/* Target-dependent code for the HP PA architecture, for GDB. Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc. Contributed by the Center for Software Science at the University of Utah (pa-gdb-bugs@cs.utah.edu). This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "frame.h" #include "inferior.h" #include "value.h" /* For argument passing to the inferior */ #include "symtab.h" #ifdef USG #include #endif #include #include #ifdef COFF_ENCAPSULATE #include "a.out.encap.h" #else #endif /*#include After a.out.h */ #include #include "gdb_stat.h" #include "wait.h" #include "gdbcore.h" #include "gdbcmd.h" #include "target.h" #include "symfile.h" #include "objfiles.h" static int extract_5_load PARAMS ((unsigned int)); static unsigned extract_5R_store PARAMS ((unsigned int)); static unsigned extract_5r_store PARAMS ((unsigned int)); static void find_dummy_frame_regs PARAMS ((struct frame_info *, struct frame_saved_regs *)); static int find_proc_framesize PARAMS ((CORE_ADDR)); static int find_return_regnum PARAMS ((CORE_ADDR)); struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR)); static int extract_17 PARAMS ((unsigned int)); static unsigned deposit_21 PARAMS ((unsigned int, unsigned int)); static int extract_21 PARAMS ((unsigned)); static unsigned deposit_14 PARAMS ((int, unsigned int)); static int extract_14 PARAMS ((unsigned)); static void unwind_command PARAMS ((char *, int)); static int low_sign_extend PARAMS ((unsigned int, unsigned int)); static int sign_extend PARAMS ((unsigned int, unsigned int)); static int restore_pc_queue PARAMS ((struct frame_saved_regs *)); static int hppa_alignof PARAMS ((struct type *)); static int prologue_inst_adjust_sp PARAMS ((unsigned long)); static int is_branch PARAMS ((unsigned long)); static int inst_saves_gr PARAMS ((unsigned long)); static int inst_saves_fr PARAMS ((unsigned long)); static int pc_in_interrupt_handler PARAMS ((CORE_ADDR)); static int pc_in_linker_stub PARAMS ((CORE_ADDR)); static int compare_unwind_entries PARAMS ((const void *, const void *)); static void read_unwind_info PARAMS ((struct objfile *)); static void internalize_unwinds PARAMS ((struct objfile *, struct unwind_table_entry *, asection *, unsigned int, unsigned int, CORE_ADDR)); static void pa_print_registers PARAMS ((char *, int, int)); static void pa_print_fp_reg PARAMS ((int)); /* Routines to extract various sized constants out of hppa instructions. */ /* This assumes that no garbage lies outside of the lower bits of value. */ static int sign_extend (val, bits) unsigned val, bits; { return (int)(val >> (bits - 1) ? (-1 << bits) | val : val); } /* For many immediate values the sign bit is the low bit! */ static int low_sign_extend (val, bits) unsigned val, bits; { return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); } /* extract the immediate field from a ld{bhw}s instruction */ #if 0 unsigned get_field (val, from, to) unsigned val, from, to; { val = val >> 31 - to; return val & ((1 << 32 - from) - 1); } unsigned set_field (val, from, to, new_val) unsigned *val, from, to; { unsigned mask = ~((1 << (to - from + 1)) << (31 - from)); return *val = *val & mask | (new_val << (31 - from)); } /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */ int extract_3 (word) unsigned word; { return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17); } #endif static int extract_5_load (word) unsigned word; { return low_sign_extend (word >> 16 & MASK_5, 5); } #if 0 /* extract the immediate field from a st{bhw}s instruction */ int extract_5_store (word) unsigned word; { return low_sign_extend (word & MASK_5, 5); } #endif /* 0 */ /* extract the immediate field from a break instruction */ static unsigned extract_5r_store (word) unsigned word; { return (word & MASK_5); } /* extract the immediate field from a {sr}sm instruction */ static unsigned extract_5R_store (word) unsigned word; { return (word >> 16 & MASK_5); } /* extract an 11 bit immediate field */ #if 0 int extract_11 (word) unsigned word; { return low_sign_extend (word & MASK_11, 11); } #endif /* extract a 14 bit immediate field */ static int extract_14 (word) unsigned word; { return low_sign_extend (word & MASK_14, 14); } /* deposit a 14 bit constant in a word */ static unsigned deposit_14 (opnd, word) int opnd; unsigned word; { unsigned sign = (opnd < 0 ? 1 : 0); return word | ((unsigned)opnd << 1 & MASK_14) | sign; } /* extract a 21 bit constant */ static int extract_21 (word) unsigned word; { int val; word &= MASK_21; word <<= 11; val = GET_FIELD (word, 20, 20); val <<= 11; val |= GET_FIELD (word, 9, 19); val <<= 2; val |= GET_FIELD (word, 5, 6); val <<= 5; val |= GET_FIELD (word, 0, 4); val <<= 2; val |= GET_FIELD (word, 7, 8); return sign_extend (val, 21) << 11; } /* deposit a 21 bit constant in a word. Although 21 bit constants are usually the top 21 bits of a 32 bit constant, we assume that only the low 21 bits of opnd are relevant */ static unsigned deposit_21 (opnd, word) unsigned opnd, word; { unsigned val = 0; val |= GET_FIELD (opnd, 11 + 14, 11 + 18); val <<= 2; val |= GET_FIELD (opnd, 11 + 12, 11 + 13); val <<= 2; val |= GET_FIELD (opnd, 11 + 19, 11 + 20); val <<= 11; val |= GET_FIELD (opnd, 11 + 1, 11 + 11); val <<= 1; val |= GET_FIELD (opnd, 11 + 0, 11 + 0); return word | val; } /* extract a 12 bit constant from branch instructions */ #if 0 int extract_12 (word) unsigned word; { return sign_extend (GET_FIELD (word, 19, 28) | GET_FIELD (word, 29, 29) << 10 | (word & 0x1) << 11, 12) << 2; } /* Deposit a 17 bit constant in an instruction (like bl). */ unsigned int deposit_17 (opnd, word) unsigned opnd, word; { word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */ word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */ word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */ word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */ return word; } #endif /* extract a 17 bit constant from branch instructions, returning the 19 bit signed value. */ static int extract_17 (word) unsigned word; { return sign_extend (GET_FIELD (word, 19, 28) | GET_FIELD (word, 29, 29) << 10 | GET_FIELD (word, 11, 15) << 11 | (word & 0x1) << 16, 17) << 2; } /* Compare the start address for two unwind entries returning 1 if the first address is larger than the second, -1 if the second is larger than the first, and zero if they are equal. */ static int compare_unwind_entries (arg1, arg2) const void *arg1; const void *arg2; { const struct unwind_table_entry *a = arg1; const struct unwind_table_entry *b = arg2; if (a->region_start > b->region_start) return 1; else if (a->region_start < b->region_start) return -1; else return 0; } static void internalize_unwinds (objfile, table, section, entries, size, text_offset) struct objfile *objfile; struct unwind_table_entry *table; asection *section; unsigned int entries, size; CORE_ADDR text_offset; { /* We will read the unwind entries into temporary memory, then fill in the actual unwind table. */ if (size > 0) { unsigned long tmp; unsigned i; char *buf = alloca (size); bfd_get_section_contents (objfile->obfd, section, buf, 0, size); /* Now internalize the information being careful to handle host/target endian issues. */ for (i = 0; i < entries; i++) { table[i].region_start = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); table[i].region_start += text_offset; buf += 4; table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); table[i].region_end += text_offset; buf += 4; tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); buf += 4; table[i].Cannot_unwind = (tmp >> 31) & 0x1; table[i].Millicode = (tmp >> 30) & 0x1; table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; table[i].Region_description = (tmp >> 27) & 0x3; table[i].reserved1 = (tmp >> 26) & 0x1; table[i].Entry_SR = (tmp >> 25) & 0x1; table[i].Entry_FR = (tmp >> 21) & 0xf; table[i].Entry_GR = (tmp >> 16) & 0x1f; table[i].Args_stored = (tmp >> 15) & 0x1; table[i].Variable_Frame = (tmp >> 14) & 0x1; table[i].Separate_Package_Body = (tmp >> 13) & 0x1; table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1; table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; table[i].Ada_Region = (tmp >> 9) & 0x1; table[i].reserved2 = (tmp >> 5) & 0xf; table[i].Save_SP = (tmp >> 4) & 0x1; table[i].Save_RP = (tmp >> 3) & 0x1; table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; table[i].extn_ptr_defined = (tmp >> 1) & 0x1; table[i].Cleanup_defined = tmp & 0x1; tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf); buf += 4; table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; table[i].Large_frame = (tmp >> 29) & 0x1; table[i].reserved4 = (tmp >> 27) & 0x3; table[i].Total_frame_size = tmp & 0x7ffffff; } } } /* Read in the backtrace information stored in the `$UNWIND_START$' section of the object file. This info is used mainly by find_unwind_entry() to find out the stack frame size and frame pointer used by procedures. We put everything on the psymbol obstack in the objfile so that it automatically gets freed when the objfile is destroyed. */ static void read_unwind_info (objfile) struct objfile *objfile; { asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec; unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size; unsigned