/* Machine-dependent code which would otherwise be in inflow.c and core.c, for GDB, the GNU debugger. This code is for the HP PA-RISC cpu. Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc. Contributed by the Center for Software Science at the University of Utah (pa-gdb-bugs@cs.utah.edu). This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "defs.h" #include "frame.h" #include "inferior.h" #include "value.h" /* For argument passing to the inferior */ #include "symtab.h" #ifdef USG #include #endif #include #include #include #include #ifdef COFF_ENCAPSULATE #include "a.out.encap.h" #else #include #endif #ifndef N_SET_MAGIC #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val)) #endif /*#include After a.out.h */ #include #include #include #include "wait.h" #include "gdbcore.h" #include "gdbcmd.h" #include "target.h" #include "symfile.h" #include "objfiles.h" static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr)); static int hppa_alignof PARAMS ((struct type *arg)); static FRAME_ADDR dig_fp_from_stack PARAMS ((FRAME frame, struct unwind_table_entry *u)); CORE_ADDR frame_saved_pc PARAMS ((FRAME frame)); /* Routines to extract various sized constants out of hppa instructions. */ /* This assumes that no garbage lies outside of the lower bits of value. */ int sign_extend (val, bits) unsigned val, bits; { return (int)(val >> bits - 1 ? (-1 << bits) | val : val); } /* For many immediate values the sign bit is the low bit! */ int low_sign_extend (val, bits) unsigned val, bits; { return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); } /* extract the immediate field from a ld{bhw}s instruction */ unsigned get_field (val, from, to) unsigned val, from, to; { val = val >> 31 - to; return val & ((1 << 32 - from) - 1); } unsigned set_field (val, from, to, new_val) unsigned *val, from, to; { unsigned mask = ~((1 << (to - from + 1)) << (31 - from)); return *val = *val & mask | (new_val << (31 - from)); } /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */ extract_3 (word) unsigned word; { return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17); } extract_5_load (word) unsigned word; { return low_sign_extend (word >> 16 & MASK_5, 5); } /* extract the immediate field from a st{bhw}s instruction */ int extract_5_store (word) unsigned word; { return low_sign_extend (word & MASK_5, 5); } /* extract the immediate field from a break instruction */ unsigned extract_5r_store (word) unsigned word; { return (word & MASK_5); } /* extract the immediate field from a {sr}sm instruction */ unsigned extract_5R_store (word) unsigned word; { return (word >> 16 & MASK_5); } /* extract an 11 bit immediate field */ int extract_11 (word) unsigned word; { return low_sign_extend (word & MASK_11, 11); } /* extract a 14 bit immediate field */ int extract_14 (word) unsigned word; { return low_sign_extend (word & MASK_14, 14); } /* deposit a 14 bit constant in a word */ unsigned deposit_14 (opnd, word) int opnd; unsigned word; { unsigned sign = (opnd < 0 ? 1 : 0); return word | ((unsigned)opnd << 1 & MASK_14) | sign; } /* extract a 21 bit constant */ int extract_21 (word) unsigned word; { int val; word &= MASK_21; word <<= 11; val = GET_FIELD (word, 20, 20); val <<= 11; val |= GET_FIELD (word, 9, 19); val <<= 2; val |= GET_FIELD (word, 5, 6); val <<= 5; val |= GET_FIELD (word, 0, 4); val <<= 2; val |= GET_FIELD (word, 7, 8); return sign_extend (val, 21) << 11; } /* deposit a 21 bit constant in a word. Although 21 bit constants are usually the top 21 bits of a 32 bit constant, we assume that only the low 21 bits of opnd are relevant */ unsigned deposit_21 (opnd, word) unsigned opnd, word; { unsigned val = 0; val |= GET_FIELD (opnd, 11 + 14, 11 + 18); val <<= 2; val |= GET_FIELD (opnd, 11 + 12, 11 + 13); val <<= 2; val |= GET_FIELD (opnd, 11 + 19, 11 + 20); val <<= 11; val |= GET_FIELD (opnd, 11 + 1, 11 + 11); val <<= 1; val |= GET_FIELD (opnd, 11 + 0, 11 + 0); return word | val; } /* extract a 12 bit constant from branch