/* Native debugging support for Intel x86 running DJGPP. Copyright 1997, 1999, 2000, 2001 Free Software Foundation, Inc. Written by Robert Hoehne. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include "defs.h" #include "inferior.h" #include "gdb_wait.h" #include "gdbcore.h" #include "command.h" #include "gdbcmd.h" #include "floatformat.h" #include "buildsym.h" #include "i387-nat.h" #include "value.h" #include "regcache.h" #include "gdb_string.h" #include /* might be required for __DJGPP_MINOR__ */ #include #include #include #include #include #include /* breakpoint.h defines `disable' which is an enum member. */ #define disable interrup_disable #include #undef disable #include #include #include #include #if __DJGPP_MINOR__ > 2 #include #endif #if __DJGPP_MINOR__ < 3 /* This code will be provided from DJGPP 2.03 on. Until then I code it here */ typedef struct { unsigned short sig0; unsigned short sig1; unsigned short sig2; unsigned short sig3; unsigned short exponent:15; unsigned short sign:1; } NPXREG; typedef struct { unsigned int control; unsigned int status; unsigned int tag; unsigned int eip; unsigned int cs; unsigned int dataptr; unsigned int datasel; NPXREG reg[8]; } NPX; static NPX npx; static void save_npx (void); /* Save the FPU of the debugged program */ static void load_npx (void); /* Restore the FPU of the debugged program */ /* ------------------------------------------------------------------------- */ /* Store the contents of the NPX in the global variable `npx'. */ /* *INDENT-OFF* */ static void save_npx (void) { asm ("inb $0xa0, %%al testb $0x20, %%al jz 1f xorb %% al, %%al outb %% al, $0xf0 movb $0x20, %%al outb %% al, $0xa0 outb %% al, $0x20 1: fnsave % 0 fwait " : "=m" (npx) : /* No input */ : "%eax"); } /* *INDENT-ON* */ /* ------------------------------------------------------------------------- */ /* Reload the contents of the NPX from the global variable `npx'. */ static void load_npx (void) { asm ("frstor %0":"=m" (npx)); } /* ------------------------------------------------------------------------- */ /* Stubs for the missing redirection functions. */ typedef struct { char *command; int redirected; } cmdline_t; void redir_cmdline_delete (cmdline_t *ptr) { ptr->redirected = 0; } int redir_cmdline_parse (const char *args, cmdline_t *ptr) { return -1; } int redir_to_child (cmdline_t *ptr) { return 1; } int redir_to_debugger (cmdline_t *ptr) { return 1; } int redir_debug_init (cmdline_t *ptr) { return 0; } #endif /* __DJGPP_MINOR < 3 */ typedef enum { wp_insert, wp_remove, wp_count } wp_op; /* This holds the current reference counts for each debug register. */ static int dr_ref_count[4]; #define SOME_PID 42 static int prog_has_started = 0; static void go32_open (char *name, int from_tty); static void go32_close (int quitting); static void go32_attach (char *args, int from_tty); static void go32_detach (char *args, int from_tty); static void go32_resume (ptid_t ptid, int step, enum target_signal siggnal); static ptid_t go32_wait (ptid_t ptid, struct target_waitstatus *status); static void go32_fetch_registers (int regno); static void store_register (int regno); static void go32_store_registers (int regno); static void go32_prepare_to_store (void); static int go32_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write, struct mem_attrib *attrib, struct target_ops *target); static void go32_files_info (struct target_ops *target); static void go32_stop (void); static void go32_kill_inferior (void); static void go32_create_inferior (char *exec_file, char *args, char **env); static void go32_mourn_inferior (void); static int go32_can_run (void); static struct target_ops go32_ops; static void go32_terminal_init (void); static void go32_terminal_inferior (void); static void go32_terminal_ours (void); #define r_ofs(x) (offsetof(TSS,x)) static struct { size_t tss_ofs; size_t size; } regno_mapping[] = { {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */ {r_ofs (tss_ecx), 4}, {r_ofs (tss_edx), 4}, {r_ofs (tss_ebx), 4}, {r_ofs (tss_esp), 4}, {r_ofs (tss_ebp), 4}, {r_ofs (tss_esi), 4}, {r_ofs (tss_edi), 4}, {r_ofs (tss_eip), 4}, {r_ofs (tss_eflags), 4}, {r_ofs (tss_cs), 2}, {r_ofs (tss_ss), 2}, {r_ofs (tss_ds), 2}, {r_ofs (tss_es), 2}, {r_ofs (tss_fs), 2}, {r_ofs (tss_gs), 2}, {0, 10}, /* 8 FP registers, from npx.reg[] */ {1, 10}, {2, 10}, {3, 10}, {4, 10}, {5, 10}, {6, 10}, {7, 10}, /* The order of the next 7 registers must be consistent with their numbering in config/i386/tm-i386.h, which see. */ {0, 2}, /* control word, from npx */ {4, 2}, /* status word, from npx */ {8, 2}, /* tag word, from npx */ {16, 2}, /* last FP exception CS from npx */ {12, 4}, /* last FP exception EIP from npx */ {24, 2}, /* last FP exception operand selector from npx */ {20, 4}, /* last FP exception operand offset from npx */ {18, 2} /* last FP opcode from npx */ }; static struct { int go32_sig; enum target_signal gdb_sig; } sig_map[] = { {0, TARGET_SIGNAL_FPE}, {1, TARGET_SIGNAL_TRAP}, /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL, but I think SIGBUS is better, since the NMI is usually activated as a result of a memory parity check failure. */ {2, TARGET_SIGNAL_BUS}, {3, TARGET_SIGNAL_TRAP}, {4, TARGET_SIGNAL_FPE}, {5, TARGET_SIGNAL_SEGV}, {6, TARGET_SIGNAL_ILL}, {7, TARGET_SIGNAL_EMT}, /* no-coprocessor exception */ {8, TARGET_SIGNAL_SEGV}, {9, TARGET_SIGNAL_SEGV}, {10, TARGET_SIGNAL_BUS}, {11, TARGET_SIGNAL_SEGV}, {12, TARGET_SIGNAL_SEGV}, {13, TARGET_SIGNAL_SEGV}, {14, TARGET_SIGNAL_SEGV}, {16, TARGET_SIGNAL_FPE}, {17, TARGET_SIGNAL_BUS}, {31, TARGET_SIGNAL_ILL}, {0x1b, TARGET_SIGNAL_INT}, {0x75, TARGET_SIGNAL_FPE}, {0x78, TARGET_SIGNAL_ALRM}, {0x79, TARGET_SIGNAL_INT}, {0x7a, TARGET_SIGNAL_QUIT}, {-1, TARGET_SIGNAL_LAST} }; static struct { enum target_signal gdb_sig; int djgpp_excepno; } excepn_map[] = { {TARGET_SIGNAL_0, -1}, {TARGET_SIGNAL_ILL, 6}, /* Invalid Opcode */ {TARGET_SIGNAL_EMT, 7}, /* triggers SIGNOFP */ {TARGET_SIGNAL_SEGV, 13}, /* GPF */ {TARGET_SIGNAL_BUS, 17}, /* Alignment Check */ /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for details. */ {TARGET_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */ {TARGET_SIGNAL_FPE, 0x75}, {TARGET_SIGNAL_INT, 0x79}, {TARGET_SIGNAL_QUIT, 0x7a}, {TARGET_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */ {TARGET_SIGNAL_PROF, 0x78}, {TARGET_SIGNAL_LAST, -1} }; static void go32_open (char *name, int from_tty) { printf_unfiltered ("Done. Use the \"run\" command to run the program.\n"); } static void go32_close (int quitting) { } static void go32_attach (char *args, int from_tty) { error ("\ You cannot attach to a running program on this platform.\n\ Use the `run' command to run DJGPP programs."); } static void go32_detach (char *args, int from_tty) { } static int resume_is_step; static int resume_signal = -1; static void go32_resume (ptid_t ptid, int step, enum target_signal siggnal) { int i; resume_is_step = step; if (siggnal != TARGET_SIGNAL_0 && siggnal != TARGET_SIGNAL_TRAP) { for (i = 0, resume_signal = -1; excepn_map[i].gdb_sig != TARGET_SIGNAL_LAST; i++) if (excepn_map[i].gdb_sig == siggnal) { resume_signal = excepn_map[i].djgpp_excepno; break; } if (resume_signal == -1) printf_unfiltered ("Cannot deliver signal %s on this platform.