to);
regnum = i386_next_regnum (regnum);
len -= 4;
to += 4;
}
}
/* Write the contents FROM of a value of type TYPE into register
REGNUM in frame FRAME. */
static void
i386_value_to_register (struct frame_info *frame, int regnum,
struct type *type, const gdb_byte *from)
{
int len = TYPE_LENGTH (type);
if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
{
i387_value_to_register (frame, regnum, type, from);
return;
}
/* Write a value spread across multiple registers. */
gdb_assert (len > 4 && len % 4 == 0);
while (len > 0)
{
gdb_assert (regnum != -1);
gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
put_frame_register (frame, regnum, from);
regnum = i386_next_regnum (regnum);
len -= 4;
from += 4;
}
}
/* Supply register REGNUM from the buffer specified by GREGS and LEN
in the general-purpose register set REGSET to register cache
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
void
i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
const gdb_byte *regs = gregs;
int i;
gdb_assert (len == tdep->sizeof_gregset);
for (i = 0; i < tdep->gregset_num_regs; i++)
{
if ((regnum == i || regnum == -1)
&& tdep->gregset_reg_offset[i] != -1)
regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
}
}
/* Collect register REGNUM from the register cache REGCACHE and store
it in the buffer specified by GREGS and LEN as described by the
general-purpose register set REGSET. If REGNUM is -1, do this for
all registers in REGSET. */
void
i386_collect_gregset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *gregs, size_t len)
{
const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
gdb_byte *regs = gregs;
int i;
gdb_assert (len == tdep->sizeof_gregset);
for (i = 0; i < tdep->gregset_num_regs; i++)
{
if ((regnum == i || regnum == -1)
&& tdep->gregset_reg_offset[i] != -1)
regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
}
}
/* Supply register REGNUM from the buffer specified by FPREGS and LEN
in the floating-point register set REGSET to register cache
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
static void
i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
int regnum, const void *fpregs, size_t len)
{
const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
if (len == I387_SIZEOF_FXSAVE)
{
i387_supply_fxsave (regcache, regnum, fpregs);
return;
}
gdb_assert (len == tdep->sizeof_fpregset);
i387_supply_fsave (regcache, regnum, fpregs);
}
/* Collect register REGNUM from the register cache REGCACHE and store
it in the buffer specified by FPREGS and LEN as described by the
floating-point register set REGSET. If REGNUM is -1, do this for
all registers in REGSET. */
static void
i386_collect_fpregset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *fpregs, size_t len)
{
const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
if (len == I387_SIZEOF_FXSAVE)
{
i387_collect_fxsave (regcache, regnum, fpregs);
return;
}
gdb_assert (len == tdep->sizeof_fpregset);
i387_collect_fsave (regcache, regnum, fpregs);
}
/* Return the appropriate register set for the core section identified
by SECT_NAME and SECT_SIZE. */
const struct regset *
i386_regset_from_core_section (struct gdbarch *gdbarch,
const char *sect_name, size_t sect_size)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
{
if (tdep->gregset == NULL)
tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
i386_collect_gregset);
return tdep->gregset;
}
if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
|| (strcmp (sect_name, ".reg-xfp") == 0
&& sect_size == I387_SIZEOF_FXSAVE))
{
if (tdep->fpregset == NULL)
tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
i386_collect_fpregset);
return tdep->fpregset;
}
return NULL;
}
/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
CORE_ADDR
i386_pe_skip_trampoline_code (struct frame_info *frame,
CORE_ADDR pc, char *name)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
/* jmp *(dest) */
if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
{
unsigned long indirect =
read_memory_unsigned_integer (pc + 2, 4, byte_order);
struct minimal_symbol *indsym =
indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
if (symname)
{
if (strncmp (symname, "__imp_", 6) == 0
|| strncmp (symname, "_imp_", 5) == 0)
return name ? 1 :
read_memory_unsigned_integer (indirect, 4, byte_order);
}
}
return 0; /* Not a trampoline. */
}
/* Return whether the THIS_FRAME corresponds to a sigtramp
routine. */
int
i386_sigtramp_p (struct frame_info *this_frame)
{
CORE_ADDR pc = get_frame_pc (this_frame);
char *name;
find_pc_partial_function (pc, &name, NULL, NULL);
return (name && strcmp ("_sigtramp", name) == 0);
}
/* We have two flavours of disassembly. The machinery on this page
deals with switching between those. */
static int
i386_print_insn (bfd_vma pc, struct disassemble_info *info)
{
gdb_assert (disassembly_flavor == att_flavor
|| disassembly_flavor == intel_flavor);
/* FIXME: kettenis/20020915: Until disassembler_options is properly
constified, cast to prevent a compiler warning. */
info->disassembler_options = (char *) disassembly_flavor;
return print_insn_i386 (pc, info);
}
/* There are a few i386 architecture variants that differ only
slightly from the generic i386 target. For now, we don't give them
their own source file, but include them here. As a consequence,
they'll always be included. */
/* System V Release 4 (SVR4). */
/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
routine. */
static int
i386_svr4_sigtramp_p (struct frame_info *this_frame)
{
CORE_ADDR pc = get_frame_pc (this_frame);
char *name;
/* UnixWare uses _sigacthandler. The origin of the other symbols is
currently unknown. */
find_pc_partial_function (pc, &name, NULL, NULL);
return (name && (strcmp ("_sigreturn", name) == 0
|| strcmp ("_sigacthandler", name) == 0
|| strcmp ("sigvechandler", name) == 0));
}
/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
address of the associated sigcontext (ucontext) structure. */
static CORE_ADDR
i386_svr4_sigcontext_addr (struct frame_info *this_frame)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte buf[4];
CORE_ADDR sp;
get_frame_register (this_frame, I386_ESP_REGNUM, buf);
sp = extract_unsigned_integer (buf, 4, byte_order);
return read_memory_unsigned_integer (sp + 8, 4, byte_order);
}
/* Generic ELF. */
void
i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
/* We typically use stabs-in-ELF with the SVR4 register numbering. */
set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
}
/* System V Release 4 (SVR4). */
void
i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* System V Release 4 uses ELF. */
i386_elf_init_abi (info, gdbarch);
/* System V Release 4 has shared libraries. */
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
tdep->sigtramp_p = i386_svr4_sigtramp_p;
tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
tdep->sc_pc_offset = 36 + 14 * 4;
tdep->sc_sp_offset = 36 + 17 * 4;
tdep->jb_pc_offset = 20;
}
/* DJGPP. */
static void
i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* DJGPP doesn't have any special frames for signal handlers. */
tdep->sigtramp_p = NULL;
tdep->jb_pc_offset = 36;
/* DJGPP does not support the SSE registers. */
tdep->num_xmm_regs = 0;
set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
/* Native compiler is GCC, which uses the SVR4 register numbering
even in COFF and STABS. See the comment in i386_gdbarch_init,
before the calls to set_gdbarch_stab_reg_to_regnum and
set_gdbarch_sdb_reg_to_regnum. */
set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
}
/* i386 register groups. In addition to the normal groups, add "mmx"
and "sse". */
static struct reggroup *i386_sse_reggroup;
static struct reggroup *i386_mmx_reggroup;
static void
i386_init_reggroups (void)
{
i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
}
static void
i386_add_reggroups (struct gdbarch *gdbarch)
{
reggroup_add (gdbarch, i386_sse_reggroup);
reggroup_add (gdbarch, i386_mmx_reggroup);
reggroup_add (gdbarch, general_reggroup);
reggroup_add (gdbarch, float_reggroup);
reggroup_add (gdbarch, all_reggroup);
reggroup_add (gdbarch, save_reggroup);
reggroup_add (gdbarch, restore_reggroup);
reggroup_add (gdbarch, vector_reggroup);
reggroup_add (gdbarch, system_reggroup);
}
int
i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
struct reggroup *group)
{
int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
|| i386_mxcsr_regnum_p (gdbarch, regnum));
int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
|| i386_fpc_regnum_p (gdbarch, regnum));
int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
if (group == i386_mmx_reggroup)
return mmx_regnum_p;
if (group == i386_sse_reggroup)
return sse_regnum_p;
if (group == vector_reggroup)
return (mmx_regnum_p || sse_regnum_p);
if (group == float_reggroup)
return fp_regnum_p;
if (group == general_reggroup)
return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
return default_register_reggroup_p (gdbarch, regnum, group);
}
/* Get the ARGIth function argument for the current function. */
static CORE_ADDR
i386_fetch_pointer_argument (struct frame_info *frame, int argi,
struct type *type)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
}
static void
i386_skip_permanent_breakpoint (struct regcache *regcache)
{
CORE_ADDR current_pc = regcache_read_pc (regcache);
/* On i386, breakpoint is exactly 1 byte long, so we just
adjust the PC in the regcache. */
current_pc += 1;
regcache_write_pc (regcache, current_pc);
}
#define PREFIX_REPZ 0x01
#define PREFIX_REPNZ 0x02
#define PREFIX_LOCK 0x04
#define PREFIX_DATA 0x08
#define PREFIX_ADDR 0x10
/* operand size */
enum
{
OT_BYTE = 0,
OT_WORD,
OT_LONG,
OT_QUAD,
};
/* i386 arith/logic operations */
enum
{
OP_ADDL,
OP_ORL,
OP_ADCL,
OP_SBBL,
OP_ANDL,
OP_SUBL,
OP_XORL,
OP_CMPL,
};
struct i386_record_s
{
struct gdbarch *gdbarch;
struct regcache *regcache;
CORE_ADDR orig_addr;
CORE_ADDR addr;
int aflag;
int dflag;
int override;
uint8_t modrm;
uint8_t mod, reg, rm;
int ot;
uint8_t rex_x;
uint8_t rex_b;
int rip_offset;
int popl_esp_hack;
const int *regmap;
};
/* Parse "modrm" part in current memory address that irp->addr point to
Return -1 if something wrong. */
static int
i386_record_modrm (struct i386_record_s *irp)
{
struct gdbarch *gdbarch = irp->gdbarch;
if (target_read_memory (irp->addr, &irp->modrm, 1))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading memory at "
"addr %s len = 1.\n"),
paddress (gdbarch, irp->addr));
return -1;
}
irp->addr++;
irp->mod = (irp->modrm >> 6) & 3;
irp->reg = (irp->modrm >> 3) & 7;
irp->rm = irp->modrm & 7;
return 0;
}
/* Get the memory address that current instruction write to and set it to
the argument "addr".