index, unwind_entries, elf_unwind_entries; unsigned stub_entries, total_entries; CORE_ADDR text_offset; struct obj_unwind_info *ui; text_offset = ANOFFSET (objfile->section_offsets, 0); ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack, sizeof (struct obj_unwind_info)); ui->table = NULL; ui->cache = NULL; ui->last = -1; /* Get hooks to all unwind sections. Note there is no linker-stub unwind section in ELF at the moment. */ unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$"); elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind"); stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); /* Get sizes and unwind counts for all sections. */ if (unwind_sec) { unwind_size = bfd_section_size (objfile->obfd, unwind_sec); unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; } else { unwind_size = 0; unwind_entries = 0; } if (elf_unwind_sec) { elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec); elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE; } else { elf_unwind_size = 0; elf_unwind_entries = 0; } if (stub_unwind_sec) { stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec); stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; } else { stub_unwind_size = 0; stub_entries = 0; } /* Compute total number of unwind entries and their total size. */ total_entries = unwind_entries + elf_unwind_entries + stub_entries; total_size = total_entries * sizeof (struct unwind_table_entry); /* Allocate memory for the unwind table. */ ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size); ui->last = total_entries - 1; /* Internalize the standard unwind entries. */ index = 0; internalize_unwinds (objfile, &ui->table[index], unwind_sec, unwind_entries, unwind_size, text_offset); index += unwind_entries; internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec, elf_unwind_entries, elf_unwind_size, text_offset); index += elf_unwind_entries; /* Now internalize the stub unwind entries. */ if (stub_unwind_size > 0) { unsigned int i; char *buf = alloca (stub_unwind_size); /* Read in the stub unwind entries. */ bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, 0, stub_unwind_size); /* Now convert them into regular unwind entries. */ for (i = 0; i < stub_entries; i++, index++) { /* Clear out the next unwind entry. */ memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); /* Convert offset & size into region_start and region_end. Stuff away the stub type into "reserved" fields. */ ui->table[index].region_start = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); ui->table[index].region_start += text_offset; buf += 4; ui->table[index].stub_type = bfd_get_8 (objfile->obfd, (bfd_byte *) buf); buf += 2; ui->table[index].region_end = ui->table[index].region_start + 4 * (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); buf += 2; } } /* Unwind table needs to be kept sorted. */ qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), compare_unwind_entries); /* Keep a pointer to the unwind information. */ objfile->obj_private = (PTR) ui; } /* Lookup the unwind (stack backtrace) info for the given PC. We search all of the objfiles seeking the unwind table entry for this PC. Each objfile contains a sorted list of struct unwind_table_entry. Since we do a binary search of the unwind tables, we depend upon them to be sorted. */ struct unwind_table_entry * find_unwind_entry(pc) CORE_ADDR pc; { int first, middle, last; struct objfile *objfile; ALL_OBJFILES (objfile) { struct obj_unwind_info *ui; ui = OBJ_UNWIND_INFO (objfile); if (!ui) { read_unwind_info (objfile); ui = OBJ_UNWIND_INFO (objfile); } /* First, check the cache */ if (ui->cache && pc >= ui->cache->region_start && pc <= ui->cache->region_end) return ui->cache; /* Not in the cache, do a binary search */ first = 0; last = ui->last; while (first <= last) { middle = (first + last) / 2; if (pc >= ui->table[middle].region_start && pc <= ui->table[middle].region_end) { ui->cache = &ui->table[middle]; return &ui->table[middle]; } if (pc < ui->table[middle].region_start) last = middle - 1; else first = middle + 1; } } /* ALL_OBJFILES() */ return NULL; } /* Return the adjustment necessary to make for addresses on the stack as presented by hpread.c. This is necessary because of the stack direction on the PA and the bizarre way in which someone (?) decided they wanted to handle frame pointerless code in GDB. */ int hpread_adjust_stack_address (func_addr) CORE_ADDR func_addr; { struct unwind_table_entry *u; u = find_unwind_entry (func_addr); if (!u) return 0; else return u->Total_frame_size << 3; } /* Called to determine if PC is in an interrupt handler of some kind. */ static int pc_in_interrupt_handler (pc) CORE_ADDR pc; { struct unwind_table_entry *u; struct minimal_symbol *msym_us; u = find_unwind_entry (pc); if (!u) return 0; /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though its frame isn't a pure interrupt frame. Deal with this. */ msym_us = lookup_minimal_symbol_by_pc (pc); return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)); } /* Called when no unwind descriptor was found for PC. Returns 1 if it appears that PC is in a linker stub. */ static int pc_in_linker_stub (pc) CORE_ADDR pc; { int found_magic_instruction = 0; int i; char buf[4]; /* If unable to read memory, assume pc is not in a linker stub. */ if (target_read_memory (pc, buf, 4) != 0) return 0; /* We are looking for something like ; $$dyncall jams RP into this special spot in the frame (RP') ; before calling the "call stub" ldw -18(sp),rp ldsid (rp),r1 ; Get space associated with RP into r1 mtsp r1,sp ; Move it into space register 0 be,n 0(sr0),rp) ; back to your regularly scheduled program */ /* Maximum known linker stub size is 4 instructions. Search forward from the given PC, then backward. */ for (i = 0; i < 4; i++) { /* If we hit something with an unwind, stop searching this direction. */ if (find_unwind_entry (pc + i * 4) != 0) break; /* Check for ldsid (rp),r1 which is the magic instruction for a return from a cross-space function call. */ if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) { found_magic_instruction = 1; break; } /* Add code to handle long call/branch and argument relocation stubs here. */ } if (found_magic_instruction != 0) return 1; /* Now look backward. */ for (i = 0; i < 4; i++) { /* If we hit something with an unwind, stop searching this direction. */ if (find_unwind_entry (pc - i * 4) != 0) break; /* Check for ldsid (rp),r1 which is the magic instruction for a return from a cross-space function call. */ if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) { found_magic_instruction = 1; break; } /* Add code to handle long call/branch and argument relocation stubs here. */ } return found_magic_instruction; } static int find_return_regnum(pc) CORE_ADDR pc; { struct unwind_table_entry *u; u = find_unwind_entry (pc); if (!u) return RP_REGNUM; if (u->Millicode) return 31; return RP_REGNUM; } /* Return size of frame, or -1 if we should use a frame pointer. */ static int find_proc_framesize (pc) CORE_ADDR pc; { struct unwind_table_entry *u; struct minimal_symbol *msym_us; u = find_unwind_entry (pc); if (!u) { if (pc_in_linker_stub (pc)) /* Linker stubs have a zero size frame. */ return 0; else return -1; } msym_us = lookup_minimal_symbol_by_pc (pc); /* If Save_SP is set, and we're not in an interrupt or signal caller, then we have a frame pointer. Use it. */ if (u->Save_SP && !pc_in_interrupt_handler (pc) && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us))) return -1; return u->Total_frame_size << 3; } /* Return offset from sp at which rp is saved, or 0 if not saved. */ static int rp_saved PARAMS ((CORE_ADDR)); static int rp_saved (pc) CORE_ADDR pc; { struct unwind_table_entry *u; u = find_unwind_entry (pc); if (!u) { if (pc_in_linker_stub (pc)) /* This is the so-called RP'. */ return -24; else return 0; } if (u->Save_RP) return -20; else if (u->stub_type != 0) { switch (u->stub_type) { case EXPORT: case IMPORT: return -24; case PARAMETER_RELOCATION: return -8; default: return 0; } } else return 0; } int frameless_function_invocation (frame) struct frame_info *frame; { struct unwind_table_entry *u; u = find_unwind_entry (frame->pc); if (u == 0) return 0; return (u->Total_frame_size == 0 && u->stub_type == 0); } CORE_ADDR saved_pc_after_call (frame) struct frame_info *frame; { int ret_regnum; CORE_ADDR pc; struct unwind_table_entry *u; ret_regnum = find_return_regnum (get_frame_pc (frame)); pc = read_register (ret_regnum) & ~0x3; /* If PC is in a linker stub, then we need to dig the address the stub will return to out of the stack. */ u = find_unwind_entry (pc); if (u && u->stub_type != 0) return FRAME_SAVED_PC (frame); else return pc; } CORE_ADDR hppa_frame_saved_pc (frame) struct frame_info *frame; { CORE_ADDR pc = get_frame_pc (frame); struct unwind_table_entry *u; /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner at the base of the frame in an interrupt handler. Registers within are saved in the exact same order as GDB numbers registers. How convienent. */ if (pc_in_interrupt_handler (pc)) return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3; #ifdef