\n", target_signal_to_name (siggnal)); } } static char child_cwd[FILENAME_MAX]; static ptid_t go32_wait (ptid_t ptid, struct target_waitstatus *status) { int i; unsigned char saved_opcode; unsigned long INT3_addr = 0; int stepping_over_INT = 0; a_tss.tss_eflags &= 0xfeff; /* reset the single-step flag (TF) */ if (resume_is_step) { /* If the next instruction is INT xx or INTO, we need to handle them specially. Intel manuals say that these instructions reset the single-step flag (a.k.a. TF). However, it seems that, at least in the DPMI environment, and at least when stepping over the DPMI interrupt 31h, the problem is having TF set at all when INT 31h is executed: the debuggee either crashes (and takes the system with it) or is killed by a SIGTRAP. So we need to emulate single-step mode: we put an INT3 opcode right after the INT xx instruction, let the debuggee run until it hits INT3 and stops, then restore the original instruction which we overwrote with the INT3 opcode, and back up the debuggee's EIP to that instruction. */ read_child (a_tss.tss_eip, &saved_opcode, 1); if (saved_opcode == 0xCD || saved_opcode == 0xCE) { unsigned char INT3_opcode = 0xCC; INT3_addr = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1; stepping_over_INT = 1; read_child (INT3_addr, &saved_opcode, 1); write_child (INT3_addr, &INT3_opcode, 1); } else a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */ } /* The special value FFFFh in tss_trap indicates to run_child that tss_irqn holds a signal to be delivered to the debuggee. */ if (resume_signal <= -1) { a_tss.tss_trap = 0; a_tss.tss_irqn = 0xff; } else { a_tss.tss_trap = 0xffff; /* run_child looks for this */ a_tss.tss_irqn = resume_signal; } /* The child might change working directory behind our back. The GDB users won't like the side effects of that when they work with relative file names, and GDB might be confused by its current directory not being in sync with the truth. So we always make a point of changing back to where GDB thinks is its cwd, when we return control to the debugger, but restore child's cwd before we run it. */ /* Initialize child_cwd, before the first call to run_child and not in the initialization, so the child get also the changed directory set with the gdb-command "cd ..." */ if (!*child_cwd) /* Initialize child's cwd with the current one. */ getcwd (child_cwd, sizeof (child_cwd)); chdir (child_cwd); #if __DJGPP_MINOR__ < 3 load_npx (); #endif run_child (); #if __DJGPP_MINOR__ < 3 save_npx (); #endif /* Did we step over an INT xx instruction? */ if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1) { /* Restore the original opcode. */ a_tss.tss_eip--; /* EIP points *after* the INT3 instruction */ write_child (a_tss.tss_eip, &saved_opcode, 1); /* Simulate a TRAP exception. */ a_tss.tss_irqn = 1; a_tss.tss_eflags |= 0x0100; } getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */ chdir (current_directory); if (a_tss.tss_irqn == 0x21) { status->kind = TARGET_WAITKIND_EXITED; status->value.integer = a_tss.tss_eax & 0xff; } else { status->value.sig = TARGET_SIGNAL_UNKNOWN; status->kind = TARGET_WAITKIND_STOPPED; for (i = 0; sig_map[i].go32_sig != -1; i++) { if (a_tss.tss_irqn == sig_map[i].go32_sig) { #if __DJGPP_MINOR__ < 3 if ((status->value.sig = sig_map[i].gdb_sig) != TARGET_SIGNAL_TRAP) status->kind = TARGET_WAITKIND_SIGNALLED; #else status->value.sig = sig_map[i].gdb_sig; #endif break; } } } return pid_to_ptid (SOME_PID); } static void fetch_register (int regno) { if (regno < FP0_REGNUM) supply_register (regno, (char *) &a_tss + regno_mapping[regno].tss_ofs); else if (regno <= LAST_FPU_CTRL_REGNUM) i387_supply_register (regno, (char *) &npx); else internal_error (__FILE__, __LINE__, "Invalid register no. %d in fetch_register.", regno); } static void go32_fetch_registers (int regno) { if (regno >= 0) fetch_register (regno); else { for (regno = 0; regno < FP0_REGNUM; regno++) fetch_register (regno); i387_supply_fsave ((char *) &npx); } } static void store_register (int regno) { void *rp; void *v = (void *) register_buffer (regno); if (regno < FP0_REGNUM) memcpy ((char *) &a_tss + regno_mapping[regno].tss_ofs, v, regno_mapping[regno].size); else if (regno <= LAST_FPU_CTRL_REGNUM) i387_fill_fsave ((char *)&npx, regno); else internal_error (__FILE__, __LINE__, "Invalid register no. %d in store_register.", regno); } static void go32_store_registers (int regno) { unsigned r; if (regno >= 0) store_register (regno); else { for (r = 0; r < FP0_REGNUM; r++) store_register (r); i387_fill_fsave ((char *) &npx, -1); } } static void go32_prepare_to_store (void) { } static int go32_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write, struct mem_attrib *attrib, struct target_ops *target) { if (write) { if (write_child (memaddr, myaddr, len)) { return 0; } else { return len; } } else { if (read_child (memaddr, myaddr, len)) { return 0; } else { return len; } } } static cmdline_t child_cmd; /* parsed child's command line kept here */ static void go32_files_info (struct target_ops *target) { printf_unfiltered ("You are running a DJGPP V2 program.\n"); } static void go32_stop (void) { normal_stop (); cleanup_client (); inferior_ptid = null_ptid; prog_has_started = 0; } static void go32_kill_inferior (void) { redir_cmdline_delete (&child_cmd); resume_signal = -1; resume_is_step = 0; unpush_target (&go32_ops); } static void go32_create_inferior (char *exec_file, char *args, char **env) { extern char **environ; jmp_buf start_state; char *cmdline; char **env_save = environ; size_t cmdlen; /* If no exec file handed to us, get it from the exec-file command -- with a good, common error message if none is specified. */ if (exec_file == 0) exec_file = get_exec_file (1); if (prog_has_started) { go32_stop (); go32_kill_inferior (); } resume_signal = -1; resume_is_step = 0; /* Initialize child's cwd as empty to be initialized when starting the child. */ *child_cwd = 0; /* Init command line storage. */ if (redir_debug_init (&child_cmd) == -1) internal_error (__FILE__, __LINE__, "Cannot allocate redirection storage: not enough memory.\n"); /* Parse the command line and create redirections. */ if (strpbrk (args, "<>")) { if (redir_cmdline_parse (args, &child_cmd) == 0) args = child_cmd.command; else error ("Syntax error in command line."); } else child_cmd.command = xstrdup (args); cmdlen = strlen (args); /* v2loadimage passes command lines via DOS memory, so it cannot possibly handle commands longer than 1MB. */ if (cmdlen > 1024*1024) error ("Command line too long."); cmdline = xmalloc (cmdlen + 4); strcpy (cmdline + 1, args); /* If the command-line length fits into DOS 126-char limits, use the DOS command tail format; otherwise, tell v2loadimage to pass it through a buffer in conventional memory. */ if (cmdlen < 127) { cmdline[0] = strlen (args); cmdline[cmdlen + 1] = 