/* Target-dependent code for QNX Neutrino x86. Copyright (C) 2003-2017 Free Software Foundation, Inc. Contributed by QNX Software Systems Ltd. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "frame.h" #include "osabi.h" #include "regcache.h" #include "target.h" #include "i386-tdep.h" #include "i387-tdep.h" #include "nto-tdep.h" #include "solib.h" #include "solib-svr4.h" #ifndef X86_CPU_FXSR #define X86_CPU_FXSR (1L << 12) #endif /* Why 13? Look in our /usr/include/x86/context.h header at the x86_cpu_registers structure and you'll see an 'exx' junk register that is just filler. Don't ask me, ask the kernel guys. */ #define NUM_GPREGS 13 /* Mapping between the general-purpose registers in `struct xxx' format and GDB's register cache layout. */ /* From <x86/context.h>. */ static int i386nto_gregset_reg_offset[] = { 7 * 4, /* %eax */ 6 * 4, /* %ecx */ 5 * 4, /* %edx */ 4 * 4, /* %ebx */ 11 * 4, /* %esp */ 2 * 4, /* %epb */ 1 * 4, /* %esi */ 0 * 4, /* %edi */ 8 * 4, /* %eip */ 10 * 4, /* %eflags */ 9 * 4, /* %cs */ 12 * 4, /* %ss */ -1 /* filler */ }; /* Given a GDB register number REGNUM, return the offset into Neutrino's register structure or -1 if the register is unknown. */ static int nto_reg_offset (int regnum) { if (regnum >= 0 && regnum < ARRAY_SIZE (i386nto_gregset_reg_offset)) return i386nto_gregset_reg_offset[regnum]; return -1; } static void i386nto_supply_gregset (struct regcache *regcache, char *gpregs) { struct gdbarch *gdbarch = get_regcache_arch (regcache); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); gdb_assert (tdep->gregset_reg_offset == i386nto_gregset_reg_offset); i386_gregset.supply_regset (&i386_gregset, regcache, -1, gpregs, NUM_GPREGS * 4); } static void i386nto_supply_fpregset (struct regcache *regcache, char *fpregs) { if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR) i387_supply_fxsave (regcache, -1, fpregs); else i387_supply_fsave (regcache, -1, fpregs); } static void i386nto_supply_regset (struct regcache *regcache, int regset, char *data) { switch (regset) { case NTO_REG_GENERAL: i386nto_supply_gregset (regcache, data); break; case NTO_REG_FLOAT: i386nto_supply_fpregset (regcache, data); break; } } static int i386nto_regset_id (int regno) { if (regno == -1) return NTO_REG_END; else if (regno < I386_NUM_GREGS) return NTO_REG_GENERAL; else if (regno < I386_NUM_GREGS + I387_NUM_REGS) return NTO_REG_FLOAT; else if (regno < I386_SSE_NUM_REGS) return NTO_REG_FLOAT; /* We store xmm registers in fxsave_area. */ return -1; /* Error. */ } static int i386nto_register_area (struct gdbarch *gdbarch, int regno, int regset, unsigned *off) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); *off = 0; if (regset == NTO_REG_GENERAL) { if (regno == -1) return NUM_GPREGS * 4; *off = nto_reg_offset (regno); if (*off == -1) return 0; return 4; } else if (regset == NTO_REG_FLOAT) { unsigned off_adjust, regsize, regset_size, regno_base; /* The following are flags indicating number in our fxsave_area. */ int first_four = (regno >= I387_FCTRL_REGNUM (tdep) && regno <= I387_FISEG_REGNUM (tdep)); int second_four = (regno > I387_FISEG_REGNUM (tdep) && regno <= I387_FOP_REGNUM (tdep)); int st_reg = (regno >= I387_ST0_REGNUM (tdep) && regno < I387_ST0_REGNUM (tdep) + 8); int xmm_reg = (regno >= I387_XMM0_REGNUM (tdep) && regno < I387_MXCSR_REGNUM (tdep)); if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR) { off_adjust = 32; regsize = 16; regset_size = 512; /* fxsave_area structure. */ if (first_four) { /* fpu_control_word, fpu_status_word, fpu_tag_word, fpu_operand registers. */ regsize = 2; /* Two bytes each. */ off_adjust = 0; regno_base = I387_FCTRL_REGNUM (tdep); } else if (second_four) { /* fpu_ip, fpu_cs, fpu_op, fpu_ds registers. */ regsize = 4; off_adjust = 8; regno_base = I387_FISEG_REGNUM (tdep) + 1; } else if (st_reg) { /* ST registers. */ regsize = 16; off_adjust = 32; regno_base = I387_ST0_REGNUM (tdep); } else if (xmm_reg) { /* XMM registers. */ regsize = 16; off_adjust = 160; regno_base = I387_XMM0_REGNUM (tdep); } else if (regno == I387_MXCSR_REGNUM (tdep)) { regsize = 4; off_adjust = 24; regno_base = I387_MXCSR_REGNUM (tdep); } else { /* Whole regset. */ gdb_assert (regno == -1); off_adjust = 0; regno_base = 0; regsize = regset_size; } } else { regset_size = 