FRAME_SAVED_PC_IN_SIGTRAMP /* Deal with signal handler caller frames too. */ if (frame->signal_handler_caller) { CORE_ADDR rp; FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp); return rp & ~0x3; } #endif if (frameless_function_invocation (frame)) { int ret_regnum; ret_regnum = find_return_regnum (pc); /* If the next frame is an interrupt frame or a signal handler caller, then we need to look in the saved register area to get the return pointer (the values in the registers may not correspond to anything useful). */ if (frame->next && (frame->next->signal_handler_caller || pc_in_interrupt_handler (frame->next->pc))) { struct frame_saved_regs saved_regs; get_frame_saved_regs (frame->next, &saved_regs); if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) { pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; /* Syscalls are really two frames. The syscall stub itself with a return pointer in %rp and the kernel call with a return pointer in %r31. We return the %rp variant if %r31 is the same as frame->pc. */ if (pc == frame->pc) pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; } else pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; } else pc = read_register (ret_regnum) & ~0x3; } else { int rp_offset; restart: rp_offset = rp_saved (pc); /* Similar to code in frameless function case. If the next frame is a signal or interrupt handler, then dig the right information out of the saved register info. */ if (rp_offset == 0 && frame->next && (frame->next->signal_handler_caller || pc_in_interrupt_handler (frame->next->pc))) { struct frame_saved_regs saved_regs; get_frame_saved_regs (frame->next, &saved_regs); if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2) { pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3; /* Syscalls are really two frames. The syscall stub itself with a return pointer in %rp and the kernel call with a return pointer in %r31. We return the %rp variant if %r31 is the same as frame->pc. */ if (pc == frame->pc) pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; } else pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3; } else if (rp_offset == 0) pc = read_register (RP_REGNUM) & ~0x3; else pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3; } /* If PC is inside a linker stub, then dig out the address the stub will return to. Don't do this for long branch stubs. Why? For some unknown reason _start is marked as a long branch stub in hpux10. */ u = find_unwind_entry (pc); if (u && u->stub_type != 0 && u->stub_type != LONG_BRANCH) { unsigned int insn; /* If this is a dynamic executable, and we're in a signal handler, then the call chain will eventually point us into the stub for _sigreturn. Unlike most cases, we'll be pointed to the branch to the real sigreturn rather than the code after the real branch!. Else, try to dig the address the stub will return to in the normal fashion. */ insn = read_memory_integer (pc, 4); if ((insn & 0xfc00e000) == 0xe8000000) return (pc + extract_17 (insn) + 8) & ~0x3; else goto restart; } return pc; } /* We need to correct the PC and the FP for the outermost frame when we are in a system call. */ void init_extra_frame_info (fromleaf, frame) int fromleaf; struct frame_info *frame; { int flags; int framesize; if (frame->next && !fromleaf) return; /* If the next frame represents a frameless function invocation then we have to do some adjustments that are normally done by FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */ if (fromleaf) { /* Find the framesize of *this* frame without peeking at the PC in the current frame structure (it isn't set yet). */ framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame))); /* Now adjust our base frame accordingly. If we have a frame pointer use it, else subtract the size of this frame from the current frame. (we always want frame->frame to point at the lowest address in the frame). */ if (framesize == -1) frame->frame = read_register (FP_REGNUM); else frame->frame -= framesize; return; } flags = read_register (FLAGS_REGNUM); if (flags & 2) /* In system call? */ frame->pc = read_register (31) & ~0x3; /* The outermost frame is always derived from PC-framesize One might think frameless innermost frames should have a frame->frame that is the same as the parent's frame->frame. That is wrong; frame->frame in that case should be the *high* address of the parent's frame. It's complicated as hell to explain, but the parent *always* creates some stack space for the child. So the child actually does have a frame of some sorts, and its base is the high address in its parent's frame. */ framesize = find_proc_framesize(frame->pc); if (framesize == -1) frame->frame = read_register (FP_REGNUM); else frame->frame = read_register (SP_REGNUM) - framesize; } /* Given a GDB frame, determine the address of the calling function's frame. This will be used to create a new GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. This may involve searching through prologues for several functions at boundaries where GCC calls HP C code, or where code which has a frame pointer calls code without a frame pointer. */ CORE_ADDR frame_chain (frame) struct frame_info *frame; { int my_framesize, caller_framesize; struct unwind_table_entry *u; CORE_ADDR frame_base; struct frame_info *tmp_frame; /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These are easy; at *sp we have a full save state strucutre which we can pull the old stack pointer from. Also see frame_saved_pc for code to dig a saved PC out of the save state structure. */ if (pc_in_interrupt_handler (frame->pc)) frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4); #ifdef FRAME_BASE_BEFORE_SIGTRAMP else if (frame->signal_handler_caller) { FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base); } #endif else frame_base = frame->frame; /* Get frame sizes for the current frame and the frame of the caller. */ my_framesize = find_proc_framesize (frame->pc); caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame)); /* If caller does not have a frame pointer, then its frame can be found at current_frame - caller_framesize. */ if (caller_framesize != -1) return frame_base - caller_framesize; /* Both caller and callee have frame pointers and are GCC compiled (SAVE_SP bit in unwind descriptor is on for both functions. The previous frame pointer is found at the top of the current frame. */ if (caller_framesize == -1 && my_framesize == -1) return read_memory_integer (frame_base, 4); /* Caller has a frame pointer, but callee does not. This is a little more difficult as GCC and HP C lay out locals and callee register save areas very differently. The previous frame pointer could be in a register, or in one of several areas on the stack. Walk from the current frame to the innermost frame examining unwind descriptors to determine if %r3 ever gets saved into the stack. If so return whatever value got saved into the stack. If it was never saved in the stack, then the value in %r3 is still valid, so use it. We use information from unwind descriptors to determine if %r3 is saved into the stack (Entry_GR field has this information). */ tmp_frame = frame; while (tmp_frame) { u = find_unwind_entry (tmp_frame->pc); if (!u) { /* We could find this information by examining prologues. I don't think anyone has actually written any tools (not even "strip") which leave them out of an executable, so maybe this is a moot point. */ warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc); return 0; } /* Entry_GR specifies the number of callee-saved general registers saved in the stack. It starts at %r3, so %r3 would be 1. */ if (u->Entry_GR >= 1 || u->Save_SP || tmp_frame->signal_handler_caller || pc_in_interrupt_handler (tmp_frame->pc)) break; else tmp_frame = tmp_frame->next; } if (tmp_frame) { /* We may have walked down the chain into a function with a frame pointer. */ if (u->Save_SP && !tmp_frame->signal_handler_caller && !pc_in_interrupt_handler (tmp_frame->pc)) return read_memory_integer (tmp_frame->frame, 4); /* %r3 was saved somewhere in the stack. Dig it out. */ else { struct frame_saved_regs saved_regs; /* Sick. For optimization purposes many kernels don't have the callee saved registers into the save_state structure upon entry into the kernel for a syscall; the optimization is usually turned off if the process is being traced so that the debugger can get full register state for the process. This scheme works well except for two cases: * Attaching to a process when the process is in the kernel performing a system call (debugger can't get full register state for the inferior process since the process wasn't being traced when it entered the system call). * Register state is not complete if the system call causes the process to core dump. The following heinous code is an attempt to deal with the lack of register state in a core dump. It will fail miserably if the function which performs the system call has a variable sized stack frame. */ get_frame_saved_regs (tmp_frame, &saved_regs); /* Abominable hack. */ if (current_target.to_has_execution == 0 && ((saved_regs.regs[FLAGS_REGNUM] && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)) || (saved_regs.regs[FLAGS_REGNUM] == 