instructions */ int extract_12 (word) unsigned word; { return sign_extend (GET_FIELD (word, 19, 28) | GET_FIELD (word, 29, 29) << 10 | (word & 0x1) << 11, 12) << 2; } /* extract a 17 bit constant from branch instructions, returning the 19 bit signed value. */ int extract_17 (word) unsigned word; { return sign_extend (GET_FIELD (word, 19, 28) | GET_FIELD (word, 29, 29) << 10 | GET_FIELD (word, 11, 15) << 11 | (word & 0x1) << 16, 17) << 2; } /* Lookup the unwind (stack backtrace) info for the given PC. We search all of the objfiles seeking the unwind table entry for this PC. Each objfile contains a sorted list of struct unwind_table_entry. Since we do a binary search of the unwind tables, we depend upon them to be sorted. */ static struct unwind_table_entry * find_unwind_entry(pc) CORE_ADDR pc; { int first, middle, last; struct objfile *objfile; ALL_OBJFILES (objfile) { struct obj_unwind_info *ui; ui = OBJ_UNWIND_INFO (objfile); if (!ui) continue; /* First, check the cache */ if (ui->cache && pc >= ui->cache->region_start && pc <= ui->cache->region_end) return ui->cache; /* Not in the cache, do a binary search */ first = 0; last = ui->last; while (first <= last) { middle = (first + last) / 2; if (pc >= ui->table[middle].region_start && pc <= ui->table[middle].region_end) { ui->cache = &ui->table[middle]; return &ui->table[middle]; } if (pc < ui->table[middle].region_start) last = middle - 1; else first = middle + 1; } } /* ALL_OBJFILES() */ return NULL; } /* Called when no unwind descriptor was found for PC. Returns 1 if it appears that PC is in a linker stub. */ static int pc_in_linker_stub PARAMS ((CORE_ADDR)); static int pc_in_linker_stub (pc) CORE_ADDR pc; { int found_magic_instruction = 0; int i; char buf[4]; /* If unable to read memory, assume pc is not in a linker stub. */ if (target_read_memory (pc, buf, 4) != 0) return 0; /* We are looking for something like ; $$dyncall jams RP into this special spot in the frame (RP') ; before calling the "call stub" ldw -18(sp),rp ldsid (rp),r1 ; Get space associated with RP into r1 mtsp r1,sp ; Move it into space register 0 be,n 0(sr0),rp) ; back to your regularly scheduled program */ /* Maximum known linker stub size is 4 instructions. Search forward from the given PC, then backward. */ for (i = 0; i < 4; i++) { /* If we hit something with an unwind, stop searching this direction. */ if (find_unwind_entry (pc + i * 4) != 0) break; /* Check for ldsid (rp),r1 which is the magic instruction for a return from a cross-space function call. */ if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) { found_magic_instruction = 1; break; } /* Add code to handle long call/branch and argument relocation stubs here. */ } if (found_magic_instruction != 0) return 1; /* Now look backward. */ for (i = 0; i < 4; i++) { /* If we hit something with an unwind, stop searching this direction. */ if (find_unwind_entry (pc - i * 4) != 0) break; /* Check for ldsid (rp),r1 which is the magic instruction for a return from a cross-space function call. */ if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) { found_magic_instruction = 1; break; } /* Add code to handle long call/branch and argument relocation stubs here. */ } return found_magic_instruction; } static int find_return_regnum(pc) CORE_ADDR pc; { struct unwind_table_entry *u; u = find_unwind_entry (pc); if (!u) return RP_REGNUM; if (u->Millicode) return 31; return RP_REGNUM; } /* Return size of frame, or -1 if we should use a frame pointer. */ int find_proc_framesize(pc) CORE_ADDR pc; { struct unwind_table_entry *u; u = find_unwind_entry (pc); if (!u) { if (pc_in_linker_stub (pc)) /* Linker stubs have a zero size frame. */ return 0; else return -1; } if (u->Save_SP) /* If this bit is set, it means there is a frame pointer and we should use it. */ return -1; return u->Total_frame_size << 3; } /* Return offset from sp at which rp is saved, or 0 if not saved. */ static int rp_saved PARAMS ((CORE_ADDR)); static int rp_saved (pc) CORE_ADDR pc; { struct unwind_table_entry *u; u = find_unwind_entry (pc); if (!u) { if (pc_in_linker_stub (pc)) /* This is the so-called RP'. */ return -24; else return 0; } if (u->Save_RP) return -20; else return 0; } int frameless_function_invocation (frame) FRAME frame; { struct unwind_table_entry *u; u = find_unwind_entry (frame->pc); if (u == 0) return frameless_look_for_prologue (frame); return (u->Total_frame_size == 0); } CORE_ADDR saved_pc_after_call (frame) FRAME frame; { int ret_regnum; ret_regnum = find_return_regnum (get_frame_pc (frame)); return read_register (ret_regnum) & ~0x3; } CORE_ADDR frame_saved_pc (frame) FRAME frame; { CORE_ADDR pc = get_frame_pc (frame); if (frameless_function_invocation (frame)) { int ret_regnum; ret_regnum = find_return_regnum (pc); return read_register (ret_regnum) & ~0x3; } else { int rp_offset = rp_saved (pc); if (rp_offset == 0) return read_register (RP_REGNUM) & ~0x3; else return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3; } } /* We need to correct the PC and the FP for the outermost frame when we are in a system call. */ void init_extra_frame_info (fromleaf, frame) int fromleaf; struct frame_info *frame; { int flags; int framesize; if (frame->next) /* Only do this for outermost frame */ return; flags = read_register (FLAGS_REGNUM); if (flags & 2) /* In system call? */ frame->pc = read_register (31) & ~0x3; /* The outermost frame is always derived from PC-framesize */ framesize = find_proc_framesize(frame->pc); if (framesize == -1) frame->frame = read_register (FP_REGNUM); else frame->frame = read_register (SP_REGNUM) - framesize; if (!frameless_function_invocation (frame)) /* Frameless? */ return; /* No, quit now */ /* For frameless functions, we need to look at the caller's frame */ framesize = find_proc_framesize(FRAME_SAVED_PC(frame)); if (framesize != -1) frame->frame -= framesize; } /* Given a GDB frame, determine the address of the calling function's frame. This will be used to create a new GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. This may involve searching through prologues for several functions at boundaries where GCC calls HP C code, or where code which has a frame pointer calls code without a frame pointer. */ FRAME_ADDR frame_chain (frame) struct frame_info *frame; { int my_framesize, caller_framesize; struct unwind_table_entry *u; /* Get frame sizes for the current frame and the frame of the caller. */ my_framesize = find_proc_framesize (frame->pc); caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame)); /* If caller does not have a frame pointer, then its frame can be found at current_frame - caller_framesize. */ if (caller_framesize != -1) return frame->frame - caller_framesize; /* Both caller and callee have frame pointers and are GCC compiled (SAVE_SP bit in unwind descriptor is on for both functions. The previous frame pointer is found at the top of the current frame. */ if (caller_framesize == -1 && my_framesize == -1) return read_memory_integer (frame->frame, 4); /* Caller has a frame pointer, but callee does not. This is a little more difficult as GCC and HP C lay out locals and callee register save areas very differently. The previous frame pointer could be in a register, or in one of several areas on the stack. Walk from the current frame to the innermost frame examining unwind descriptors to determine if %r4 ever gets saved into the stack. If so return whatever value got saved into the stack. If it was never saved in the stack, then the value in %r4 is still valid, so use it. We use information from unwind descriptors to determine if %r4 is saved into the stack (Entry_GR field has this information). */ while (frame) { u = find_unwind_entry (frame->pc); if (!u) { /* We could find this information by examining prologues. I don't think anyone has actually written any tools (not even "strip") which leave them out of an executable, so maybe this is a moot point. */ warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc); return 