Return -1 if something wrong. */
static int
i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
{
struct gdbarch *gdbarch = irp->gdbarch;
uint8_t tmpu8;
int16_t tmpi16;
int32_t tmpi32;
ULONGEST tmpulongest;
*addr = 0;
if (irp->aflag)
{
/* 32 bits */
int havesib = 0;
uint8_t scale = 0;
uint8_t index = 0;
uint8_t base = irp->rm;
if (base == 4)
{
havesib = 1;
if (target_read_memory (irp->addr, &tmpu8, 1))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading memory "
"at addr %s len = 1.\n"),
paddress (gdbarch, irp->addr));
return -1;
}
irp->addr++;
scale = (tmpu8 >> 6) & 3;
index = ((tmpu8 >> 3) & 7) | irp->rex_x;
base = (tmpu8 & 7);
}
base |= irp->rex_b;
switch (irp->mod)
{
case 0:
if ((base & 7) == 5)
{
base = 0xff;
if (target_read_memory (irp->addr, (gdb_byte *) &tmpi32, 4))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading "
"memory at addr %s len = 4.\n"),
paddress (gdbarch, irp->addr));
return -1;
}
irp->addr += 4;
*addr = tmpi32;
if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
*addr += irp->addr + irp->rip_offset;
}
else
{
*addr = 0;
}
break;
case 1:
if (target_read_memory (irp->addr, &tmpu8, 1))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading memory "
"at addr %s len = 1.\n"),
paddress (gdbarch, irp->addr));
return -1;
}
irp->addr++;
*addr = (int8_t) tmpu8;
break;
case 2:
if (target_read_memory (irp->addr, (gdb_byte *) &tmpi32, 4))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading memory "
"at addr %s len = 4.\n"),
paddress (gdbarch, irp->addr));
return -1;
}
*addr = tmpi32;
irp->addr += 4;
break;
}
tmpulongest = 0;
if (base != 0xff)
{
if (base == 4 && irp->popl_esp_hack)
*addr += irp->popl_esp_hack;
regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
&tmpulongest);
}
if (irp->aflag == 2)
{
*addr += tmpulongest;
}
else
*addr = (uint32_t) (tmpulongest + *addr);
if (havesib && (index != 4 || scale != 0))
{
regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
&tmpulongest);
if (irp->aflag == 2)
*addr += tmpulongest << scale;
else
*addr = (uint32_t) (*addr + (tmpulongest << scale));
}
}
else
{
/* 16 bits */
switch (irp->mod)
{
case 0:
if (irp->rm == 6)
{
if (target_read_memory
(irp->addr, (gdb_byte *) &tmpi16, 2))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading "
"memory at addr %s len = 2.\n"),
paddress (gdbarch, irp->addr));
return -1;
}
irp->addr += 2;
*addr = tmpi16;
irp->rm = 0;
goto no_rm;
}
else
{
*addr = 0;
}
break;
case 1:
if (target_read_memory (irp->addr, &tmpu8, 1))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading memory "
"at addr %s len = 1.\n"),
paddress (gdbarch, irp->addr));
return -1;
}
irp->addr++;
*addr = (int8_t) tmpu8;
break;
case 2:
if (target_read_memory (irp->addr, (gdb_byte *) &tmpi16, 2))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading memory "
"at addr %s len = 2.\n"),
paddress (gdbarch, irp->addr));
return -1;
}
irp->addr += 2;
*addr = tmpi16;
break;
}
switch (irp->rm)
{
case 0:
regcache_raw_read_unsigned (irp->regcache,
irp->regmap[X86_RECORD_REBX_REGNUM],
&tmpulongest);
*addr = (uint32_t) (*addr + tmpulongest);
regcache_raw_read_unsigned (irp->regcache,
irp->regmap[X86_RECORD_RESI_REGNUM],
&tmpulongest);
*addr = (uint32_t) (*addr + tmpulongest);
break;
case 1:
regcache_raw_read_unsigned (irp->regcache,
irp->regmap[X86_RECORD_REBX_REGNUM],
&tmpulongest);
*addr = (uint32_t) (*addr + tmpulongest);
regcache_raw_read_unsigned (irp->regcache,
irp->regmap[X86_RECORD_REDI_REGNUM],
&tmpulongest);
*addr = (uint32_t) (*addr + tmpulongest);
break;
case 2:
regcache_raw_read_unsigned (irp->regcache,
irp->regmap[X86_RECORD_REBP_REGNUM],
&tmpulongest);
*addr = (uint32_t) (*addr + tmpulongest);
regcache_raw_read_unsigned (irp->regcache,
irp->regmap[X86_RECORD_RESI_REGNUM],
&tmpulongest);
*addr = (uint32_t) (*addr + tmpulongest);
break;
case 3:
regcache_raw_read_unsigned (irp->regcache,
irp->regmap[X86_RECORD_REBP_REGNUM],
&tmpulongest);
*addr = (uint32_t) (*addr + tmpulongest);
regcache_raw_read_unsigned (irp->regcache,
irp->regmap[X86_RECORD_REDI_REGNUM],
&tmpulongest);
*addr = (uint32_t) (*addr + tmpulongest);
break;
case 4:
regcache_raw_read_unsigned (irp->regcache,
irp->regmap[X86_RECORD_RESI_REGNUM],
&tmpulongest);
*addr = (uint32_t) (*addr + tmpulongest);
break;
case 5:
regcache_raw_read_unsigned (irp->regcache,
irp->regmap[X86_RECORD_REDI_REGNUM],
&tmpulongest);
*addr = (uint32_t) (*addr + tmpulongest);
break;
case 6:
regcache_raw_read_unsigned (irp->regcache,
irp->regmap[X86_RECORD_REBP_REGNUM],
&tmpulongest);
*addr = (uint32_t) (*addr + tmpulongest);
break;
case 7:
regcache_raw_read_unsigned (irp->regcache,
irp->regmap[X86_RECORD_REBX_REGNUM],
&tmpulongest);
*addr = (uint32_t) (*addr + tmpulongest);
break;
}
*addr &= 0xffff;
}
no_rm:
return 0;
}
/* Record the value of the memory that willbe changed in current instruction
to "record_arch_list".
Return -1 if something wrong. */
static int
i386_record_lea_modrm (struct i386_record_s *irp)
{
struct gdbarch *gdbarch = irp->gdbarch;
uint64_t addr;
if (irp->override >= 0)
{
warning (_("Process record ignores the memory change "
"of instruction at address %s because it "
"can't get the value of the segment register."),
paddress (gdbarch, irp->orig_addr));
return 0;
}
if (i386_record_lea_modrm_addr (irp, &addr))
return -1;
if (record_arch_list_add_mem (addr, 1 << irp->ot))
return -1;
return 0;
}
/* Record the push operation to "record_arch_list".
Return -1 if something wrong. */
static int
i386_record_push (struct i386_record_s *irp, int size)
{
ULONGEST tmpulongest;
if (record_arch_list_add_reg (irp->regcache,
irp->regmap[X86_RECORD_RESP_REGNUM]))
return -1;
regcache_raw_read_unsigned (irp->regcache,
irp->regmap[X86_RECORD_RESP_REGNUM],
&tmpulongest);
if (record_arch_list_add_mem ((CORE_ADDR) tmpulongest - size, size))
return -1;
return 0;
}
/* Defines contents to record. */
#define I386_SAVE_FPU_REGS 0xfffd
#define I386_SAVE_FPU_ENV 0xfffe
#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
/* Record the value of floating point registers which will be changed by the
current instruction to "record_arch_list". Return -1 if something is wrong.