0 && read_register (FLAGS_REGNUM) & 0x2))) { u = find_unwind_entry (FRAME_SAVED_PC (frame)); if (!u) return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); else return frame_base - (u->Total_frame_size << 3); } return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); } } else { struct frame_saved_regs saved_regs; /* Get the innermost frame. */ tmp_frame = frame; while (tmp_frame->next != NULL) tmp_frame = tmp_frame->next; get_frame_saved_regs (tmp_frame, &saved_regs); /* Abominable hack. See above. */ if (current_target.to_has_execution == 0 && ((saved_regs.regs[FLAGS_REGNUM] && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)) || (saved_regs.regs[FLAGS_REGNUM] == 0 && read_register (FLAGS_REGNUM) & 0x2))) { u = find_unwind_entry (FRAME_SAVED_PC (frame)); if (!u) return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); else return frame_base - (u->Total_frame_size << 3); } /* The value in %r3 was never saved into the stack (thus %r3 still holds the value of the previous frame pointer). */ return read_register (FP_REGNUM); } } /* To see if a frame chain is valid, see if the caller looks like it was compiled with gcc. */ int frame_chain_valid (chain, thisframe) CORE_ADDR chain; struct frame_info *thisframe; { struct minimal_symbol *msym_us; struct minimal_symbol *msym_start; struct unwind_table_entry *u, *next_u = NULL; struct frame_info *next; if (!chain) return 0; u = find_unwind_entry (thisframe->pc); if (u == NULL) return 1; /* We can't just check that the same of msym_us is "_start", because someone idiotically decided that they were going to make a Ltext_end symbol with the same address. This Ltext_end symbol is totally indistinguishable (as nearly as I can tell) from the symbol for a function which is (legitimately, since it is in the user's namespace) named Ltext_end, so we can't just ignore it. */ msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe)); msym_start = lookup_minimal_symbol ("_start", NULL, NULL); if (msym_us && msym_start && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) return 0; /* Grrrr. Some new idiot decided that they don't want _start for the PRO configurations; $START$ calls main directly.... Deal with it. */ msym_start = lookup_minimal_symbol ("$START$", NULL, NULL); if (msym_us && msym_start && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) return 0; next = get_next_frame (thisframe); if (next) next_u = find_unwind_entry (next->pc); /* If this frame does not save SP, has no stack, isn't a stub, and doesn't "call" an interrupt routine or signal handler caller, then its not valid. */ if (u->Save_SP || u->Total_frame_size || u->stub_type != 0 || (thisframe->next && thisframe->next->signal_handler_caller) || (next_u && next_u->HP_UX_interrupt_marker)) return 1; if (pc_in_linker_stub (thisframe->pc)) return 1; return 0; } /* * These functions deal with saving and restoring register state * around a function call in the inferior. They keep the stack * double-word aligned; eventually, on an hp700, the stack will have * to be aligned to a 64-byte boundary. */ void push_dummy_frame (inf_status) struct inferior_status *inf_status; { CORE_ADDR sp, pc, pcspace; register int regnum; int int_buffer; double freg_buffer; /* Oh, what a hack. If we're trying to perform an inferior call while the inferior is asleep, we have to make sure to clear the "in system call" bit in the flag register (the call will start after the syscall returns, so we're no longer in the system call!) This state is kept in "inf_status", change it there. We also need a number of horrid hacks to deal with lossage in the PC queue registers (apparently they're not valid when the in syscall bit is set). */ pc = target_read_pc (inferior_pid); int_buffer = read_register (FLAGS_REGNUM); if (int_buffer & 0x2) { unsigned int sid; int_buffer &= ~0x2; memcpy (inf_status->registers, &int_buffer, 4); memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4); pc += 4; memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4); pc -= 4; sid = (pc >> 30) & 0x3; if (sid == 0) pcspace = read_register (SR4_REGNUM); else pcspace = read_register (SR4_REGNUM + 4 + sid); memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM), &pcspace, 4); memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM), &pcspace, 4); } else pcspace = read_register (PCSQ_HEAD_REGNUM); /* Space for "arguments"; the RP goes in here. */ sp = read_register (SP_REGNUM) + 48; int_buffer = read_register (RP_REGNUM) | 0x3; write_memory (sp - 20, (char *)&int_buffer, 4); int_buffer = read_register (FP_REGNUM); write_memory (sp, (char *)&int_buffer, 4); write_register (FP_REGNUM, sp); sp += 8; for (regnum = 1; regnum < 32; regnum++) if (regnum != RP_REGNUM && regnum != FP_REGNUM) sp = push_word (sp, read_register (regnum)); sp += 4; for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) { read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); sp = push_bytes (sp, (char *)&freg_buffer, 8); } sp = push_word (sp, read_register (IPSW_REGNUM)); sp = push_word (sp, read_register (SAR_REGNUM)); sp = push_word (sp, pc); sp = push_word (sp, pcspace); sp = push_word (sp, pc + 4); sp = push_word (sp, pcspace); write_register (SP_REGNUM, sp); } static void find_dummy_frame_regs (frame, frame_saved_regs) struct frame_info *frame; struct frame_saved_regs *frame_saved_regs; { CORE_ADDR fp = frame->frame; int i; frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3; frame_saved_regs->regs[FP_REGNUM] = fp; frame_saved_regs->regs[1] = fp + 8; for (fp += 12, i = 3; i < 32; i++) { if (i != FP_REGNUM) { frame_saved_regs->regs[i] = fp; fp += 4; } } fp += 4; for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) frame_saved_regs->regs[i] = fp; frame_saved_regs->regs[IPSW_REGNUM] = fp; frame_saved_regs->regs[SAR_REGNUM] = fp + 4; frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8; frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12; frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16; frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20; } void hppa_pop_frame () { register struct frame_info *frame = get_current_frame (); register CORE_ADDR fp, npc, target_pc; register int regnum; struct frame_saved_regs fsr; double freg_buffer; fp = FRAME_FP (frame); get_frame_saved_regs (frame, &fsr); #ifndef NO_PC_SPACE_QUEUE_RESTORE if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ restore_pc_queue (&fsr); #endif for (regnum = 31; regnum > 0; regnum--) if (fsr.regs[regnum]) write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--) if (fsr.regs[regnum]) { read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8); write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); } if (fsr.regs[IPSW_REGNUM]) write_register (IPSW_REGNUM, read_memory_integer (fsr.regs[IPSW_REGNUM], 4)); if (fsr.regs[SAR_REGNUM]) write_register (SAR_REGNUM, read_memory_integer (fsr.regs[SAR_REGNUM], 4)); /* If the PC was explicitly saved, then just restore it. */ if (fsr.regs[PCOQ_TAIL_REGNUM]) { npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4); write_register (PCOQ_TAIL_REGNUM, npc); } /* Else use the value in %rp to set the new PC. */ else { npc = read_register (RP_REGNUM); write_pc (npc); } write_register (FP_REGNUM, read_memory_integer (fp, 4)); if (fsr.regs[IPSW_REGNUM]) /* call dummy */ write_register (SP_REGNUM, fp - 48); else write_register (SP_REGNUM, fp); /* The PC we just restored may be inside a return trampoline. If so we want to restart the inferior and run it through the trampoline. Do this by setting a momentary breakpoint at the location the trampoline returns to. Don't skip through the trampoline if we're popping a dummy frame. */ target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3; if (target_pc && !fsr.regs[IPSW_REGNUM]) { struct symtab_and_line sal; struct breakpoint *breakpoint; struct cleanup *old_chain; /* Set up our breakpoint. Set it to be silent as the MI code for "return_command" will print the frame we returned to. */ sal = find_pc_line (target_pc, 0); sal.pc = target_pc; breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish); breakpoint->silent = 1; /* So we can clean things up. */ old_chain = make_cleanup (delete_breakpoint, breakpoint); /* Start up the inferior. */ clear_proceed_status (); proceed_to_finish = 1; proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0); /* Perform our cleanups. */ do_cleanups (old_chain); } flush_cached_frames (); } /* * After returning to a dummy on the stack, restore the instruction * queue space registers. */ static int restore_pc_queue (fsr) struct frame_saved_regs *fsr; { CORE_ADDR pc = read_pc (); CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4); struct target_waitstatus w; int insn_count; /* Advance past break instruction in the call dummy. */ write_register (PCOQ_HEAD_REGNUM, pc + 4); write_register (PCOQ_TAIL_REGNUM, pc + 8); /* * HPUX doesn't let us set the space registers or the space * registers of the PC queue through ptrace. Boo, hiss. * Conveniently, the call dummy has this sequence of instructions * after the break: * mtsp r21, sr0 * ble,n 0(sr0, r22) * * So, load up the registers and single step until we are in the * right place. */ write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4)); write_register (22, new_pc); for (insn_count = 0; insn_count < 3; insn_count++) { /* FIXME: What if the inferior gets a signal right now? Want to merge this into wait_for_inferior (as a special kind of watchpoint? By setting a breakpoint at the end? Is there any other choice? Is there *any* way to do this stuff with ptrace() or some equivalent?). */ resume (1, 0); target_wait (inferior_pid, &w); if (w.kind == TARGET_WAITKIND_SIGNALLED) { stop_signal = w.value.sig; terminal_ours_for_output (); printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", target_signal_to_name (stop_signal), target_signal_to_string (stop_signal)); gdb_flush (gdb_stdout); return 0; } } target_terminal_ours (); target_fetch_registers (-1); return 1; } CORE_ADDR hppa_push_arguments (nargs, args, sp, struct_return, struct_addr) int nargs; value_ptr *args; CORE_ADDR sp; int struct_return; CORE_ADDR struct_addr; { /* array of arguments' offsets */ int *offset = (int *)alloca(nargs * sizeof (int)); int cum = 0; int i, alignment; for (i = 0; i < nargs; i++) { cum += TYPE_LENGTH (VALUE_TYPE (args[i])); /* value must go at proper alignment. Assume alignment is a power of two.