13; } else cmdline[0] = 0xff; /* signal v2loadimage it's a long command */ environ = env; if (v2loadimage (exec_file, cmdline, start_state)) { environ = env_save; printf_unfiltered ("Load failed for image %s\n", exec_file); exit (1); } environ = env_save; free (cmdline); edi_init (start_state); #if __DJGPP_MINOR__ < 3 save_npx (); #endif inferior_ptid = pid_to_ptid (SOME_PID); push_target (&go32_ops); clear_proceed_status (); insert_breakpoints (); proceed ((CORE_ADDR) -1, TARGET_SIGNAL_0, 0); prog_has_started = 1; } static void go32_mourn_inferior (void) { /* We need to make sure all the breakpoint enable bits in the DR7 register are reset when the inferior exits. Otherwise, if they rerun the inferior, the uncleared bits may cause random SIGTRAPs, failure to set more watchpoints, and other calamities. It would be nice if GDB itself would take care to remove all breakpoints at all times, but it doesn't, probably under an assumption that the OS cleans up when the debuggee exits. */ i386_cleanup_dregs (); go32_kill_inferior (); generic_mourn_inferior (); } static int go32_can_run (void) { return 1; } /* Hardware watchpoint support. */ #define D_REGS edi.dr #define CONTROL D_REGS[7] #define STATUS D_REGS[6] /* Pass the address ADDR to the inferior in the I'th debug register. Here we just store the address in D_REGS, the watchpoint will be actually set up when go32_wait runs the debuggee. */ void go32_set_dr (int i, CORE_ADDR addr) { if (i < 0 || i > 3) internal_error (__FILE__, __LINE__, "Invalid register %d in go32_set_dr.\n", i); D_REGS[i] = addr; } /* Pass the value VAL to the inferior in the DR7 debug control register. Here we just store the address in D_REGS, the watchpoint will be actually set up when go32_wait runs the debuggee. */ void go32_set_dr7 (unsigned val) { CONTROL = val; } /* Get the value of the DR6 debug status register from the inferior. Here we just return the value stored in D_REGS, as we've got it from the last go32_wait call. */ unsigned go32_get_dr6 (void) { return STATUS; } /* Put the device open on handle FD into either raw or cooked mode, return 1 if it was in raw mode, zero otherwise. */ static int device_mode (int fd, int raw_p) { int oldmode, newmode; __dpmi_regs regs; regs.x.ax = 0x4400; regs.x.bx = fd; __dpmi_int (0x21, ®s); if (regs.x.flags & 1) return -1; newmode = oldmode = regs.x.dx; if (raw_p) newmode |= 0x20; else newmode &= ~0x20; if (oldmode & 0x80) /* Only for character dev */ { regs.x.ax = 0x4401; regs.x.bx = fd; regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails */ __dpmi_int (0x21, ®s); if (regs.x.flags & 1) return -1; } return (oldmode & 0x20) == 0x20; } static int inf_mode_valid = 0; static int inf_terminal_mode; /* This semaphore is needed because, amazingly enough, GDB calls target.to_terminal_ours more than once after the inferior stops. But we need the information from the first call only, since the second call will always see GDB's own cooked terminal. */ static int terminal_is_ours = 1; static void go32_terminal_init (void) { inf_mode_valid = 0; /* reinitialize, in case they are restarting child */ terminal_is_ours = 1; } static void go32_terminal_info (char *args, int from_tty) { printf_unfiltered ("Inferior's terminal is in %s mode.\n", !inf_mode_valid ? "default" : inf_terminal_mode ? "raw" : "cooked"); #if __DJGPP_MINOR__ > 2 if (child_cmd.redirection) { int i; for (i = 0; i < DBG_HANDLES; i++) { if (child_cmd.redirection[i]->file_name) printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n", i, child_cmd.redirection[i]->file_name); else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1) printf_unfiltered ("\tFile handle %d appears to be closed by inferior.