*/
static int i386_record_floats (struct gdbarch *gdbarch,
struct i386_record_s *ir,
uint32_t iregnum)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
int i;
/* Oza: Because of floating point insn push/pop of fpu stack is going to
happen. Currently we store st0-st7 registers, but we need not store all
registers all the time, in future we use ftag register and record only
those who are not marked as an empty. */
if (I386_SAVE_FPU_REGS == iregnum)
{
for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
{
if (record_arch_list_add_reg (ir->regcache, i))
return -1;
}
}
else if (I386_SAVE_FPU_ENV == iregnum)
{
for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
{
if (record_arch_list_add_reg (ir->regcache, i))
return -1;
}
}
else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
{
for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
{
if (record_arch_list_add_reg (ir->regcache, i))
return -1;
}
}
else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
(iregnum <= I387_FOP_REGNUM (tdep)))
{
if (record_arch_list_add_reg (ir->regcache,iregnum))
return -1;
}
else
{
/* Parameter error. */
return -1;
}
if(I386_SAVE_FPU_ENV != iregnum)
{
for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
{
if (record_arch_list_add_reg (ir->regcache, i))
return -1;
}
}
return 0;
}
/* Parse the current instruction and record the values of the registers and
memory that will be changed in current instruction to "record_arch_list".
Return -1 if something wrong. */
#define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
int
i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
CORE_ADDR addr)
{
int prefixes = 0;
uint8_t tmpu8;
uint16_t tmpu16;
uint32_t tmpu32;
ULONGEST tmpulongest;
uint32_t opcode;
struct i386_record_s ir;
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
int rex = 0;
uint8_t rex_w = -1;
uint8_t rex_r = 0;
memset (&ir, 0, sizeof (struct i386_record_s));
ir.regcache = regcache;
ir.addr = addr;
ir.orig_addr = addr;
ir.aflag = 1;
ir.dflag = 1;
ir.override = -1;
ir.popl_esp_hack = 0;
ir.regmap = gdbarch_tdep (gdbarch)->record_regmap;
ir.gdbarch = gdbarch;
if (record_debug > 1)
fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
"addr = %s\n",
paddress (gdbarch, ir.addr));
/* prefixes */
while (1)
{
if (target_read_memory (ir.addr, &tmpu8, 1))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading memory at "
"addr %s len = 1.\n"),
paddress (gdbarch, ir.addr));
return -1;
}
ir.addr++;
switch (tmpu8) /* Instruction prefixes */
{
case REPE_PREFIX_OPCODE:
prefixes |= PREFIX_REPZ;
break;
case REPNE_PREFIX_OPCODE:
prefixes |= PREFIX_REPNZ;
break;
case LOCK_PREFIX_OPCODE:
prefixes |= PREFIX_LOCK;
break;
case CS_PREFIX_OPCODE:
ir.override = X86_RECORD_CS_REGNUM;
break;
case SS_PREFIX_OPCODE:
ir.override = X86_RECORD_SS_REGNUM;
break;
case DS_PREFIX_OPCODE:
ir.override = X86_RECORD_DS_REGNUM;
break;
case ES_PREFIX_OPCODE:
ir.override = X86_RECORD_ES_REGNUM;
break;
case FS_PREFIX_OPCODE:
ir.override = X86_RECORD_FS_REGNUM;
break;
case GS_PREFIX_OPCODE:
ir.override = X86_RECORD_GS_REGNUM;
break;
case DATA_PREFIX_OPCODE:
prefixes |= PREFIX_DATA;
break;
case ADDR_PREFIX_OPCODE:
prefixes |= PREFIX_ADDR;
break;
case 0x40: /* i386 inc %eax */
case 0x41: /* i386 inc %ecx */
case 0x42: /* i386 inc %edx */
case 0x43: /* i386 inc %ebx */
case 0x44: /* i386 inc %esp */
case 0x45: /* i386 inc %ebp */
case 0x46: /* i386 inc %esi */
case 0x47: /* i386 inc %edi */
case 0x48: /* i386 dec %eax */
case 0x49: /* i386 dec %ecx */
case 0x4a: /* i386 dec %edx */
case 0x4b: /* i386 dec %ebx */
case 0x4c: /* i386 dec %esp */
case 0x4d: /* i386 dec %ebp */
case 0x4e: /* i386 dec %esi */
case 0x4f: /* i386 dec %edi */
if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
{
/* REX */
rex = 1;
rex_w = (tmpu8 >> 3) & 1;
rex_r = (tmpu8 & 0x4) << 1;
ir.rex_x = (tmpu8 & 0x2) << 2;
ir.rex_b = (tmpu8 & 0x1) << 3;
}
else /* 32 bit target */
goto out_prefixes;
break;
default:
goto out_prefixes;
break;
}
}
out_prefixes:
if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
{
ir.dflag = 2;
}
else
{
if (prefixes & PREFIX_DATA)
ir.dflag ^= 1;
}
if (prefixes & PREFIX_ADDR)
ir.aflag ^= 1;
else if (ir.regmap[X86_RECORD_R8_REGNUM])
ir.aflag = 2;
/* now check op code */
opcode = (uint32_t) tmpu8;
reswitch:
switch (opcode)
{
case 0x0f:
if (target_read_memory (ir.addr, &tmpu8, 1))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading memory at "
"addr %s len = 1.\n"),
paddress (gdbarch, ir.addr));
return -1;
}
ir.addr++;
opcode = (uint16_t) tmpu8 | 0x0f00;
goto reswitch;
break;
case 0x00: /* arith & logic */
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
case 0x0c:
case 0x0d:
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x18:
case 0x19:
case 0x1a:
case 0x1b:
case 0x1c:
case 0x1d:
case 0x20:
case 0x21:
case 0x22:
case 0x23:
case 0x24:
case 0x25:
case 0x28:
case 0x29:
case 0x2a:
case 0x2b:
case 0x2c:
case 0x2d:
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x38:
case 0x39:
case 0x3a:
case 0x3b:
case 0x3c:
case 0x3d:
if (((opcode >> 3) & 7) != OP_CMPL)
{
if ((opcode & 1) == 0)
ir.ot = OT_BYTE;
else
ir.ot = ir.dflag + OT_WORD;
switch ((opcode >> 1) & 3)
{
case 0: /* OP Ev, Gv */
if (i386_record_modrm (&ir))
return -1;
if (ir.mod != 3)
{
if (i386_record_lea_modrm (&ir))
return -1;
}
else
{
ir.rm |= ir.rex_b;
if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
ir.rm &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
}
break;
case 1: /* OP Gv, Ev */
if (i386_record_modrm (&ir))
return -1;
ir.reg |= rex_r;
if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
ir.reg &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
break;
case 2: /* OP A, Iv */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
break;
}
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x80: /* GRP1 */
case 0x81:
case 0x82:
case 0x83:
if (i386_record_modrm (&ir))
return -1;
if (ir.reg != OP_CMPL)
{
if ((opcode & 1) == 0)
ir.ot = OT_BYTE;
else
ir.ot = ir.dflag + OT_WORD;
if (ir.mod != 3)
{
if (opcode == 0x83)
ir.rip_offset = 1;
else
ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
if (i386_record_lea_modrm (&ir))
return -1;
}
else
I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x40: /* inc */
case 0x41:
case 0x42:
case 0x43:
case 0x44:
case 0x45:
case 0x46:
case 0x47:
case 0x48: /* dec */
case 0x49:
case 0x4a:
case 0x4b:
case 0x4c:
case 0x4d:
case 0x4e:
case 0x4f:
I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0xf6: /* GRP3 */
case 0xf7:
if ((opcode & 1) == 0)
ir.ot = OT_BYTE;
else
ir.ot = ir.dflag + OT_WORD;
if (i386_record_modrm (&ir))
return -1;
if (ir.mod != 3 && ir.reg == 0)
ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
switch (ir.reg)
{
case 0: /* test */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 2: /* not */
case 3: /* neg */
if (ir.mod != 3)
{
if (i386_record_lea_modrm (&ir))
return -1;
}
else
{
ir.rm |= ir.rex_b;
if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
ir.rm &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
}
if (ir.reg == 3) /* neg */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 4: /* mul */
case 5: /* imul */
case 6: /* div */
case 7: /* idiv */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
if (ir.ot != OT_BYTE)
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
default:
ir.addr -= 2;
opcode = opcode << 8 | ir.modrm;
goto no_support;
break;
}
break;
case 0xfe: /* GRP4 */
case 0xff: /* GRP5 */
if (i386_record_modrm (&ir))
return -1;
if (ir.reg >= 2 && opcode == 0xfe)
{
ir.addr -= 2;
opcode = opcode << 8 | ir.modrm;
goto no_support;
}
switch (ir.reg)
{
case 0: /* inc */
case 1: /* dec */
if ((opcode & 1) == 0)
ir.ot = OT_BYTE;
else
ir.ot = ir.dflag + OT_WORD;
if (ir.mod != 3)
{
if (i386_record_lea_modrm (&ir))
return -1;
}
else
{
ir.rm |= ir.rex_b;
if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
ir.rm &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 2: /* call */
if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
ir.dflag = 2;
if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
return -1;
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 3: /* lcall */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
return -1;
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 4: /* jmp */