*/ alignment = hppa_alignof (VALUE_TYPE (args[i])); if (cum % alignment) cum = (cum + alignment) & -alignment; offset[i] = -cum; } sp += max ((cum + 7) & -8, 16); for (i = 0; i < nargs; i++) write_memory (sp + offset[i], VALUE_CONTENTS (args[i]), TYPE_LENGTH (VALUE_TYPE (args[i]))); if (struct_return) write_register (28, struct_addr); return sp + 32; } /* * Insert the specified number of args and function address * into a call sequence of the above form stored at DUMMYNAME. * * On the hppa we need to call the stack dummy through $$dyncall. * Therefore our version of FIX_CALL_DUMMY takes an extra argument, * real_pc, which is the location where gdb should start up the * inferior to do the function call. */ CORE_ADDR hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) char *dummy; CORE_ADDR pc; CORE_ADDR fun; int nargs; value_ptr *args; struct type *type; int gcc_p; { CORE_ADDR dyncall_addr; struct minimal_symbol *msymbol; struct minimal_symbol *trampoline; int flags = read_register (FLAGS_REGNUM); struct unwind_table_entry *u; trampoline = NULL; msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL); if (msymbol == NULL) error ("Can't find an address for $$dyncall trampoline"); dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); /* FUN could be a procedure label, in which case we have to get its real address and the value of its GOT/DP. */ if (fun & 0x2) { /* Get the GOT/DP value for the target function. It's at *(fun+4). Note the call dummy is *NOT* allowed to trash %r19 before calling the target function. */ write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4)); /* Now get the real address for the function we are calling, it's at *fun. */ fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4); } else { #ifndef GDB_TARGET_IS_PA_ELF /* FUN could be either an export stub, or the real address of a function in a shared library. We must call an import stub rather than the export stub or real function for lazy binding to work correctly. */ if (som_solib_get_got_by_pc (fun)) { struct objfile *objfile; struct minimal_symbol *funsymbol, *stub_symbol; CORE_ADDR newfun = 0; funsymbol = lookup_minimal_symbol_by_pc (fun); if (!funsymbol) error ("Unable to find minimal symbol for target fucntion.\n"); /* Search all the object files for an import symbol with the right name. */ ALL_OBJFILES (objfile) { stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol), NULL, objfile); /* Found a symbol with the right name. */ if (stub_symbol) { struct unwind_table_entry *u; /* It must be a shared library trampoline. */ if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline) continue; /* It must also be an import stub. */ u = find_unwind_entry (SYMBOL_VALUE (stub_symbol)); if (!u || u->stub_type != IMPORT) continue; /* OK. Looks like the correct import stub. */ newfun = SYMBOL_VALUE (stub_symbol); fun = newfun; } } if (newfun == 0) write_register (19, som_solib_get_got_by_pc (fun)); } #endif } /* If we are calling an import stub (eg calling into a dynamic library) then have sr4export call the magic __d_plt_call routine which is linked in from end.o. (You can't use _sr4export to call the import stub as the value in sp-24 will get fried and you end up returning to the wrong location. You can't call the import stub directly as the code to bind the PLT entry to a function can't return to a stack address.) */ u = find_unwind_entry (fun); if (u && u->stub_type == IMPORT) { CORE_ADDR new_fun; /* Prefer __gcc_plt_call over the HP supplied routine because __gcc_plt_call works for any number of arguments. */ trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL); if (trampoline == NULL) trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL); if (trampoline == NULL) error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline"); /* This is where sr4export will jump to. */ new_fun = SYMBOL_VALUE_ADDRESS (trampoline); if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0) { /* We have to store the address of the stub in __shlib_funcptr. */ msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL, (struct objfile *)NULL); if (msymbol == NULL) error ("Can't find an address for __shlib_funcptr"); target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4); /* We want sr4export to call __d_plt_call, so we claim it is the final target. Clear trampoline. */ fun = new_fun; trampoline = NULL; } } /* Store upper 21 bits of function address into ldil. fun will either be the final target (most cases) or __d_plt_call when calling into a shared library and __gcc_plt_call is not available. */ store_unsigned_integer (&dummy[FUNC_LDIL_OFFSET], INSTRUCTION_SIZE, deposit_21 (fun >> 11, extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET], INSTRUCTION_SIZE))); /* Store lower 11 bits of function address into ldo */ store_unsigned_integer (&dummy[FUNC_LDO_OFFSET], INSTRUCTION_SIZE, deposit_14 (fun & MASK_11, extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET], INSTRUCTION_SIZE))); #ifdef SR4EXPORT_LDIL_OFFSET { CORE_ADDR trampoline_addr; /* We may still need sr4export's address too. */ if (trampoline == NULL) { msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL); if (msymbol == NULL) error ("Can't find an address for _sr4export trampoline"); trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol); } else trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline); /* Store upper 21 bits of trampoline's address into ldil */ store_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET], INSTRUCTION_SIZE, deposit_21 (trampoline_addr >> 11, extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET], INSTRUCTION_SIZE))); /* Store lower 11 bits of trampoline's address into ldo */ store_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET], INSTRUCTION_SIZE, deposit_14 (trampoline_addr & MASK_11, extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET], INSTRUCTION_SIZE))); } #endif write_register (22, pc); /* If we are in a syscall, then we should call the stack dummy directly. $$dyncall is not needed as the kernel sets up the space id registers properly based on the value in %r31. In fact calling $$dyncall will not work because the value in %r22 will be clobbered on the syscall exit path. Similarly if the current PC is in a shared library. Note however, this scheme won't work if the shared library isn't mapped into the same space as the stack. */ if (flags & 2) return pc; #ifndef GDB_TARGET_IS_PA_ELF else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid))) return pc; #endif else return dyncall_addr; } /* Get the PC from %r31 if currently in a syscall. Also mask out privilege bits. */ CORE_ADDR target_read_pc (pid) int pid; { int flags = read_register_pid (FLAGS_REGNUM, pid); /* The following test does not belong here. It is OS-specific, and belongs in native code. */ /* Test SS_INSYSCALL */ if (flags & 2) return read_register_pid (31, pid) & ~0x3; return read_register_pid (PC_REGNUM, pid) & ~0x3; } /* Write out the PC. If currently in a syscall, then also write the new PC value into %r31. */ void target_write_pc (v, pid) CORE_ADDR v; int pid; { int flags = read_register_pid (FLAGS_REGNUM, pid); /* The following test does not belong here. It is OS-specific, and belongs in native code. */ /* If in a syscall, then set %r31. Also make sure to get the privilege bits set correctly. */ /* Test SS_INSYSCALL */ if (flags & 2) write_register_pid (31, v | 0x3, pid); write_register_pid (PC_REGNUM, v, pid); write_register_pid (NPC_REGNUM, v + 4, pid); } /* return the alignment of a type in bytes. Structures have the maximum alignment required by their fields. */ static int hppa_alignof (type) struct type *type; { int max_align, align, i; CHECK_TYPEDEF (type); switch (TYPE_CODE (type)) { case TYPE_CODE_PTR: case TYPE_CODE_INT: case TYPE_CODE_FLT: return TYPE_LENGTH (type); case TYPE_CODE_ARRAY: return hppa_alignof (TYPE_FIELD_TYPE (type, 0)); case TYPE_CODE_STRUCT: case