0; } /* Entry_GR specifies the number of callee-saved general registers saved in the stack. It starts at %r3, so %r4 would be 2. */ if (u->Entry_GR >= 2 || u->Save_SP) break; else frame = frame->next; } if (frame) { /* We may have walked down the chain into a function with a frame pointer. */ if (u->Save_SP) return read_memory_integer (frame->frame, 4); /* %r4 was saved somewhere in the stack. Dig it out. */ else return dig_fp_from_stack (frame, u); } else { /* The value in %r4 was never saved into the stack (thus %r4 still holds the value of the previous frame pointer). */ return read_register (4); } } /* Given a frame and an unwind descriptor return the value for %fr (aka fp) which was saved into the stack. FIXME: Why can't we just use the standard saved_regs stuff? */ static FRAME_ADDR dig_fp_from_stack (frame, u) FRAME frame; struct unwind_table_entry *u; { CORE_ADDR pc = u->region_start; /* Search the function for the save of %r4. */ while (pc != u->region_end) { char buf[4]; unsigned long inst; int status; /* We need only look for the standard stw %r4,X(%sp) instruction, the other variants (eg stwm) are only used on the first register save (eg %r3). */ status = target_read_memory (pc, buf, 4); inst = extract_unsigned_integer (buf, 4); if (status != 0) memory_error (status, pc); /* Check for stw %r4,X(%sp). */ if ((inst & 0xffffc000) == 0x6bc40000) { /* Found the instruction which saves %r4. The offset (relative to this frame) is framesize + immed14 (derived from the store instruction). */ int offset = (u->Total_frame_size << 3) + extract_14 (inst); return read_memory_integer (frame->frame + offset, 4); } /* Keep looking. */ pc += 4; } warning ("Unable to find %%r4 in stack.\n"); return 0; } /* To see if a frame chain is valid, see if the caller looks like it was compiled with gcc. */ int frame_chain_valid (chain, thisframe) FRAME_ADDR chain; FRAME thisframe; { struct minimal_symbol *msym_us; struct minimal_symbol *msym_start; struct unwind_table_entry *u; if (!chain) return 0; u = find_unwind_entry (thisframe->pc); /* We can't just check that the same of msym_us is "_start", because someone idiotically decided that they were going to make a Ltext_end symbol with the same address. This Ltext_end symbol is totally indistinguishable (as nearly as I can tell) from the symbol for a function which is (legitimately, since it is in the user's namespace) named Ltext_end, so we can't just ignore it. */ msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe)); msym_start = lookup_minimal_symbol ("_start", NULL); if (msym_us && msym_start && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) return 0; if (u == NULL) return 1; if (u->Save_SP || u->Total_frame_size) return 1; if (pc_in_linker_stub (thisframe->pc)) return 1; return 0; } /* * These functions deal with saving and restoring register state * around a function call in the inferior. They keep the stack * double-word aligned; eventually, on an hp700, the stack will have * to be aligned to a 64-byte boundary. */ int push_dummy_frame () { register CORE_ADDR sp; register int regnum; int int_buffer; double freg_buffer; /* Space for "arguments"; the RP goes in here. */ sp = read_register (SP_REGNUM) + 48; int_buffer = read_register (RP_REGNUM) | 0x3; write_memory (sp - 20, (char *)&int_buffer, 4); int_buffer = read_register (FP_REGNUM); write_memory (sp, (char *)&int_buffer, 4); write_register (FP_REGNUM, sp); sp += 8; for (regnum = 1; regnum < 32; regnum++) if (regnum != RP_REGNUM && regnum != FP_REGNUM) sp = push_word (sp, read_register (regnum)); sp += 4; for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) { read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); sp = push_bytes (sp, (char *)&freg_buffer, 8); } sp = push_word (sp, read_register (IPSW_REGNUM)); sp = push_word (sp, read_register (SAR_REGNUM)); sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM)); sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM)); sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM)); sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM)); write_register (SP_REGNUM, sp); } find_dummy_frame_regs (frame, frame_saved_regs) struct frame_info *frame; struct frame_saved_regs *frame_saved_regs; { CORE_ADDR fp = frame->frame; int i; frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3; frame_saved_regs->regs[FP_REGNUM] = fp; frame_saved_regs->regs[1] = fp + 8; for (fp += 12, i = 3; i < 32; i++) { if (i != FP_REGNUM) { frame_saved_regs->regs[i] = fp; fp += 4; } } fp += 4; for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) frame_saved_regs->regs[i] = fp; frame_saved_regs->regs[IPSW_REGNUM] = fp; frame_saved_regs->regs[SAR_REGNUM] = fp + 4; frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8; frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12; frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16; frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20; } int hppa_pop_frame () { register FRAME frame = get_current_frame (); register CORE_ADDR fp; register int regnum; struct frame_saved_regs fsr; struct frame_info *fi; double freg_buffer; fi = get_frame_info (frame); fp = fi->frame; get_frame_saved_regs (fi, &fsr); if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ restore_pc_queue (&fsr); for (regnum = 31; regnum > 0; regnum--) if (fsr.regs[regnum]) write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--) if (fsr.regs[regnum]) { read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8); write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); } if (fsr.regs[IPSW_REGNUM]) write_register (IPSW_REGNUM, read_memory_integer (fsr.regs[IPSW_REGNUM], 4)); if (fsr.regs[SAR_REGNUM]) write_register (SAR_REGNUM, read_memory_integer (fsr.regs[SAR_REGNUM], 4)); /* If the PC was explicitly saved, then just restore it. */ if (fsr.regs[PCOQ_TAIL_REGNUM]) write_register (PCOQ_TAIL_REGNUM, read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4)); /* Else use the value in %rp to set the new PC. */ else target_write_pc (read_register (RP_REGNUM)); write_register (FP_REGNUM, read_memory_integer (fp, 4)); if (fsr.regs[IPSW_REGNUM]) /* call dummy */ write_register (SP_REGNUM, fp - 48); else write_register (SP_REGNUM, fp); flush_cached_frames (); set_current_frame (create_new_frame (read_register (FP_REGNUM), read_pc ())); } /* * After returning to a dummy on the stack, restore the instruction * queue space registers. */ static int restore_pc_queue (fsr) struct frame_saved_regs *fsr; { CORE_ADDR pc = read_pc (); CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4); int pid; WAITTYPE w; int insn_count; /* Advance past break instruction in the call dummy. */ write_register (PCOQ_HEAD_REGNUM, pc + 4); write_register (PCOQ_TAIL_REGNUM, pc + 8); /* * HPUX doesn't let us set the space registers or the space * registers of the PC queue through ptrace. Boo, hiss. * Conveniently, the call dummy has this sequence of instructions * after the break: * mtsp r21, sr0 * ble,n 0(sr0, r22) * * So, load up the registers and single step until we are in the * right place. */ write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4)); write_register (22, new_pc); for (insn_count = 0; insn_count < 3; insn_count++) { /* FIXME: What if the inferior gets a signal right now? Want to merge this into wait_for_inferior (as a special kind of watchpoint? By setting a breakpoint at the end? Is there any other choice? Is there *any* way to do this stuff with ptrace() or some equivalent?). */ resume (1, 0); target_wait(inferior_pid, &w); if (!WIFSTOPPED (w)) { stop_signal = WTERMSIG (w); terminal_ours_for_output (); printf_unfiltered ("\nProgram terminated with signal %d, %s\n", stop_signal, safe_strsignal (stop_signal)); gdb_flush (gdb_stdout); return 0; } } target_terminal_ours (); fetch_inferior_registers (-1); return 1; } CORE_ADDR hppa_push_arguments (nargs, args, sp, struct_return, struct_addr) int nargs; value *args; CORE_ADDR sp; int struct_return; CORE_ADDR struct_addr; { /* array of arguments' offsets */ int *offset = (int *)alloca(nargs * sizeof (int)); int cum = 0; int i, alignment; for (i = 0; i < nargs; i++) { /* Coerce chars to int & float to double if necessary */ args[i] = value_arg_coerce (args[i]); cum += TYPE_LENGTH (VALUE_TYPE (args[i])); /* value must go at proper alignment. Assume alignment is a power of two.