case 5: /* ljmp */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 6: /* push */
if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
ir.dflag = 2;
if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
return -1;
break;
default:
ir.addr -= 2;
opcode = opcode << 8 | ir.modrm;
goto no_support;
break;
}
break;
case 0x84: /* test */
case 0x85:
case 0xa8:
case 0xa9:
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x98: /* CWDE/CBW */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
break;
case 0x99: /* CDQ/CWD */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
break;
case 0x0faf: /* imul */
case 0x69:
case 0x6b:
ir.ot = ir.dflag + OT_WORD;
if (i386_record_modrm (&ir))
return -1;
if (opcode == 0x69)
ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
else if (opcode == 0x6b)
ir.rip_offset = 1;
ir.reg |= rex_r;
if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
ir.reg &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x0fc0: /* xadd */
case 0x0fc1:
if ((opcode & 1) == 0)
ir.ot = OT_BYTE;
else
ir.ot = ir.dflag + OT_WORD;
if (i386_record_modrm (&ir))
return -1;
ir.reg |= rex_r;
if (ir.mod == 3)
{
if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
ir.reg &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
ir.rm &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
}
else
{
if (i386_record_lea_modrm (&ir))
return -1;
if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
ir.reg &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x0fb0: /* cmpxchg */
case 0x0fb1:
if ((opcode & 1) == 0)
ir.ot = OT_BYTE;
else
ir.ot = ir.dflag + OT_WORD;
if (i386_record_modrm (&ir))
return -1;
if (ir.mod == 3)
{
ir.reg |= rex_r;
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
ir.reg &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
}
else
{
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
if (i386_record_lea_modrm (&ir))
return -1;
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x0fc7: /* cmpxchg8b */
if (i386_record_modrm (&ir))
return -1;
if (ir.mod == 3)
{
ir.addr -= 2;
opcode = opcode << 8 | ir.modrm;
goto no_support;
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
if (i386_record_lea_modrm (&ir))
return -1;
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x50: /* push */
case 0x51:
case 0x52:
case 0x53:
case 0x54:
case 0x55:
case 0x56:
case 0x57:
case 0x68:
case 0x6a:
if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
ir.dflag = 2;
if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
return -1;
break;
case 0x06: /* push es */
case 0x0e: /* push cs */
case 0x16: /* push ss */
case 0x1e: /* push ds */
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
ir.addr -= 1;
goto no_support;
}
if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
return -1;
break;
case 0x0fa0: /* push fs */
case 0x0fa8: /* push gs */
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
ir.addr -= 2;
goto no_support;
}
if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
return -1;
break;
case 0x60: /* pusha */
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
ir.addr -= 1;
goto no_support;
}
if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
return -1;
break;
case 0x58: /* pop */
case 0x59:
case 0x5a:
case 0x5b:
case 0x5c:
case 0x5d:
case 0x5e:
case 0x5f:
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
break;
case 0x61: /* popa */
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
ir.addr -= 1;
goto no_support;
}
for (tmpu8 = X86_RECORD_REAX_REGNUM; tmpu8 <= X86_RECORD_REDI_REGNUM;
tmpu8++)
I386_RECORD_ARCH_LIST_ADD_REG (tmpu8);
break;
case 0x8f: /* pop */
if (ir.regmap[X86_RECORD_R8_REGNUM])
ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
else
ir.ot = ir.dflag + OT_WORD;
if (i386_record_modrm (&ir))
return -1;
if (ir.mod == 3)
I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
else
{
ir.popl_esp_hack = 1 << ir.ot;
if (i386_record_lea_modrm (&ir))
return -1;
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
break;
case 0xc8: /* enter */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
ir.dflag = 2;
if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
return -1;
break;
case 0xc9: /* leave */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
break;
case 0x07: /* pop es */
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
ir.addr -= 1;
goto no_support;
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x17: /* pop ss */
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
ir.addr -= 1;
goto no_support;
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x1f: /* pop ds */
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
ir.addr -= 1;
goto no_support;
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x0fa1: /* pop fs */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x0fa9: /* pop gs */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x88: /* mov */
case 0x89:
case 0xc6:
case 0xc7:
if ((opcode & 1) == 0)
ir.ot = OT_BYTE;
else
ir.ot = ir.dflag + OT_WORD;
if (i386_record_modrm (&ir))
return -1;
if (ir.mod != 3)
{
if (opcode == 0xc6 || opcode == 0xc7)
ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
if (i386_record_lea_modrm (&ir))
return -1;
}
else
{
if (opcode == 0xc6 || opcode == 0xc7)
ir.rm |= ir.rex_b;
if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
ir.rm &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
}
break;
case 0x8a: /* mov */
case 0x8b:
if ((opcode & 1) == 0)
ir.ot = OT_BYTE;
else
ir.ot = ir.dflag + OT_WORD;
if (i386_record_modrm (&ir))
return -1;
ir.reg |= rex_r;
if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
ir.reg &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
break;
case 0x8c: /* mov seg */
if (i386_record_modrm (&ir))
return -1;
if (ir.reg > 5)
{
ir.addr -= 2;
opcode = opcode << 8 | ir.modrm;
goto no_support;
}
if (ir.mod == 3)
I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
else
{
ir.ot = OT_WORD;
if (i386_record_lea_modrm (&ir))
return -1;
}
break;
case 0x8e: /* mov seg */
if (i386_record_modrm (&ir))
return -1;
switch (ir.reg)
{
case 0:
tmpu8 = X86_RECORD_ES_REGNUM;
break;
case 2:
tmpu8 = X86_RECORD_SS_REGNUM;
break;
case 3:
tmpu8 = X86_RECORD_DS_REGNUM;
break;
case 4:
tmpu8 = X86_RECORD_FS_REGNUM;
break;
case 5:
tmpu8 = X86_RECORD_GS_REGNUM;
break;
default:
ir.addr -= 2;
opcode = opcode << 8 | ir.modrm;
goto no_support;
break;
}
I386_RECORD_ARCH_LIST_ADD_REG (tmpu8);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x0fb6: /* movzbS */
case 0x0fb7: /* movzwS */
case 0x0fbe: /* movsbS */
case 0x0fbf: /* movswS */
if (i386_record_modrm (&ir))
return -1;
I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
break;
case 0x8d: /* lea */
if (i386_record_modrm (&ir))
return -1;
if (ir.mod == 3)
{
ir.addr -= 2;
opcode = opcode << 8 | ir.modrm;
goto no_support;
}
ir.ot = ir.dflag;
ir.reg |= rex_r;
if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
ir.reg &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
break;
case 0xa0: /* mov EAX */
case 0xa1:
case 0xd7: /* xlat */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
break;
case 0xa2: /* mov EAX */
case 0xa3:
if (ir.override >= 0)
{
warning (_("Process record ignores the memory change "
"of instruction at address %s because "
"it can't get the value of the segment "
"register."),
paddress (gdbarch, ir.orig_addr));
}
else
{
if ((opcode & 1) == 0)
ir.ot = OT_BYTE;
else
ir.ot = ir.dflag + OT_WORD;
if (ir.aflag == 2)
{
if (target_read_memory (ir.addr, (gdb_byte *) &addr, 8))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading "
"memory at addr 0x%s len = 8.\n"),
paddress (gdbarch, ir.addr));
return -1;
}
ir.addr += 8;
}
else if (ir.aflag)
{
if (target_read_memory (ir.addr, (gdb_byte *) &tmpu32, 4))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading "
"memory at addr 0x%s len = 4.\n"),
paddress (gdbarch, ir.addr));
return -1;
}
ir.addr += 4;
addr = tmpu32;
}
else
{
if (target_read_memory (ir.addr, (gdb_byte *) &tmpu16, 2))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading "
"memory at addr 0x%s len = 2.\n"),
paddress (gdbarch, ir.addr));
return -1;
}
ir.addr += 2;
addr = tmpu16;
}
if (record_arch_list_add_mem (addr, 1 << ir.ot))
return -1;
}
break;
case 0xb0: /* mov R, Ib */