TYPE_CODE_UNION: max_align = 1; for (i = 0; i < TYPE_NFIELDS (type); i++) { /* Bit fields have no real alignment. */ if (!TYPE_FIELD_BITPOS (type, i)) { align = hppa_alignof (TYPE_FIELD_TYPE (type, i)); max_align = max (max_align, align); } } return max_align; default: return 4; } } /* Print the register regnum, or all registers if regnum is -1 */ void pa_do_registers_info (regnum, fpregs) int regnum; int fpregs; { char raw_regs [REGISTER_BYTES]; int i; for (i = 0; i < NUM_REGS; i++) read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i)); if (regnum == -1) pa_print_registers (raw_regs, regnum, fpregs); else if (regnum < FP0_REGNUM) printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs + REGISTER_BYTE (regnum))); else pa_print_fp_reg (regnum); } static void pa_print_registers (raw_regs, regnum, fpregs) char *raw_regs; int regnum; int fpregs; { int i,j; long val; for (i = 0; i < 18; i++) { for (j = 0; j < 4; j++) { val = extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4); printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val); } printf_unfiltered ("\n"); } if (fpregs) for (i = 72; i < NUM_REGS; i++) pa_print_fp_reg (i); } static void pa_print_fp_reg (i) int i; { unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE]; unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; /* Get 32bits of data. */ read_relative_register_raw_bytes (i, raw_buffer); /* Put it in the buffer. No conversions are ever necessary. */ memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i)); fputs_filtered (reg_names[i], gdb_stdout); print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); fputs_filtered ("(single precision) ", gdb_stdout); val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0, 1, 0, Val_pretty_default); printf_filtered ("\n"); /* If "i" is even, then this register can also be a double-precision FP register. Dump it out as such. */ if ((i % 2) == 0) { /* Get the data in raw format for the 2nd half. */ read_relative_register_raw_bytes (i + 1, raw_buffer); /* Copy it into the appropriate part of the virtual buffer. */ memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer, REGISTER_RAW_SIZE (i)); /* Dump it as a double. */ fputs_filtered (reg_names[i], gdb_stdout); print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout); fputs_filtered ("(double precision) ", gdb_stdout); val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0, 1, 0, Val_pretty_default); printf_filtered ("\n"); } } /* Return one if PC is in the call path of a trampoline, else return zero. Note we return one for *any* call trampoline (long-call, arg-reloc), not just shared library trampolines (import, export). */ int in_solib_call_trampoline (pc, name) CORE_ADDR pc; char *name; { struct minimal_symbol *minsym; struct unwind_table_entry *u; static CORE_ADDR dyncall = 0; static CORE_ADDR sr4export = 0; /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a new exec file */ /* First see if PC is in one of the two C-library trampolines. */ if (!dyncall) { minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); if (minsym) dyncall = SYMBOL_VALUE_ADDRESS (minsym); else dyncall = -1; } if (!sr4export) { minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL); if (minsym) sr4export = SYMBOL_VALUE_ADDRESS (minsym); else sr4export = -1; } if (pc == dyncall || pc == sr4export) return 1; /* Get the unwind descriptor corresponding to PC, return zero if no unwind was found. */ u = find_unwind_entry (pc); if (!u) return 0; /* If this isn't a linker stub, then return now. */ if (u->stub_type == 0) return 0; /* By definition a long-branch stub is a call stub. */ if (u->stub_type == LONG_BRANCH) return 1; /* The call and return path execute the same instructions within an IMPORT stub! So an IMPORT stub is both a call and return trampoline. */ if (u->stub_type == IMPORT) return 1; /* Parameter relocation stubs always have a call path and may have a return path. */ if (u->stub_type == PARAMETER_RELOCATION || u->stub_type == EXPORT) { CORE_ADDR addr; /* Search forward from the current PC until we hit a branch or the end of the stub. */ for (addr = pc; addr <= u->region_end; addr += 4) { unsigned long insn; insn = read_memory_integer (addr, 4); /* Does it look like a bl? If so then it's the call path, if we find a bv or be first, then we're on the return path. */ if ((insn & 0xfc00e000) == 0xe8000000) return 1; else if ((insn & 0xfc00e001) == 0xe800c000 || (insn & 0xfc000000) == 0xe0000000) return 0; } /* Should never happen. */ warning ("Unable to find branch in parameter relocation stub.\n"); return 0; } /* Unknown stub type. For now, just return zero. */ return 0; } /* Return one if PC is in the return path of a trampoline, else return zero. Note we return one for *any* call trampoline (long-call, arg-reloc), not just shared library trampolines (import, export). */ int in_solib_return_trampoline (pc, name) CORE_ADDR pc; char *name; { struct unwind_table_entry *u; /* Get the unwind descriptor corresponding to PC, return zero if no unwind was found. */ u = find_unwind_entry (pc); if (!u) return 0; /* If this isn't a linker stub or it's just a long branch stub, then return zero. */ if (u->stub_type == 0 || u->stub_type == LONG_BRANCH) return 0; /* The call and return path execute the same instructions within an IMPORT stub! So an IMPORT stub is both a call and return trampoline. */ if (u->stub_type == IMPORT) return 1; /* Parameter relocation stubs always have a call path and may have a return path. */ if (u->stub_type == PARAMETER_RELOCATION || u->stub_type == EXPORT) { CORE_ADDR addr; /* Search forward from the current PC until we hit a branch or the end of the stub. */ for (addr = pc; addr <= u->region_end; addr += 4) { unsigned long insn; insn = read_memory_integer (addr, 4); /* Does it look like a bl? If so then it's the call path, if we find a bv or be first, then we're on the return path. */ if ((insn & 0xfc00e000) == 0xe8000000) return 0; else if ((insn & 0xfc00e001) == 0xe800c000 || (insn & 0xfc000000) == 0xe0000000) return 1; } /* Should never happen. */ warning ("Unable to find branch in parameter relocation stub.\n"); return 0; } /* Unknown stub type. For now, just return zero. */ return 0; } /* Figure out if PC is in a trampoline, and if so find out where the trampoline will jump to. If not in a trampoline, return zero. Simple code examination probably is not a good idea since the code sequences in trampolines can also appear in user code. We use unwinds and information from the minimal symbol table to determine when we're in a trampoline. This won't work for ELF (yet) since it doesn't create stub unwind entries. Whether or not ELF will create stub unwinds or normal unwinds for linker stubs is still being debated. This should handle simple calls through dyncall or sr4export, long calls, argument relocation stubs, and dyncall/sr4export calling an argument relocation stub. It even handles some stubs used in dynamic executables. */ CORE_ADDR skip_trampoline_code (pc, name) CORE_ADDR pc; char *name; { long orig_pc = pc; long prev_inst, curr_inst, loc; static CORE_ADDR dyncall = 0; static CORE_ADDR sr4export = 0; struct minimal_symbol *msym; struct unwind_table_entry *u; /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a new exec file */ if (!dyncall) { msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL); if (msym) dyncall = SYMBOL_VALUE_ADDRESS (msym); else dyncall = -1; } if (!sr4export) { msym = lookup_minimal_symbol ("_sr4export", NULL, NULL); if (msym) sr4export = SYMBOL_VALUE_ADDRESS (msym); else sr4export = -1; } /* Addresses passed to dyncall may *NOT* be the actual address of the function. So we may have to do something special. */ if (pc == dyncall) { pc = (CORE_ADDR) read_register (22); /* If bit 30 (counting from the left) is on, then pc is the address of the PLT entry for this function, not the address of the function itself. Bit 31 has meaning too, but only for MPE. */ if (pc & 0x2) pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4); } else if (pc == sr4export) pc = (CORE_ADDR) (read_register (22)); /* Get the unwind descriptor corresponding to PC, return zero if no unwind was found. */ u = find_unwind_entry (pc); if (!u) return 0; /* If this isn't a linker stub, then return now. */ if (u->stub_type == 0) return orig_pc == pc ? 0 : pc & ~0x3; /* It's a stub. Search for a branch and figure out where it goes. Note we have to handle multi insn branch sequences like ldil;ble. Most (all?) other branches can be determined by examining the contents of certain registers and the stack. */ loc = pc; curr_inst = 0; prev_inst = 0; while (1) { /* Make sure we haven't walked outside the range of this stub. */ if (u != find_unwind_entry (loc)) { warning ("Unable to find branch in linker stub"); return orig_pc == pc ? 0 : pc & ~0x3; } prev_inst = curr_inst; curr_inst = read_memory_integer (loc, 4); /* Does it look like a branch external using %r1? Then it's the branch from the stub to the actual function. */ if ((curr_inst & 0xffe0e000) == 0xe0202000) { /* Yup. See if the previous instruction loaded a value into %r1. If so compute and return the jump address. */ if ((prev_inst & 0xffe00000) == 0x20200000) return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3; else { warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."); return orig_pc == pc ? 