/* Target-dependent code for QNX Neutrino x86. Copyright 2003, 2004 Free Software Foundation, Inc. Contributed by QNX Software Systems Ltd. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "frame.h" #include "osabi.h" #include "regcache.h" #include "target.h" #include "gdb_assert.h" #include "gdb_string.h" #include "i386-tdep.h" #include "i387-tdep.h" #include "nto-tdep.h" #include "solib-svr4.h" /* Target vector for QNX NTO x86. */ static struct nto_target_ops i386_nto_target; #ifndef X86_CPU_FXSR #define X86_CPU_FXSR (1L << 12) #endif /* Why 13? Look in our /usr/include/x86/context.h header at the x86_cpu_registers structure and you'll see an 'exx' junk register that is just filler. Don't ask me, ask the kernel guys. */ #define NUM_GPREGS 13 /* Mapping between the general-purpose registers in `struct xxx' format and GDB's register cache layout. */ /* From <x86/context.h>. */ static int i386nto_gregset_reg_offset[] = { 7 * 4, /* %eax */ 6 * 4, /* %ecx */ 5 * 4, /* %edx */ 4 * 4, /* %ebx */ 11 * 4, /* %esp */ 2 * 4, /* %epb */ 1 * 4, /* %esi */ 0 * 4, /* %edi */ 8 * 4, /* %eip */ 10 * 4, /* %eflags */ 9 * 4, /* %cs */ 12 * 4, /* %ss */ -1 /* filler */ }; /* Given a GDB register number REGNUM, return the offset into Neutrino's register structure or -1 if the register is unknown. */ static int nto_reg_offset (int regnum) { if (regnum >= 0 && regnum < ARRAY_SIZE (i386nto_gregset_reg_offset)) return i386nto_gregset_reg_offset[regnum]; return -1; } static void i386nto_supply_gregset (char *gpregs) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); if(tdep->gregset == NULL) tdep->gregset = regset_alloc (current_gdbarch, i386_supply_gregset, i386_collect_gregset); gdb_assert (tdep->gregset_reg_offset == i386nto_gregset_reg_offset); tdep->gregset->supply_regset (tdep->gregset, current_regcache, -1, gpregs, NUM_GPREGS * 4); } static void i386nto_supply_fpregset (char *fpregs) { if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR) i387_supply_fxsave (current_regcache, -1, fpregs); else i387_supply_fsave (current_regcache, -1, fpregs); } static void i386nto_supply_regset (int regset, char *data) { switch (regset) { case NTO_REG_GENERAL: i386nto_supply_gregset (data); break; case NTO_REG_FLOAT: i386nto_supply_fpregset (data); break; } } static int i386nto_regset_id (int regno) { if (regno == -1) return NTO_REG_END; else if (regno < I386_NUM_GREGS) return NTO_REG_GENERAL; else if (regno < I386_NUM_GREGS + I386_NUM_FREGS) return NTO_REG_FLOAT; return -1; /* Error. */ } static int i386nto_register_area (int regno, int regset, unsigned *off) { int len; *off = 0; if (regset == NTO_REG_GENERAL) { if (regno == -1) return NUM_GPREGS * 4; *off = nto_reg_offset (regno); if (*off == -1) return 0; return 4; } else if (regset == NTO_REG_FLOAT) { unsigned off_adjust, regsize, regset_size; if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR) { off_adjust = 32; regsize = 16; regset_size = 512; } else { off_adjust = 28; regsize = 10; regset_size = 128; } if (regno == -1) return regset_size; *off = (regno - FP0_REGNUM) * regsize + off_adjust; return 10; /* Why 10 instead of regsize? GDB only stores 10 bytes per FP register so if we're sending a register back to the target, we only want pdebug to write 10 bytes so as not to clobber the reserved 6 bytes in the fxsave structure. */ } return -1; } static int i386nto_regset_fill (int regset, char *data) { if (regset == NTO_REG_GENERAL) { int regno; for (regno = 0; regno < NUM_GPREGS; regno++) { int offset = nto_reg_offset (regno); if (offset != -1) regcache_raw_collect (current_regcache, regno, data + offset); } } else if (regset == NTO_REG_FLOAT) { if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR) i387_fill_fxsave (data, -1); else i387_fill_fsave (data, -1); } else return -1; return 0; } /* Return whether the frame preceding NEXT_FRAME corresponds to a QNX Neutrino sigtramp routine. */ static int i386nto_sigtramp_p (struct frame_info *next_frame) { CORE_ADDR pc = frame_pc_unwind (next_frame); char *name; find_pc_partial_function (pc, &name, NULL, NULL); return name && strcmp ("__signalstub", name) == 0; } #define I386_NTO_SIGCONTEXT_OFFSET 136 /* Assuming NEXT_FRAME is a frame following a QNX Neutrino sigtramp routine, return the address of the associated sigcontext structure. */ static CORE_ADDR i386nto_sigcontext_addr (struct frame_info *next_frame) { char buf[4]; CORE_ADDR sp; frame_unwind_register (next_frame, I386_ESP_REGNUM, buf); sp = extract_unsigned_integer (buf, 4); return sp + I386_NTO_SIGCONTEXT_OFFSET; } static void init_i386nto_ops (void) { i386_nto_target.regset_id = i386nto_regset_id; i386_nto_target.supply_gregset = i386nto_supply_gregset; i386_nto_target.supply_fpregset = i386nto_supply_fpregset; i386_nto_target.supply_altregset = nto_dummy_supply_regset; i386_nto_target.supply_regset = i386nto_supply_regset; i386_nto_target.register_area = i386nto_register_area; i386_nto_target.regset_fill = i386nto_regset_fill; i386_nto_target.fetch_link_map_offsets = svr4_ilp32_fetch_link_map_offsets; } static void i386nto_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* Deal with our strange signals. */ nto_initialize_signals (); /* NTO uses ELF. */ i386_elf_init_abi (info, gdbarch); /* Neutrino rewinds to look more normal. Need to override the i386 default which is [unfortunately] to decrement the PC. */ set_gdbarch_decr_pc_after_break (gdbarch, 0); /* NTO has shared libraries. */ set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); tdep->gregset_reg_offset = i386nto_gregset_reg_offset; tdep->gregset_num_regs = ARRAY_SIZE (i386nto_gregset_reg_offset); tdep->sizeof_gregset = NUM_GPREGS * 4; tdep->sigtramp_p = i386nto_sigtramp_p; tdep->sigcontext_addr = i386nto_sigcontext_addr; tdep->sc_pc_offset = 56; tdep->sc_sp_offset = 68; /* Setjmp()'s return PC saved in EDX (5). */ tdep->jb_pc_offset = 20; /* 5x32 bit ints in. */ set_solib_svr4_fetch_link_map_offsets (gdbarch, svr4_ilp32_fetch_link_map_offsets); /* Our loader handles solib relocations slightly differently than svr4. */ TARGET_SO_RELOCATE_SECTION_ADDRESSES = nto_relocate_section_addresses; /* Supply a nice function to find our solibs. */ TARGET_SO_FIND_AND_OPEN_SOLIB = nto_find_and_open_solib; /* Our linker code is in libc. */ TARGET_SO_IN_DYNSYM_RESOLVE_CODE = nto_in_dynsym_resolve_code; nto_set_target (&i386_nto_target); } void _initialize_i386nto_tdep (void) { init_i386nto_ops (); gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_QNXNTO, i386nto_init_abi); gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_elf_flavour, nto_elf_osabi_sniffer); }