case 0xb1:
case 0xb2:
case 0xb3:
case 0xb4:
case 0xb5:
case 0xb6:
case 0xb7:
I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
? ((opcode & 0x7) | ir.rex_b)
: ((opcode & 0x7) & 0x3));
break;
case 0xb8: /* mov R, Iv */
case 0xb9:
case 0xba:
case 0xbb:
case 0xbc:
case 0xbd:
case 0xbe:
case 0xbf:
I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
break;
case 0x91: /* xchg R, EAX */
case 0x92:
case 0x93:
case 0x94:
case 0x95:
case 0x96:
case 0x97:
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
break;
case 0x86: /* xchg Ev, Gv */
case 0x87:
if ((opcode & 1) == 0)
ir.ot = OT_BYTE;
else
ir.ot = ir.dflag + OT_WORD;
if (i386_record_modrm (&ir))
return -1;
if (ir.mod == 3)
{
ir.rm |= ir.rex_b;
if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
ir.rm &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
}
else
{
if (i386_record_lea_modrm (&ir))
return -1;
}
ir.reg |= rex_r;
if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
ir.reg &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
break;
case 0xc4: /* les Gv */
case 0xc5: /* lds Gv */
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
ir.addr -= 1;
goto no_support;
}
case 0x0fb2: /* lss Gv */
case 0x0fb4: /* lfs Gv */
case 0x0fb5: /* lgs Gv */
if (i386_record_modrm (&ir))
return -1;
if (ir.mod == 3)
{
if (opcode > 0xff)
ir.addr -= 3;
else
ir.addr -= 2;
opcode = opcode << 8 | ir.modrm;
goto no_support;
}
switch (opcode)
{
case 0xc4: /* les Gv */
tmpu8 = X86_RECORD_ES_REGNUM;
break;
case 0xc5: /* lds Gv */
tmpu8 = X86_RECORD_DS_REGNUM;
break;
case 0x0fb2: /* lss Gv */
tmpu8 = X86_RECORD_SS_REGNUM;
break;
case 0x0fb4: /* lfs Gv */
tmpu8 = X86_RECORD_FS_REGNUM;
break;
case 0x0fb5: /* lgs Gv */
tmpu8 = X86_RECORD_GS_REGNUM;
break;
}
I386_RECORD_ARCH_LIST_ADD_REG (tmpu8);
I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0xc0: /* shifts */
case 0xc1:
case 0xd0:
case 0xd1:
case 0xd2:
case 0xd3:
if ((opcode & 1) == 0)
ir.ot = OT_BYTE;
else
ir.ot = ir.dflag + OT_WORD;
if (i386_record_modrm (&ir))
return -1;
if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
{
if (i386_record_lea_modrm (&ir))
return -1;
}
else
{
ir.rm |= ir.rex_b;
if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
ir.rm &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x0fa4:
case 0x0fa5:
case 0x0fac:
case 0x0fad:
if (i386_record_modrm (&ir))
return -1;
if (ir.mod == 3)
{
if (record_arch_list_add_reg (ir.regcache, ir.rm))
return -1;
}
else
{
if (i386_record_lea_modrm (&ir))
return -1;
}
break;
case 0xd8: /* Floats. */
case 0xd9:
case 0xda:
case 0xdb:
case 0xdc:
case 0xdd:
case 0xde:
case 0xdf:
if (i386_record_modrm (&ir))
return -1;
ir.reg |= ((opcode & 7) << 3);
if (ir.mod != 3)
{
/* Memory. */
uint64_t tmpu64;
if (i386_record_lea_modrm_addr (&ir, &tmpu64))
return -1;
switch (ir.reg)
{
case 0x02:
case 0x12:
case 0x22:
case 0x32:
/* For fcom, ficom nothing to do. */
break;
case 0x03:
case 0x13:
case 0x23:
case 0x33:
/* For fcomp, ficomp pop FPU stack, store all. */
if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
return -1;
break;
case 0x00:
case 0x01:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x10:
case 0x11:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
case 0x20:
case 0x21:
case 0x24:
case 0x25:
case 0x26:
case 0x27:
case 0x30:
case 0x31:
case 0x34:
case 0x35:
case 0x36:
case 0x37:
/* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
of code, always affects st(0) register. */
if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
return -1;
break;
case 0x08:
case 0x0a:
case 0x0b:
case 0x18:
case 0x19:
case 0x1a:
case 0x1b:
case 0x1d:
case 0x28:
case 0x29:
case 0x2a:
case 0x2b:
case 0x38:
case 0x39:
case 0x3a:
case 0x3b:
case 0x3c:
case 0x3d:
switch (ir.reg & 7)
{
case 0:
/* Handling fld, fild. */
if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
return -1;
break;
case 1:
switch (ir.reg >> 4)
{
case 0:
if (record_arch_list_add_mem (tmpu64, 4))
return -1;
break;
case 2:
if (record_arch_list_add_mem (tmpu64, 8))
return -1;
break;
case 3:
break;
default:
if (record_arch_list_add_mem (tmpu64, 2))
return -1;
break;
}
break;
default:
switch (ir.reg >> 4)
{
case 0:
if (record_arch_list_add_mem (tmpu64, 4))
return -1;
if (3 == (ir.reg & 7))
{
/* For fstp m32fp. */
if (i386_record_floats (gdbarch, &ir,
I386_SAVE_FPU_REGS))
return -1;
}
break;
case 1:
if (record_arch_list_add_mem (tmpu64, 4))
return -1;
if ((3 == (ir.reg & 7))
|| (5 == (ir.reg & 7))
|| (7 == (ir.reg & 7)))
{
/* For fstp insn. */
if (i386_record_floats (gdbarch, &ir,
I386_SAVE_FPU_REGS))
return -1;
}
break;
case 2:
if (record_arch_list_add_mem (tmpu64, 8))
return -1;
if (3 == (ir.reg & 7))
{
/* For fstp m64fp. */
if (i386_record_floats (gdbarch, &ir,
I386_SAVE_FPU_REGS))
return -1;
}
break;
case 3:
if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
{
/* For fistp, fbld, fild, fbstp. */
if (i386_record_floats (gdbarch, &ir,
I386_SAVE_FPU_REGS))
return -1;
}
/* Fall through */
default:
if (record_arch_list_add_mem (tmpu64, 2))
return -1;
break;
}
break;
}
break;
case 0x0c:
/* Insn fldenv. */
if (i386_record_floats (gdbarch, &ir,
I386_SAVE_FPU_ENV_REG_STACK))
return -1;
break;
case 0x0d:
/* Insn fldcw. */
if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
return -1;
break;
case 0x2c:
/* Insn frstor. */
if (i386_record_floats (gdbarch, &ir,
I386_SAVE_FPU_ENV_REG_STACK))
return -1;
break;
case 0x0e:
if (ir.dflag)
{
if (record_arch_list_add_mem (tmpu64, 28))
return -1;
}
else
{
if (record_arch_list_add_mem (tmpu64, 14))
return -1;
}
break;
case 0x0f:
case 0x2f:
if (record_arch_list_add_mem (tmpu64, 2))
return -1;
/* Insn fstp, fbstp. */
if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
return -1;
break;
case 0x1f:
case 0x3e:
if (record_arch_list_add_mem (tmpu64, 10))
return -1;
break;
case 0x2e:
if (ir.dflag)
{
if (record_arch_list_add_mem (tmpu64, 28))
return -1;
tmpu64 += 28;
}
else
{
if (record_arch_list_add_mem (tmpu64, 14))
return -1;
tmpu64 += 14;
}
if (record_arch_list_add_mem (tmpu64, 80))
return -1;
/* Insn fsave. */
if (i386_record_floats (gdbarch, &ir,
I386_SAVE_FPU_ENV_REG_STACK))
return -1;
break;
case 0x3f:
if (record_arch_list_add_mem (tmpu64, 8))
return -1;
/* Insn fistp. */
if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
return -1;
break;
default:
ir.addr -= 2;
opcode = opcode << 8 | ir.modrm;
goto no_support;
break;
}
}
/* Opcode is an extension of modR/M byte. */
else
{
switch (opcode)
{
case 0xd8:
if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
return -1;
break;
case 0xd9:
if (0x0c == (ir.modrm >> 4))
{
if ((ir.modrm & 0x0f) <= 7)
{
if (i386_record_floats (gdbarch, &ir,
I386_SAVE_FPU_REGS))
return -1;
}
else
{
if (i386_record_floats (gdbarch, &ir,
I387_ST0_REGNUM (tdep)))
return -1;
/* If only st(0) is changing, then we have already
recorded. */
if ((ir.modrm & 0x0f) - 0x08)
{
if (i386_record_floats (gdbarch, &ir,
I387_ST0_REGNUM (tdep) +
((ir.modrm & 0x0f) - 0x08)))
return -1;
}
}
}
else
{
switch (ir.modrm)
{
case 0xe0:
case 0xe1:
case 0xf0:
case 0xf5:
case 0xf8:
case 0xfa:
case 0xfc:
case 0xfe:
case 0xff:
if (i386_record_floats (gdbarch, &ir,
I387_ST0_REGNUM (tdep)))
return -1;
break;
case 0xf1:
case 0xf2:
case 0xf3:
case 0xf4:
case 0xf6:
case 0xf7:
case 0xe8:
case 0xe9:
case 0xea:
case 0xeb:
case 0xec:
case 0xed:
case 0xee:
case 0xf9:
case 0xfb:
if (i386_record_floats (gdbarch, &ir,
I386_SAVE_FPU_REGS))
return -1;
break;
case 0xfd:
if (i386_record_floats (gdbarch, &ir,
I387_ST0_REGNUM (tdep)))
return -1;
if (i386_record_floats (gdbarch, &ir,
I387_ST0_REGNUM (tdep) + 1))
return -1;
break;
}
}
break;
case 0xda:
if (0xe9 == ir.modrm)
{
if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
return -1;
}
else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
{
if (i386_record_floats (gdbarch, &ir,
I387_ST0_REGNUM (tdep)))
return -1;
if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
{
if (i386_record_floats (gdbarch, &ir,
I387_ST0_REGNUM (tdep) +
(ir.modrm & 0x0f)))
return -1;
}
else if ((ir.modrm & 0x0f) - 0x08)
{
if (i386_record_floats (gdbarch, &ir,
I387_ST0_REGNUM (tdep) +
((ir.modrm & 0x0f) - 0x08)))
return -1;
}
}
break;
case 0xdb:
if (0xe3 == ir.modrm)
{
if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
return -1;
}