\n", i); /* Mask off the raw/cooked bit when comparing device info words. */ else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf) != (_get_dev_info (i) & 0xdf)) printf_unfiltered ("\tFile handle %d appears to be redirected by inferior.\n", i); } } #endif } static void go32_terminal_inferior (void) { /* Redirect standard handles as child wants them. */ errno = 0; if (redir_to_child (&child_cmd) == -1) { redir_to_debugger (&child_cmd); error ("Cannot redirect standard handles for program: %s.", strerror (errno)); } /* set the console device of the inferior to whatever mode (raw or cooked) we found it last time */ if (terminal_is_ours) { if (inf_mode_valid) device_mode (0, inf_terminal_mode); terminal_is_ours = 0; } } static void go32_terminal_ours (void) { /* Switch to cooked mode on the gdb terminal and save the inferior terminal mode to be restored when it is resumed */ if (!terminal_is_ours) { inf_terminal_mode = device_mode (0, 0); if (inf_terminal_mode != -1) inf_mode_valid = 1; else /* If device_mode returned -1, we don't know what happens with handle 0 anymore, so make the info invalid. */ inf_mode_valid = 0; terminal_is_ours = 1; /* Restore debugger's standard handles. */ errno = 0; if (redir_to_debugger (&child_cmd) == -1) { redir_to_child (&child_cmd); error ("Cannot redirect standard handles for debugger: %s.", strerror (errno)); } } } static void init_go32_ops (void) { go32_ops.to_shortname = "djgpp"; go32_ops.to_longname = "djgpp target process"; go32_ops.to_doc = "Program loaded by djgpp, when gdb is used as an external debugger"; go32_ops.to_open = go32_open; go32_ops.to_close = go32_close; go32_ops.to_attach = go32_attach; go32_ops.to_detach = go32_detach; go32_ops.to_resume = go32_resume; go32_ops.to_wait = go32_wait; go32_ops.to_fetch_registers = go32_fetch_registers; go32_ops.to_store_registers = go32_store_registers; go32_ops.to_prepare_to_store = go32_prepare_to_store; go32_ops.to_xfer_memory = go32_xfer_memory; go32_ops.to_files_info = go32_files_info; go32_ops.to_insert_breakpoint = memory_insert_breakpoint; go32_ops.to_remove_breakpoint = memory_remove_breakpoint; go32_ops.to_terminal_init = go32_terminal_init; go32_ops.to_terminal_inferior = go32_terminal_inferior; go32_ops.to_terminal_ours_for_output = go32_terminal_ours; go32_ops.to_terminal_ours = go32_terminal_ours; go32_ops.to_terminal_info = go32_terminal_info; go32_ops.to_kill = go32_kill_inferior; go32_ops.to_create_inferior = go32_create_inferior; go32_ops.to_mourn_inferior = go32_mourn_inferior; go32_ops.to_can_run = go32_can_run; go32_ops.to_stop = go32_stop; go32_ops.to_stratum = process_stratum; go32_ops.to_has_all_memory = 1; go32_ops.to_has_memory = 1; go32_ops.to_has_stack = 1; go32_ops.to_has_registers = 1; go32_ops.to_has_execution = 1; go32_ops.to_magic = OPS_MAGIC; /* Initialize child's cwd as empty to be initialized when starting the child. */ *child_cwd = 0; /* Initialize child's command line storage. */ if (redir_debug_init (&child_cmd) == -1) internal_error (__FILE__, __LINE__, "Cannot allocate redirection storage: not enough memory.