*/ alignment = hppa_alignof (VALUE_TYPE (args[i])); if (cum % alignment) cum = (cum + alignment) & -alignment; offset[i] = -cum; } sp += max ((cum + 7) & -8, 16); for (i = 0; i < nargs; i++) write_memory (sp + offset[i], VALUE_CONTENTS (args[i]), TYPE_LENGTH (VALUE_TYPE (args[i]))); if (struct_return) write_register (28, struct_addr); return sp + 32; } /* * Insert the specified number of args and function address * into a call sequence of the above form stored at DUMMYNAME. * * On the hppa we need to call the stack dummy through $$dyncall. * Therefore our version of FIX_CALL_DUMMY takes an extra argument, * real_pc, which is the location where gdb should start up the * inferior to do the function call. */ CORE_ADDR hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) REGISTER_TYPE *dummy; CORE_ADDR pc; CORE_ADDR fun; int nargs; value *args; struct type *type; int gcc_p; { CORE_ADDR dyncall_addr, sr4export_addr; struct minimal_symbol *msymbol; int flags = read_register (FLAGS_REGNUM); msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL); if (msymbol == NULL) error ("Can't find an address for $$dyncall trampoline"); dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL); if (msymbol == NULL) error ("Can't find an address for _sr4export trampoline"); sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol); dummy[9] = deposit_21 (fun >> 11, dummy[9]); dummy[10] = deposit_14 (fun & MASK_11, dummy[10]); dummy[12] = deposit_21 (sr4export_addr >> 11, dummy[12]); dummy[13] = deposit_14 (sr4export_addr & MASK_11, dummy[13]); write_register (22, pc); /* If we are in a syscall, then we should call the stack dummy directly. $$dyncall is not needed as the kernel sets up the space id registers properly based on the value in %r31. In fact calling $$dyncall will not work because the value in %r22 will be clobbered on the syscall exit path. */ if (flags & 2) return pc; else return dyncall_addr; } /* Get the PC from %r31 if currently in a syscall. Also mask out privilege bits. */ CORE_ADDR target_read_pc () { int flags = read_register (FLAGS_REGNUM); if (flags & 2) return read_register (31) & ~0x3; return read_register (PC_REGNUM) & ~0x3; } /* Write out the PC. If currently in a syscall, then also write the new PC value into %r31. */ void target_write_pc (v) CORE_ADDR v; { int flags = read_register (FLAGS_REGNUM); /* If in a syscall, then set %r31. Also make sure to get the privilege bits set correctly. */ if (flags & 2) write_register (31, (long) (v | 0x3)); write_register (PC_REGNUM, (long) v); write_register (NPC_REGNUM, (long) v + 4); } /* return the alignment of a type in bytes. Structures have the maximum alignment required by their fields. */ static int hppa_alignof (arg) struct type *arg; { int max_align, align, i; switch (TYPE_CODE (arg)) { case TYPE_CODE_PTR: case TYPE_CODE_INT: case TYPE_CODE_FLT: return TYPE_LENGTH (arg); case TYPE_CODE_ARRAY: return hppa_alignof (TYPE_FIELD_TYPE (arg, 0)); case TYPE_CODE_STRUCT: case TYPE_CODE_UNION: max_align = 2; for (i = 0; i < TYPE_NFIELDS (arg); i++) { /* Bit fields have no real alignment. */ if (!TYPE_FIELD_BITPOS (arg, i)) { align = hppa_alignof (TYPE_FIELD_TYPE (arg, i)); max_align = max (max_align, align); } } return max_align; default: return 4; } } /* Print the register regnum, or all registers if regnum is -1 */ pa_do_registers_info (regnum, fpregs) int regnum; int fpregs; { char raw_regs [REGISTER_BYTES]; int i; for (i = 0; i < NUM_REGS; i++) read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i)); if (regnum == -1) pa_print_registers (raw_regs, regnum, fpregs); else if (regnum < FP0_REGNUM) printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs + REGISTER_BYTE (regnum))); else pa_print_fp_reg (regnum); } pa_print_registers (raw_regs, regnum, fpregs) char *raw_regs; int regnum; int fpregs; { int i; for (i = 0; i < 18; i++) printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n", reg_names[i], *(int *)(raw_regs + REGISTER_BYTE (i)), reg_names[i + 18], *(int *)(raw_regs + REGISTER_BYTE (i + 18)), reg_names[i + 36], *(int *)(raw_regs + REGISTER_BYTE (i + 36)), reg_names[i + 54], *(int *)(raw_regs + REGISTER_BYTE (i + 54))); if (fpregs) for (i = 72; i < NUM_REGS; i++) pa_print_fp_reg (i); } pa_print_fp_reg (i) int i; { unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE]; unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; REGISTER_TYPE val; /* Get the data in raw format. */ read_relative_register_raw_bytes (i, raw_buffer); /* Convert raw data to virtual format if necessary. */ #ifdef REGISTER_CONVERTIBLE if (REGISTER_CONVERTIBLE (i)) { REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i), raw_buffer, virtual_buffer); } else #endif memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i)); fputs_filtered (reg_names[i], gdb_stdout); print_spaces_filtered (15 - strlen (reg_names[i]), gdb_stdout); val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0, 1, 0, Val_pretty_default); printf_filtered ("\n"); } /* Function calls that pass into a new compilation unit must pass through a small piece of code that does long format (`external' in HPPA parlance) jumps. We figure out where the trampoline is going to end up, and return the PC of the final destination. If we aren't in a trampoline, we just return NULL. For computed calls, we just extract the new PC from r22. */ CORE_ADDR skip_trampoline_code (pc, name) CORE_ADDR pc; char *name; { long inst0, inst1; static CORE_ADDR dyncall = 0; struct minimal_symbol *msym; /* FIXME XXX - dyncall must be initialized whenever we get a new exec file */ if (!dyncall) { msym = lookup_minimal_symbol ("$$dyncall", NULL); if (msym) dyncall = SYMBOL_VALUE_ADDRESS (msym); else dyncall = -1; } if (pc == dyncall) return (CORE_ADDR)(read_register (22) & ~0x3); inst0 = read_memory_integer (pc, 4); inst1 = read_memory_integer (pc+4, 4); if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */ && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */ pc = extract_21 (inst0) + extract_17 (inst1); else pc = (CORE_ADDR)NULL; return pc; } /* Advance PC across any function entry prologue instructions to reach some "real" code. */ /* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp) for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */ CORE_ADDR skip_prologue(pc) CORE_ADDR pc; { char buf[4]; unsigned long inst; int status; status = target_read_memory (pc, buf, 4); inst = extract_unsigned_integer (buf, 4); if (status != 0) return pc; if (inst == 0x6BC23FD9) /* stw rp,-20(sp) */ { if (read_memory_integer (pc + 4, 4) == 0x8040241) /* copy r4,r1 */ pc += 16; else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */ pc += 8; } else if (read_memory_integer (pc, 4) == 0x8040241) /* copy r4,r1 */ pc += 12; else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */ pc += 4; return pc; } #ifdef MAINTENANCE_CMDS static void unwind_command (exp, from_tty) char *exp; int from_tty; { CORE_ADDR address; union { int *foo; struct unwind_table_entry *u; } xxx; /* If we have an expression, evaluate it and use it as the address. */ if (exp != 0 && *exp != 0) address = parse_and_eval_address (exp); else return; xxx.u = find_unwind_entry (address); if (!xxx.u) { printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address); return; } printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2], xxx.foo[3]); } #endif /* MAINTENANCE_CMDS */ void _initialize_hppa_tdep () { #ifdef MAINTENANCE_CMDS add_cmd ("unwind", class_maintenance, unwind_command, "Print unwind table entry at given address.", &maintenanceprintlist); #endif /* MAINTENANCE_CMDS */ }