else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
{
if (i386_record_floats (gdbarch, &ir,
I387_ST0_REGNUM (tdep)))
return -1;
if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
{
if (i386_record_floats (gdbarch, &ir,
I387_ST0_REGNUM (tdep) +
(ir.modrm & 0x0f)))
return -1;
}
else if ((ir.modrm & 0x0f) - 0x08)
{
if (i386_record_floats (gdbarch, &ir,
I387_ST0_REGNUM (tdep) +
((ir.modrm & 0x0f) - 0x08)))
return -1;
}
}
break;
case 0xdc:
if ((0x0c == ir.modrm >> 4)
|| (0x0d == ir.modrm >> 4)
|| (0x0f == ir.modrm >> 4))
{
if ((ir.modrm & 0x0f) <= 7)
{
if (i386_record_floats (gdbarch, &ir,
I387_ST0_REGNUM (tdep) +
(ir.modrm & 0x0f)))
return -1;
}
else
{
if (i386_record_floats (gdbarch, &ir,
I387_ST0_REGNUM (tdep) +
((ir.modrm & 0x0f) - 0x08)))
return -1;
}
}
break;
case 0xdd:
if (0x0c == ir.modrm >> 4)
{
if (i386_record_floats (gdbarch, &ir,
I387_FTAG_REGNUM (tdep)))
return -1;
}
else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
{
if ((ir.modrm & 0x0f) <= 7)
{
if (i386_record_floats (gdbarch, &ir,
I387_ST0_REGNUM (tdep) +
(ir.modrm & 0x0f)))
return -1;
}
else
{
if (i386_record_floats (gdbarch, &ir,
I386_SAVE_FPU_REGS))
return -1;
}
}
break;
case 0xde:
if ((0x0c == ir.modrm >> 4)
|| (0x0e == ir.modrm >> 4)
|| (0x0f == ir.modrm >> 4)
|| (0xd9 == ir.modrm))
{
if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
return -1;
}
break;
case 0xdf:
if (0xe0 == ir.modrm)
{
if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
return -1;
}
else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
{
if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
return -1;
}
break;
}
}
break;
/* string ops */
case 0xa4: /* movsS */
case 0xa5:
case 0xaa: /* stosS */
case 0xab:
case 0x6c: /* insS */
case 0x6d:
regcache_raw_read_unsigned (ir.regcache,
ir.regmap[X86_RECORD_RECX_REGNUM],
&tmpulongest);
if (tmpulongest)
{
ULONGEST es, ds;
if ((opcode & 1) == 0)
ir.ot = OT_BYTE;
else
ir.ot = ir.dflag + OT_WORD;
regcache_raw_read_unsigned (ir.regcache,
ir.regmap[X86_RECORD_REDI_REGNUM],
&tmpulongest);
regcache_raw_read_unsigned (ir.regcache,
ir.regmap[X86_RECORD_ES_REGNUM],
&es);
regcache_raw_read_unsigned (ir.regcache,
ir.regmap[X86_RECORD_DS_REGNUM],
&ds);
if (ir.aflag && (es != ds))
{
/* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
warning (_("Process record ignores the memory "
"change of instruction at address %s "
"because it can't get the value of the "
"ES segment register."),
paddress (gdbarch, ir.orig_addr));
}
else
{
if (record_arch_list_add_mem (tmpulongest, 1 << ir.ot))
return -1;
}
if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
if (opcode == 0xa4 || opcode == 0xa5)
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
}
break;
case 0xa6: /* cmpsS */
case 0xa7:
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0xac: /* lodsS */
case 0xad:
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0xae: /* scasS */
case 0xaf:
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x6e: /* outsS */
case 0x6f:
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0xe4: /* port I/O */
case 0xe5:
case 0xec:
case 0xed:
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
break;
case 0xe6:
case 0xe7:
case 0xee:
case 0xef:
break;
/* control */
case 0xc2: /* ret im */
case 0xc3: /* ret */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0xca: /* lret im */
case 0xcb: /* lret */
case 0xcf: /* iret */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0xe8: /* call im */
if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
ir.dflag = 2;
if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
return -1;
break;
case 0x9a: /* lcall im */
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
ir.addr -= 1;
goto no_support;
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
return -1;
break;
case 0xe9: /* jmp im */
case 0xea: /* ljmp im */
case 0xeb: /* jmp Jb */
case 0x70: /* jcc Jb */
case 0x71:
case 0x72:
case 0x73:
case 0x74:
case 0x75:
case 0x76:
case 0x77:
case 0x78:
case 0x79:
case 0x7a:
case 0x7b:
case 0x7c:
case 0x7d:
case 0x7e:
case 0x7f:
case 0x0f80: /* jcc Jv */
case 0x0f81:
case 0x0f82:
case 0x0f83:
case 0x0f84:
case 0x0f85:
case 0x0f86:
case 0x0f87:
case 0x0f88:
case 0x0f89:
case 0x0f8a:
case 0x0f8b:
case 0x0f8c:
case 0x0f8d:
case 0x0f8e:
case 0x0f8f:
break;
case 0x0f90: /* setcc Gv */
case 0x0f91:
case 0x0f92:
case 0x0f93:
case 0x0f94:
case 0x0f95:
case 0x0f96:
case 0x0f97:
case 0x0f98:
case 0x0f99:
case 0x0f9a:
case 0x0f9b:
case 0x0f9c:
case 0x0f9d:
case 0x0f9e:
case 0x0f9f:
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
ir.ot = OT_BYTE;
if (i386_record_modrm (&ir))
return -1;
if (ir.mod == 3)
I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
: (ir.rm & 0x3));
else
{
if (i386_record_lea_modrm (&ir))
return -1;
}
break;
case 0x0f40: /* cmov Gv, Ev */
case 0x0f41:
case 0x0f42:
case 0x0f43:
case 0x0f44:
case 0x0f45:
case 0x0f46:
case 0x0f47:
case 0x0f48:
case 0x0f49:
case 0x0f4a:
case 0x0f4b:
case 0x0f4c:
case 0x0f4d:
case 0x0f4e:
case 0x0f4f:
if (i386_record_modrm (&ir))
return -1;
ir.reg |= rex_r;
if (ir.dflag == OT_BYTE)
ir.reg &= 0x3;
I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
break;
/* flags */
case 0x9c: /* pushf */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
ir.dflag = 2;
if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
return -1;
break;
case 0x9d: /* popf */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x9e: /* sahf */
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
ir.addr -= 1;
goto no_support;
}
case 0xf5: /* cmc */
case 0xf8: /* clc */
case 0xf9: /* stc */
case 0xfc: /* cld */
case 0xfd: /* std */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x9f: /* lahf */
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
ir.addr -= 1;
goto no_support;
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
break;
/* bit operations */
case 0x0fba: /* bt/bts/btr/btc Gv, im */
ir.ot = ir.dflag + OT_WORD;
if (i386_record_modrm (&ir))
return -1;
if (ir.reg < 4)
{
ir.addr -= 2;
opcode = opcode << 8 | ir.modrm;
goto no_support;
}
if (ir.reg != 4)
{
if (ir.mod == 3)
I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
else
{
if (i386_record_lea_modrm (&ir))
return -1;
}
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x0fa3: /* bt Gv, Ev */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x0fab: /* bts */
case 0x0fb3: /* btr */
case 0x0fbb: /* btc */
ir.ot = ir.dflag + OT_WORD;
if (i386_record_modrm (&ir))
return -1;
if (ir.mod == 3)
I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
else
{
uint64_t tmpu64;
if (i386_record_lea_modrm_addr (&ir, &tmpu64))
return -1;
regcache_raw_read_unsigned (ir.regcache,
ir.regmap[ir.reg | rex_r],
&tmpulongest);
switch (ir.dflag)
{
case 0:
tmpu64 += ((int16_t) tmpulongest >> 4) << 4;
break;
case 1:
tmpu64 += ((int32_t) tmpulongest >> 5) << 5;
break;
case 2:
tmpu64 += ((int64_t) tmpulongest >> 6) << 6;
break;
}
if (record_arch_list_add_mem (tmpu64, 1 << ir.ot))
return -1;
if (i386_record_lea_modrm (&ir))
return -1;
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x0fbc: /* bsf */
case 0x0fbd: /* bsr */
I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
/* bcd */
case 0x27: /* daa */
case 0x2f: /* das */
case 0x37: /* aaa */
case 0x3f: /* aas */
case 0xd4: /* aam */
case 0xd5: /* aad */
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
ir.addr -= 1;
goto no_support;
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
/* misc */
case 0x90: /* nop */
if (prefixes & PREFIX_LOCK)
{
ir.addr -= 1;
goto no_support;
}
break;
case 0x9b: /* fwait */
if (target_read_memory (ir.addr, &tmpu8, 1))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading memory at "
"addr 0x%s len = 1.\n"),
paddress (gdbarch, ir.addr));
return -1;
}
opcode = (uint32_t) tmpu8;
ir.addr++;
goto reswitch;
break;
/* XXX */
case 0xcc: /* int3 */
printf_unfiltered (_("Process record doesn't support instruction "
"int3.\n"));
ir.addr -= 1;
goto no_support;
break;
/* XXX */
case 0xcd: /* int */
{
int ret;
if (target_read_memory (ir.addr, &tmpu8, 1))
{
if (record_debug)
printf_unfiltered (_("Process record: error reading memory "
"at addr %s len = 1.\n"),
paddress (gdbarch, ir.addr));
return -1;
}
ir.addr++;
if (tmpu8 != 0x80
|| gdbarch_tdep (gdbarch)->i386_intx80_record == NULL)