0 : pc & ~0x3; } } /* Does it look like a be 0(sr0,%r21)? That's the branch from an import stub to an export stub. It is impossible to determine the target of the branch via simple examination of instructions and/or data (consider that the address in the plabel may be the address of the bind-on-reference routine in the dynamic loader). So we have try an alternative approach. Get the name of the symbol at our current location; it should be a stub symbol with the same name as the symbol in the shared library. Then lookup a minimal symbol with the same name; we should get the minimal symbol for the target routine in the shared library as those take precedence of import/export stubs. */ if (curr_inst == 0xe2a00000) { struct minimal_symbol *stubsym, *libsym; stubsym = lookup_minimal_symbol_by_pc (loc); if (stubsym == NULL) { warning ("Unable to find symbol for 0x%x", loc); return orig_pc == pc ? 0 : pc & ~0x3; } libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL); if (libsym == NULL) { warning ("Unable to find library symbol for %s\n", SYMBOL_NAME (stubsym)); return orig_pc == pc ? 0 : pc & ~0x3; } return SYMBOL_VALUE (libsym); } /* Does it look like bl X,%rp or bl X,%r0? Another way to do a branch from the stub to the actual function. */ else if ((curr_inst & 0xffe0e000) == 0xe8400000 || (curr_inst & 0xffe0e000) == 0xe8000000) return (loc + extract_17 (curr_inst) + 8) & ~0x3; /* Does it look like bv (rp)? Note this depends on the current stack pointer being the same as the stack pointer in the stub itself! This is a branch on from the stub back to the original caller. */ else if ((curr_inst & 0xffe0e000) == 0xe840c000) { /* Yup. See if the previous instruction loaded rp from sp - 8. */ if (prev_inst == 0x4bc23ff1) return (read_memory_integer (read_register (SP_REGNUM) - 8, 4)) & ~0x3; else { warning ("Unable to find restore of %%rp before bv (%%rp)."); return orig_pc == pc ? 0 : pc & ~0x3; } } /* What about be,n 0(sr0,%rp)? It's just another way we return to the original caller from the stub. Used in dynamic executables. */ else if (curr_inst == 0xe0400002) { /* The value we jump to is sitting in sp - 24. But that's loaded several instructions before the be instruction. I guess we could check for the previous instruction being mtsp %r1,%sr0 if we want to do sanity checking. */ return (read_memory_integer (read_register (SP_REGNUM) - 24, 4)) & ~0x3; } /* Haven't found the branch yet, but we're still in the stub. Keep looking. */ loc += 4; } } /* For the given instruction (INST), return any adjustment it makes to the stack pointer or zero for no adjustment. This only handles instructions commonly found in prologues. */ static int prologue_inst_adjust_sp (inst) unsigned long inst; { /* This must persist across calls. */ static int save_high21; /* The most common way to perform a stack adjustment ldo X(sp),sp */ if ((inst & 0xffffc000) == 0x37de0000) return extract_14 (inst); /* stwm X,D(sp) */ if ((inst & 0xffe00000) == 0x6fc00000) return extract_14 (inst); /* addil high21,%r1; ldo low11,(%r1),%r30) save high bits in save_high21 for later use. */ if ((inst & 0xffe00000) == 0x28200000) { save_high21 = extract_21 (inst); return 0; } if ((inst & 0xffff0000) == 0x343e0000) return save_high21 + extract_14 (inst); /* fstws as used by the HP compilers. */ if ((inst & 0xffffffe0) == 0x2fd01220) return extract_5_load (inst); /* No adjustment. */ return 0; } /* Return nonzero if INST is a branch of some kind, else return zero. */ static int is_branch (inst) unsigned long inst; { switch (inst >> 26) { case 0x20: case 0x21: case 0x22: case 0x23: case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x30: case 0x31: case 0x32: case 0x33: case 0x38: case 0x39: case 0x3a: return 1; default: return 0; } } /* Return the register number for a GR which is saved by INST or zero it INST does not save a GR. */ static int inst_saves_gr (inst) unsigned long inst; { /* Does it look like a stw? */ if ((inst >> 26) == 0x1a) return extract_5R_store (inst); /* Does it look like a stwm? GCC & HPC may use this in prologues. */ if ((inst >> 26) == 0x1b) return extract_5R_store (inst); /* Does it look like sth or stb? HPC versions 9.0 and later use these too. */ if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18) return extract_5R_store (inst); return 0; } /* Return the register number for a FR which is saved by INST or zero it INST does not save a FR. Note we only care about full 64bit register stores (that's the only kind of stores the prologue will use). FIXME: What about argument stores with the HP compiler in ANSI mode? */ static int inst_saves_fr (inst) unsigned long inst; { if ((inst & 0xfc00dfc0) == 0x2c001200) return extract_5r_store (inst); return 0; } /* Advance PC across any function entry prologue instructions to reach some "real" code. Use information in the unwind table to determine what exactly should be in the prologue. */ CORE_ADDR skip_prologue (pc) CORE_ADDR pc; { char buf[4]; CORE_ADDR orig_pc = pc; unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; unsigned long args_stored, status, i, restart_gr, restart_fr; struct unwind_table_entry *u; restart_gr = 0; restart_fr = 0; restart: u = find_unwind_entry (pc); if (!u) return pc; /* If we are not at the beginning of a function, then return now. */ if ((pc & ~0x3) != u->region_start) return pc; /* This is how much of a frame adjustment we need to account for. */ stack_remaining = u->Total_frame_size << 3; /* Magic register saves we want to know about. */ save_rp = u->Save_RP; save_sp = u->Save_SP; /* An indication that args may be stored into the stack. Unfortunately the HPUX compilers tend to set this in cases where no args were stored too!. */ args_stored = 1; /* Turn the Entry_GR field into a bitmask. */ save_gr = 0; for (i = 3; i < u->Entry_GR + 3; i++) { /* Frame pointer gets saved into a special location. */ if (u->Save_SP && i == FP_REGNUM) continue; save_gr |= (1 << i); } save_gr &= ~restart_gr; /* Turn the Entry_FR field into a bitmask too. */ save_fr = 0; for (i = 12; i < u->Entry_FR + 12; i++) save_fr |= (1 << i); save_fr &= ~restart_fr; /* Loop until we find everything of interest or hit a branch. For unoptimized GCC code and for any HP CC code this will never ever examine any user instructions. For optimzied GCC code we're faced with problems. GCC will schedule its prologue and make prologue instructions available for delay slot filling. The end result is user code gets mixed in with the prologue and a prologue instruction may be in the delay slot of the first branch or call. Some unexpected things are expected with debugging optimized code, so we allow this routine to walk past user instructions in optimized GCC code. */ while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 || args_stored) { unsigned int reg_num; unsigned long old_stack_remaining, old_save_gr, old_save_fr; unsigned long old_save_rp, old_save_sp, next_inst; /* Save copies of all the triggers so we can compare them later (only for HPC). */ old_save_gr = save_gr; old_save_fr = save_fr; old_save_rp = save_rp; old_save_sp = save_sp; old_stack_remaining = stack_remaining; status = target_read_memory (pc, buf, 4); inst = extract_unsigned_integer (buf, 4); /* Yow! */ if (status != 0) return pc; /* Note the interesting effects of this instruction. */ stack_remaining -= prologue_inst_adjust_sp (inst); /* There is only one instruction used for saving RP into the stack. */ if (inst == 0x6bc23fd9) save_rp = 0; /* This is the only way we save SP into the stack. At this time the HP compilers never bother to save SP into the stack. */ if ((inst & 0xffffc000) == 0x6fc10000) save_sp = 0; /* Account for general and floating-point register saves. */ reg_num = inst_saves_gr (inst); save_gr &= ~(1 << reg_num); /* Ugh. Also account for argument stores into the stack. Unfortunately args_stored only tells us that some arguments where stored into the stack. Not how many or what kind! This is a kludge as on the HP compiler sets this bit and it never does prologue scheduling. So once we see one, skip past all of them. We have similar code for the fp arg stores below. FIXME. Can still die if we have a mix of GR and FR argument stores! */ if (reg_num >= 23 && reg_num <= 26) { while (reg_num >= 23 && reg_num <= 26) { pc += 4; status = target_read_memory (pc, buf, 4); inst = extract_unsigned_integer (buf, 4); if (status != 0) return pc; reg_num = inst_saves_gr (inst); } args_stored = 0; continue; } reg_num = inst_saves_fr (inst); save_fr &= ~(1 << reg_num); status = target_read_memory (pc + 4, buf, 4); next_inst = extract_unsigned_integer (buf, 4); /* Yow! */ if (status != 0) return pc; /* We've got to be read to handle the ldo before the fp register save. */ if ((inst & 0xfc000000) == 0x34000000 && inst_saves_fr (next_inst) >= 4 && inst_saves_fr (next_inst) <= 7) { /* So we drop into the code below in a reasonable state. */ reg_num = inst_saves_fr (next_inst); pc -= 4; } /* Ugh. Also account for argument stores into the stack. This