108; /* fsave_area structure. */ if (first_four || second_four) { /* fpu_control_word, ... , fpu_ds registers. */ regsize = 4; off_adjust = 0; regno_base = I387_FCTRL_REGNUM (tdep); } else if (st_reg) { /* One of ST registers. */ regsize = 10; off_adjust = 7 * 4; regno_base = I387_ST0_REGNUM (tdep); } else { /* Whole regset. */ gdb_assert (regno == -1); off_adjust = 0; regno_base = 0; regsize = regset_size; } } if (regno != -1) *off = off_adjust + (regno - regno_base) * regsize; else *off = 0; return regsize; } return -1; } static int i386nto_regset_fill (const struct regcache *regcache, int regset, char *data) { if (regset == NTO_REG_GENERAL) { int regno; for (regno = 0; regno < NUM_GPREGS; regno++) { int offset = nto_reg_offset (regno); if (offset != -1) regcache_raw_collect (regcache, regno, data + offset); } } else if (regset == NTO_REG_FLOAT) { if (nto_cpuinfo_valid && nto_cpuinfo_flags | X86_CPU_FXSR) i387_collect_fxsave (regcache, -1, data); else i387_collect_fsave (regcache, -1, data); } else return -1; return 0; } /* Return whether THIS_FRAME corresponds to a QNX Neutrino sigtramp routine. */ static int i386nto_sigtramp_p (struct frame_info *this_frame) { CORE_ADDR pc = get_frame_pc (this_frame); const char *name; find_pc_partial_function (pc, &name, NULL, NULL); return name && strcmp ("__signalstub", name) == 0; } /* Assuming THIS_FRAME is a QNX Neutrino sigtramp routine, return the address of the associated sigcontext structure. */ static CORE_ADDR i386nto_sigcontext_addr (struct frame_info *this_frame) { struct gdbarch *gdbarch = get_frame_arch (this_frame); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); gdb_byte buf[4]; CORE_ADDR ptrctx; /* We store __ucontext_t addr in EDI register. */ get_frame_register (this_frame, I386_EDI_REGNUM, buf); ptrctx = extract_unsigned_integer (buf, 4, byte_order); ptrctx += 24 /* Context pointer is at this offset. */; return ptrctx; } static void init_i386nto_ops (void) { nto_regset_id = i386nto_regset_id; nto_supply_gregset = i386nto_supply_gregset; nto_supply_fpregset = i386nto_supply_fpregset; nto_supply_altregset = nto_dummy_supply_regset; nto_supply_regset = i386nto_supply_regset; nto_register_area = i386nto_register_area; nto_regset_fill = i386nto_regset_fill; nto_fetch_link_map_offsets = svr4_ilp32_fetch_link_map_offsets; } static void i386nto_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); static struct target_so_ops nto_svr4_so_ops; /* Deal with our strange signals. */ nto_initialize_signals (); /* NTO uses ELF. */ i386_elf_init_abi (info, gdbarch); /* Neutrino rewinds to look more normal. Need to override the i386 default which is [unfortunately] to decrement the PC. */ set_gdbarch_decr_pc_after_break (gdbarch, 0); tdep->gregset_reg_offset = i386nto_gregset_reg_offset; tdep->gregset_num_regs = ARRAY_SIZE (i386nto_gregset_reg_offset); tdep->sizeof_gregset = NUM_GPREGS * 4; tdep->sigtramp_p = i386nto_sigtramp_p; tdep->sigcontext_addr = i386nto_sigcontext_addr; tdep->sc_reg_offset = i386nto_gregset_reg_offset; tdep->sc_num_regs = ARRAY_SIZE (i386nto_gregset_reg_offset); /* Setjmp()'s return PC saved in EDX (5). */ tdep->jb_pc_offset = 20; /* 5x32 bit ints in. */ set_solib_svr4_fetch_link_map_offsets (gdbarch, svr4_ilp32_fetch_link_map_offsets); /* Initialize this lazily, to avoid an initialization order dependency on solib-svr4.c's _initialize routine. */ if (nto_svr4_so_ops.in_dynsym_resolve_code == NULL) { nto_svr4_so_ops = svr4_so_ops; /* Our loader handles solib relocations differently than svr4. */ nto_svr4_so_ops.relocate_section_addresses = nto_relocate_section_addresses; /* Supply a nice function to find our solibs. */ nto_svr4_so_ops.find_and_open_solib = nto_find_and_open_solib; /* Our linker code is in libc. */ nto_svr4_so_ops.in_dynsym_resolve_code = nto_in_dynsym_resolve_code; } set_solib_ops (gdbarch, &nto_svr4_so_ops); set_gdbarch_wchar_bit (gdbarch, 32); set_gdbarch_wchar_signed (gdbarch, 0); } /* Provide a prototype to silence -Wmissing-prototypes. */ extern initialize_file_ftype _initialize_i386nto_tdep; void _initialize_i386nto_tdep (void) { init_i386nto_ops (); gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_QNXNTO, i386nto_init_abi); gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_elf_flavour, nto_elf_osabi_sniffer); }