{
printf_unfiltered (_("Process record doesn't support "
"instruction int 0x%02x.\n"),
tmpu8);
ir.addr -= 2;
goto no_support;
}
ret = gdbarch_tdep (gdbarch)->i386_intx80_record (ir.regcache);
if (ret)
return ret;
}
break;
/* XXX */
case 0xce: /* into */
printf_unfiltered (_("Process record doesn't support "
"instruction into.\n"));
ir.addr -= 1;
goto no_support;
break;
case 0xfa: /* cli */
case 0xfb: /* sti */
break;
case 0x62: /* bound */
printf_unfiltered (_("Process record doesn't support "
"instruction bound.\n"));
ir.addr -= 1;
goto no_support;
break;
case 0x0fc8: /* bswap reg */
case 0x0fc9:
case 0x0fca:
case 0x0fcb:
case 0x0fcc:
case 0x0fcd:
case 0x0fce:
case 0x0fcf:
I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
break;
case 0xd6: /* salc */
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
ir.addr -= 1;
goto no_support;
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0xe0: /* loopnz */
case 0xe1: /* loopz */
case 0xe2: /* loop */
case 0xe3: /* jecxz */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x0f30: /* wrmsr */
printf_unfiltered (_("Process record doesn't support "
"instruction wrmsr.\n"));
ir.addr -= 2;
goto no_support;
break;
case 0x0f32: /* rdmsr */
printf_unfiltered (_("Process record doesn't support "
"instruction rdmsr.\n"));
ir.addr -= 2;
goto no_support;
break;
case 0x0f31: /* rdtsc */
printf_unfiltered (_("Process record doesn't support "
"instruction rdtsc.\n"));
ir.addr -= 2;
goto no_support;
break;
case 0x0f34: /* sysenter */
{
int ret;
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
ir.addr -= 2;
goto no_support;
}
if (gdbarch_tdep (gdbarch)->i386_sysenter_record == NULL)
{
printf_unfiltered (_("Process record doesn't support "
"instruction sysenter.\n"));
ir.addr -= 2;
goto no_support;
}
ret = gdbarch_tdep (gdbarch)->i386_sysenter_record (ir.regcache);
if (ret)
return ret;
}
break;
case 0x0f35: /* sysexit */
printf_unfiltered (_("Process record doesn't support "
"instruction sysexit.\n"));
ir.addr -= 2;
goto no_support;
break;
case 0x0f05: /* syscall */
{
int ret;
if (gdbarch_tdep (gdbarch)->i386_syscall_record == NULL)
{
printf_unfiltered (_("Process record doesn't support "
"instruction syscall.\n"));
ir.addr -= 2;
goto no_support;
}
ret = gdbarch_tdep (gdbarch)->i386_syscall_record (ir.regcache);
if (ret)
return ret;
}
break;
case 0x0f07: /* sysret */
printf_unfiltered (_("Process record doesn't support "
"instruction sysret.\n"));
ir.addr -= 2;
goto no_support;
break;
case 0x0fa2: /* cpuid */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
break;
case 0xf4: /* hlt */
printf_unfiltered (_("Process record doesn't support "
"instruction hlt.\n"));
ir.addr -= 1;
goto no_support;
break;
case 0x0f00:
if (i386_record_modrm (&ir))
return -1;
switch (ir.reg)
{
case 0: /* sldt */
case 1: /* str */
if (ir.mod == 3)
I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
else
{
ir.ot = OT_WORD;
if (i386_record_lea_modrm (&ir))
return -1;
}
break;
case 2: /* lldt */
case 3: /* ltr */
break;
case 4: /* verr */
case 5: /* verw */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
default:
ir.addr -= 3;
opcode = opcode << 8 | ir.modrm;
goto no_support;
break;
}
break;
case 0x0f01:
if (i386_record_modrm (&ir))
return -1;
switch (ir.reg)
{
case 0: /* sgdt */
{
uint64_t tmpu64;
if (ir.mod == 3)
{
ir.addr -= 3;
opcode = opcode << 8 | ir.modrm;
goto no_support;
}
if (ir.override >= 0)
{
warning (_("Process record ignores the memory "
"change of instruction at "
"address %s because it can't get "
"the value of the segment "
"register."),
paddress (gdbarch, ir.orig_addr));
}
else
{
if (i386_record_lea_modrm_addr (&ir, &tmpu64))
return -1;
if (record_arch_list_add_mem (tmpu64, 2))
return -1;
tmpu64 += 2;
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
if (record_arch_list_add_mem (tmpu64, 8))
return -1;
}
else
{
if (record_arch_list_add_mem (tmpu64, 4))
return -1;
}
}
}
break;
case 1:
if (ir.mod == 3)
{
switch (ir.rm)
{
case 0: /* monitor */
break;
case 1: /* mwait */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
default:
ir.addr -= 3;
opcode = opcode << 8 | ir.modrm;
goto no_support;
break;
}
}
else
{
/* sidt */
if (ir.override >= 0)
{
warning (_("Process record ignores the memory "
"change of instruction at "
"address %s because it can't get "
"the value of the segment "
"register."),
paddress (gdbarch, ir.orig_addr));
}
else
{
uint64_t tmpu64;
if (i386_record_lea_modrm_addr (&ir, &tmpu64))
return -1;
if (record_arch_list_add_mem (tmpu64, 2))
return -1;
addr += 2;
if (ir.regmap[X86_RECORD_R8_REGNUM])
{
if (record_arch_list_add_mem (tmpu64, 8))
return -1;
}
else
{
if (record_arch_list_add_mem (tmpu64, 4))
return -1;
}
}
}
break;
case 2: /* lgdt */
if (ir.mod == 3)
{
/* xgetbv */
if (ir.rm == 0)
{
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
break;
}
/* xsetbv */
else if (ir.rm == 1)
break;
}
case 3: /* lidt */
if (ir.mod == 3)
{
ir.addr -= 3;
opcode = opcode << 8 | ir.modrm;
goto no_support;
}
break;
case 4: /* smsw */
if (ir.mod == 3)
{
if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
return -1;
}
else
{
ir.ot = OT_WORD;
if (i386_record_lea_modrm (&ir))
return -1;
}
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 6: /* lmsw */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 7: /* invlpg */
if (ir.mod == 3)
{
if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
else
{
ir.addr -= 3;
opcode = opcode << 8 | ir.modrm;
goto no_support;
}
}
else
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
default:
ir.addr -= 3;
opcode = opcode << 8 | ir.modrm;
goto no_support;
break;
}
break;
case 0x0f08: /* invd */
case 0x0f09: /* wbinvd */
break;
case 0x63: /* arpl */
if (i386_record_modrm (&ir))
return -1;
if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
{
I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
? (ir.reg | rex_r) : ir.rm);
}
else
{
ir.ot = ir.dflag ? OT_LONG : OT_WORD;
if (i386_record_lea_modrm (&ir))
return -1;
}
if (!ir.regmap[X86_RECORD_R8_REGNUM])
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x0f02: /* lar */
case 0x0f03: /* lsl */
if (i386_record_modrm (&ir))
return -1;
I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
case 0x0f18:
if (i386_record_modrm (&ir))
return -1;
if (ir.mod == 3 && ir.reg == 3)
{
ir.addr -= 3;
opcode = opcode << 8 | ir.modrm;
goto no_support;
}
break;
case 0x0f19:
case 0x0f1a:
case 0x0f1b:
case 0x0f1c:
case 0x0f1d:
case 0x0f1e:
case 0x0f1f:
/* nop (multi byte) */
break;
case 0x0f20: /* mov reg, crN */
case 0x0f22: /* mov crN, reg */
if (i386_record_modrm (&ir))
return -1;
if ((ir.modrm & 0xc0) != 0xc0)
{
ir.addr -= 3;
opcode = opcode << 8 | ir.modrm;
goto no_support;
}
switch (ir.reg)
{
case 0:
case 2:
case 3:
case 4:
case 8:
if (opcode & 2)
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
else
I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
break;
default:
ir.addr -= 3;
opcode = opcode << 8 | ir.modrm;
goto no_support;
break;
}
break;
case 0x0f21: /* mov reg, drN */
case 0x0f23: /* mov drN, reg */
if (i386_record_modrm (&ir))
return -1;
if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
|| ir.reg == 5 || ir.reg >= 8)
{
ir.addr -= 3;
opcode = opcode << 8 | ir.modrm;
goto no_support;
}
if (opcode & 2)
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
else
I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
break;
case 0x0f06: /* clts */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
break;
/* MMX/SSE/SSE2/PNI support */
/* XXX */
default:
if (opcode > 0xff)
ir.addr -= 2;
else
ir.addr -= 1;
goto no_support;
break;
}
/* In the future, maybe still need to deal with need_dasm. */
I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
if (record_arch_list_add_end ())
return -1;
return 0;
no_support:
printf_unfiltered (_("Process record doesn't support instruction 0x%02x "
"at address %s.\n"),
(unsigned int) (opcode), paddress (gdbarch, ir.addr));
return -1;
}
static const int i386_record_regmap[] =
{
I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
0, 0, 0, 0, 0, 0, 0, 0,
I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
};
static struct gdbarch *
i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch_tdep *tdep;
struct gdbarch *gdbarch;