is a kludge as on the HP compiler sets this bit and it never does prologue scheduling. So once we see one, skip past all of them. */ if (reg_num >= 4 && reg_num <= 7) { while (reg_num >= 4 && reg_num <= 7) { pc += 8; status = target_read_memory (pc, buf, 4); inst = extract_unsigned_integer (buf, 4); if (status != 0) return pc; if ((inst & 0xfc000000) != 0x34000000) break; status = target_read_memory (pc + 4, buf, 4); next_inst = extract_unsigned_integer (buf, 4); if (status != 0) return pc; reg_num = inst_saves_fr (next_inst); } args_stored = 0; continue; } /* Quit if we hit any kind of branch. This can happen if a prologue instruction is in the delay slot of the first call/branch. */ if (is_branch (inst)) break; /* What a crock. The HP compilers set args_stored even if no arguments were stored into the stack (boo hiss). This could cause this code to then skip a bunch of user insns (up to the first branch). To combat this we try to identify when args_stored was bogusly set and clear it. We only do this when args_stored is nonzero, all other resources are accounted for, and nothing changed on this pass. */ if (args_stored && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) && old_save_gr == save_gr && old_save_fr == save_fr && old_save_rp == save_rp && old_save_sp == save_sp && old_stack_remaining == stack_remaining) break; /* Bump the PC. */ pc += 4; } /* We've got a tenative location for the end of the prologue. However because of limitations in the unwind descriptor mechanism we may have went too far into user code looking for the save of a register that does not exist. So, if there registers we expected to be saved but never were, mask them out and restart. This should only happen in optimized code, and should be very rare. */ if (save_gr || (save_fr && ! (restart_fr || restart_gr))) { pc = orig_pc; restart_gr = save_gr; restart_fr = save_fr; goto restart; } return pc; } /* Put here the code to store, into a struct frame_saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. */ void hppa_frame_find_saved_regs (frame_info, frame_saved_regs) struct frame_info *frame_info; struct frame_saved_regs *frame_saved_regs; { CORE_ADDR pc; struct unwind_table_entry *u; unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; int status, i, reg; char buf[4]; int fp_loc = -1; /* Zero out everything. */ memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs)); /* Call dummy frames always look the same, so there's no need to examine the dummy code to determine locations of saved registers; instead, let find_dummy_frame_regs fill in the correct offsets for the saved registers. */ if ((frame_info->pc >= frame_info->frame && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8 + 6 * 4))) find_dummy_frame_regs (frame_info, frame_saved_regs); /* Interrupt handlers are special too. They lay out the register state in the exact same order as the register numbers in GDB. */ if (pc_in_interrupt_handler (frame_info->pc)) { for (i = 0; i < NUM_REGS; i++) { /* SP is a little special. */ if (i == SP_REGNUM) frame_saved_regs->regs[SP_REGNUM] = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4); else frame_saved_regs->regs[i] = frame_info->frame + i * 4; } return; } #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP /* Handle signal handler callers. */ if (frame_info->signal_handler_caller) { FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs); return; } #endif /* Get the starting address of the function referred to by the PC saved in frame. */ pc = get_pc_function_start (frame_info->pc); /* Yow! */ u = find_unwind_entry (pc); if (!u) return; /* This is how much of a frame adjustment we need to account for. */ stack_remaining = u->Total_frame_size << 3; /* Magic register saves we want to know about. */ save_rp = u->Save_RP; save_sp = u->Save_SP; /* Turn the Entry_GR field into a bitmask. */ save_gr = 0; for (i = 3; i < u->Entry_GR + 3; i++) { /* Frame pointer gets saved into a special location. */ if (u->Save_SP && i == FP_REGNUM) continue; save_gr |= (1 << i); } /* Turn the Entry_FR field into a bitmask too. */ save_fr = 0; for (i = 12; i < u->Entry_FR + 12; i++) save_fr |= (1 << i); /* The frame always represents the value of %sp at entry to the current function (and is thus equivalent to the "saved" stack pointer. */ frame_saved_regs->regs[SP_REGNUM] = frame_info->frame; /* Loop until we find everything of interest or hit a branch. For unoptimized GCC code and for any HP CC code this will never ever examine any user instructions. For optimzied GCC code we're faced with problems. GCC will schedule its prologue and make prologue instructions available for delay slot filling. The end result is user code gets mixed in with the prologue and a prologue instruction may be in the delay slot of the first branch or call. Some unexpected things are expected with debugging optimized code, so we allow this routine to walk past user instructions in optimized GCC code. */ while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) { status = target_read_memory (pc, buf, 4); inst = extract_unsigned_integer (buf, 4); /* Yow! */ if (status != 0) return; /* Note the interesting effects of this instruction. */ stack_remaining -= prologue_inst_adjust_sp (inst); /* There is only one instruction used for saving RP into the stack. */ if (inst == 0x6bc23fd9) { save_rp = 0; frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20; } /* Just note that we found the save of SP into the stack. The value for frame_saved_regs was computed above. */ if ((inst & 0xffffc000) == 0x6fc10000) save_sp = 0; /* Account for general and floating-point register saves. */ reg = inst_saves_gr (inst); if (reg >= 3 && reg <= 18 && (!u->Save_SP || reg != FP_REGNUM)) { save_gr &= ~(1 << reg); /* stwm with a positive displacement is a *post modify*. */ if ((inst >> 26) == 0x1b && extract_14 (inst) >= 0) frame_saved_regs->regs[reg] = frame_info->frame; else { /* Handle code with and without frame pointers. */ if (u->Save_SP) frame_saved_regs->regs[reg] = frame_info->frame + extract_14 (inst); else frame_saved_regs->regs[reg] = frame_info->frame + (u->Total_frame_size << 3) + extract_14 (inst); } } /* GCC handles callee saved FP regs a little differently. It emits an instruction to put the value of the start of the FP store area into %r1. It then uses fstds,ma with a basereg of %r1 for the stores. HP CC emits them at the current stack pointer modifying the stack pointer as it stores each register. */ /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ if ((inst & 0xffffc000) == 0x34610000 || (inst & 0xffffc000) == 0x37c10000) fp_loc = extract_14 (inst); reg = inst_saves_fr (inst); if (reg >= 12 && reg <= 21) { /* Note +4 braindamage below is necessary because the FP status registers are internally 8 registers rather than the expected 4 registers. */ save_fr &= ~(1 << reg); if (fp_loc == -1) { /* 1st HP CC FP register store. After this instruction we've set enough state that the GCC and HPCC code are both handled in the same manner. */ frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame; fp_loc = 8; } else { frame_saved_regs->regs[reg + FP0_REGNUM + 4] = frame_info->frame + fp_loc; fp_loc += 8; } } /* Quit if we hit any kind of branch. This can happen if a prologue instruction is in the delay slot of the first call/branch. */ if (is_branch (inst)) break; /* Bump the PC. */ pc += 4; } } #ifdef MAINTENANCE_CMDS static void unwind_command (exp, from_tty) char *exp; int from_tty; { CORE_ADDR address; struct unwind_table_entry *u; /* If we have an expression, evaluate it and use it as the address. */ if (exp != 0 && *exp != 0) address = parse_and_eval_address (exp); else return; u = find_unwind_entry (address); if (!u) { printf_unfiltered ("Can't find unwind table entry for %s\n", exp); return; } printf_unfiltered ("unwind_table_entry (0x%x):\n", u); printf_unfiltered ("\tregion_start = "); print_address (u->region_start, gdb_stdout); printf_unfiltered ("\n\tregion_end = "); print_address (u->region_end, gdb_stdout); #ifdef __STDC__ #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); #else #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD"); #endif printf_unfiltered ("\n\tflags ="); pif (Cannot_unwind); pif (Millicode); pif (Millicode_save_sr0); pif (Entry_SR); pif (Args_stored); pif (Variable_Frame); pif (Separate_Package_Body); pif (Frame_Extension_Millicode); pif (Stack_Overflow_Check); pif (Two_Instruction_SP_Increment); pif (Ada_Region); pif (Save_SP); pif (Save_RP); pif (Save_MRP_in_frame); pif (extn_ptr_defined); pif (Cleanup_defined); pif (MPE_XL_interrupt_marker); pif (HP_UX_interrupt_marker); pif (Large_frame); putchar_unfiltered ('\n'); #ifdef __STDC__ #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); #else #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD); #endif pin (Region_description); pin (Entry_FR); pin (Entry_GR); pin (Total_frame_size); } #endif /* MAINTENANCE_CMDS */ void _initialize_hppa_tdep () { tm_print_insn = print_insn_hppa; #ifdef MAINTENANCE_CMDS add_cmd ("unwind", class_maintenance, unwind_command, "Print unwind table entry at given address.", &maintenanceprintlist); #endif /* MAINTENANCE_CMDS */ }