/* If there is already a candidate, use it. */
arches = gdbarch_list_lookup_by_info (arches, &info);
if (arches != NULL)
return arches->gdbarch;
/* Allocate space for the new architecture. */
tdep = XCALLOC (1, struct gdbarch_tdep);
gdbarch = gdbarch_alloc (&info, tdep);
/* General-purpose registers. */
tdep->gregset = NULL;
tdep->gregset_reg_offset = NULL;
tdep->gregset_num_regs = I386_NUM_GREGS;
tdep->sizeof_gregset = 0;
/* Floating-point registers. */
tdep->fpregset = NULL;
tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
/* The default settings include the FPU registers, the MMX registers
and the SSE registers. This can be overridden for a specific ABI
by adjusting the members `st0_regnum', `mm0_regnum' and
`num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
will show up in the output of "info all-registers". Ideally we
should try to autodetect whether they are available, such that we
can prevent "info all-registers" from displaying registers that
aren't available.
NOTE: kevinb/2003-07-13: ... if it's a choice between printing
[the SSE registers] always (even when they don't exist) or never
showing them to the user (even when they do exist), I prefer the
former over the latter. */
tdep->st0_regnum = I386_ST0_REGNUM;
/* The MMX registers are implemented as pseudo-registers. Put off
calculating the register number for %mm0 until we know the number
of raw registers. */
tdep->mm0_regnum = 0;
/* I386_NUM_XREGS includes %mxcsr, so substract one. */
tdep->num_xmm_regs = I386_NUM_XREGS - 1;
tdep->jb_pc_offset = -1;
tdep->struct_return = pcc_struct_return;
tdep->sigtramp_start = 0;
tdep->sigtramp_end = 0;
tdep->sigtramp_p = i386_sigtramp_p;
tdep->sigcontext_addr = NULL;
tdep->sc_reg_offset = NULL;
tdep->sc_pc_offset = -1;
tdep->sc_sp_offset = -1;
tdep->record_regmap = i386_record_regmap;
/* The format used for `long double' on almost all i386 targets is
the i387 extended floating-point format. In fact, of all targets
in the GCC 2.95 tree, only OSF/1 does it different, and insists
on having a `long double' that's not `long' at all. */
set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
/* Although the i387 extended floating-point has only 80 significant
bits, a `long double' actually takes up 96, probably to enforce
alignment. */
set_gdbarch_long_double_bit (gdbarch, 96);
/* The default ABI includes general-purpose registers,
floating-point registers, and the SSE registers. */
set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
set_gdbarch_register_name (gdbarch, i386_register_name);
set_gdbarch_register_type (gdbarch, i386_register_type);
/* Register numbers of various important registers. */
set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
/* NOTE: kettenis/20040418: GCC does have two possible register
numbering schemes on the i386: dbx and SVR4. These schemes
differ in how they number %ebp, %esp, %eflags, and the
floating-point registers, and are implemented by the arrays
dbx_register_map[] and svr4_dbx_register_map in
gcc/config/i386.c. GCC also defines a third numbering scheme in
gcc/config/i386.c, which it designates as the "default" register
map used in 64bit mode. This last register numbering scheme is
implemented in dbx64_register_map, and is used for AMD64; see
amd64-tdep.c.
Currently, each GCC i386 target always uses the same register
numbering scheme across all its supported debugging formats
i.e. SDB (COFF), stabs and DWARF 2. This is because
gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
DBX_REGISTER_NUMBER macro which is defined by each target's
respective config header in a manner independent of the requested
output debugging format.
This does not match the arrangement below, which presumes that
the SDB and stabs numbering schemes differ from the DWARF and
DWARF 2 ones. The reason for this arrangement is that it is
likely to get the numbering scheme for the target's
default/native debug format right. For targets where GCC is the
native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
targets where the native toolchain uses a different numbering
scheme for a particular debug format (stabs-in-ELF on Solaris)
the defaults below will have to be overridden, like
i386_elf_init_abi() does. */
/* Use the dbx register numbering scheme for stabs and COFF. */
set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
/* Use the SVR4 register numbering scheme for DWARF 2. */
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
/* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
be in use on any of the supported i386 targets. */
set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
/* Call dummy code. */
set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
set_gdbarch_return_value (gdbarch, i386_return_value);
set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
/* Stack grows downward. */
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
set_gdbarch_decr_pc_after_break (gdbarch, 1);
set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
set_gdbarch_frame_args_skip (gdbarch, 8);
/* Wire in the MMX registers. */
set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
set_gdbarch_print_insn (gdbarch, i386_print_insn);
set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
/* Add the i386 register groups. */
i386_add_reggroups (gdbarch);
set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
/* Helper for function argument information. */
set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
/* Hook the function epilogue frame unwinder. This unwinder is
appended to the list first, so that it supercedes the Dwarf
unwinder in function epilogues (where the Dwarf unwinder
currently fails). */
frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
/* Hook in the DWARF CFI frame unwinder. This unwinder is appended
to the list before the prologue-based unwinders, so that Dwarf
CFI info will be used if it is available. */
dwarf2_append_unwinders (gdbarch);
frame_base_set_default (gdbarch, &i386_frame_base);
/* Hook in ABI-specific overrides, if they have been registered. */
gdbarch_init_osabi (info, gdbarch);
/* Hook in the legacy prologue-based unwinders last (fallback). */
frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
/* If we have a register mapping, enable the generic core file
support, unless it has already been enabled. */
if (tdep->gregset_reg_offset
&& !gdbarch_regset_from_core_section_p (gdbarch))
set_gdbarch_regset_from_core_section (gdbarch,
i386_regset_from_core_section);
/* Unless support for MMX has been disabled, make %mm0 the first
pseudo-register. */
if (tdep->mm0_regnum == 0)
tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
set_gdbarch_skip_permanent_breakpoint (gdbarch,
i386_skip_permanent_breakpoint);
return gdbarch;
}
static enum gdb_osabi
i386_coff_osabi_sniffer (bfd *abfd)
{
if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
|| strcmp (bfd_get_target (abfd), "coff-go32") == 0)
return GDB_OSABI_GO32;
return GDB_OSABI_UNKNOWN;
}
/* Provide a prototype to silence -Wmissing-prototypes. */
void _initialize_i386_tdep (void);
void
_initialize_i386_tdep (void)
{
register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
/* Add the variable that controls the disassembly flavor. */
add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
&disassembly_flavor, _("\
Set the disassembly flavor."), _("\
Show the disassembly flavor."), _("\
The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
NULL,
NULL, /* FIXME: i18n: */
&setlist, &showlist);
/* Add the variable that controls the convention for returning
structs. */
add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
&struct_convention, _("\
Set the convention for returning small structs."), _("\
Show the convention for returning small structs."), _("\
Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
is \"default\"."),
NULL,
NULL, /* FIXME: i18n: */
&setlist, &showlist);
gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
i386_coff_osabi_sniffer);
gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
i386_svr4_init_abi);
gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
i386_go32_init_abi);
/* Initialize the i386-specific register groups. */
i386_init_reggroups ();
}