\n"); /* We are always processing GCC-compiled programs. */ processing_gcc_compilation = 2; } unsigned short windows_major, windows_minor; /* Compute the version Windows reports via Int 2Fh/AX=1600h. */ static void go32_get_windows_version(void) { __dpmi_regs r; r.x.ax = 0x1600; __dpmi_int(0x2f, &r); if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff && (r.h.al > 3 || r.h.ah > 0)) { windows_major = r.h.al; windows_minor = r.h.ah; } else windows_major = 0xff; /* meaning no Windows */ } /* A subroutine of go32_sysinfo to display memory info. */ static void print_mem (unsigned long datum, const char *header, int in_pages_p) { if (datum != 0xffffffffUL) { if (in_pages_p) datum <<= 12; puts_filtered (header); if (datum > 1024) { printf_filtered ("%lu KB", datum >> 10); if (datum > 1024 * 1024) printf_filtered (" (%lu MB)", datum >> 20); } else printf_filtered ("%lu Bytes", datum); puts_filtered ("\n"); } } /* Display assorted information about the underlying OS. */ static void go32_sysinfo (char *arg, int from_tty) { struct utsname u; char cpuid_vendor[13]; unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx; unsigned true_dos_version = _get_dos_version (1); unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor; int dpmi_flags; char dpmi_vendor_info[129]; int dpmi_vendor_available = __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info); __dpmi_version_ret dpmi_version_data; long eflags; __dpmi_free_mem_info mem_info; __dpmi_regs regs; cpuid_vendor[0] = '\0'; if (uname (&u)) strcpy (u.machine, "Unknown x86"); else if (u.machine[0] == 'i' && u.machine[1] > 4) { /* CPUID with EAX = 0 returns the Vendor ID. */ __asm__ __volatile__ ("xorl %%ebx, %%ebx;" "xorl %%ecx, %%ecx;" "xorl %%edx, %%edx;" "movl $0, %%eax;" "cpuid;" "movl %%ebx, %0;" "movl %%edx, %1;" "movl %%ecx, %2;" "movl %%eax, %3;" : "=m" (cpuid_vendor[0]), "=m" (cpuid_vendor[4]), "=m" (cpuid_vendor[8]), "=m" (cpuid_max) : : "%eax", "%ebx", "%ecx", "%edx"); cpuid_vendor[12] = '\0'; } printf_filtered ("CPU Type.......................%s", u.machine); if (cpuid_vendor[0]) printf_filtered (" (%s)", cpuid_vendor); puts_filtered ("\n"); /* CPUID with EAX = 1 returns processor signature and features. */ if (cpuid_max >= 1) { static char *brand_name[] = { "", " Celeron", " III", " III Xeon", "", "", "", "", " 4" }; char cpu_string[80]; char cpu_brand[20]; unsigned brand_idx; int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0; int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0; unsigned cpu_family, cpu_model; __asm__ __volatile__ ("movl $1, %%eax;" "cpuid;" : "=a" (cpuid_eax), "=b" (cpuid_ebx), "=d" (cpuid_edx) : : "%ecx"); brand_idx = cpuid_ebx & 0xff; cpu_family = (cpuid_eax >> 8) & 0xf; cpu_model = (cpuid_eax >> 4) & 0xf; cpu_brand[0] = '\0'; if (intel_p) { if (brand_idx > 0 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0]) && *brand_name[brand_idx]) strcpy (cpu_brand, brand_name[brand_idx]); else if (cpu_family == 5) { if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4) strcpy (cpu_brand, " MMX"); else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1) strcpy (cpu_brand, " OverDrive"); else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2) strcpy (cpu_brand, " Dual"); } else if (cpu_family == 6 && cpu_model < 8) { switch (cpu_model) { case 1: strcpy (cpu_brand, " Pro"); break; case 3: strcpy (cpu_brand, " II"); break; case 5: strcpy (cpu_brand, " II Xeon"); break; case 6: strcpy (cpu_brand, " Celeron"); break; case 7: strcpy (cpu_brand, " III"); break; } } } else if (amd_p) { switch (cpu_family) { case 4: strcpy (cpu_brand, "486/5x86"); break; case 5: switch (cpu_model) { case 0: case 1: case 2: case 3: strcpy (cpu_brand, "-K5"); break; case 6: case 7: strcpy (cpu_brand, "-K6"); break; case 8: strcpy (cpu_brand, "-K6-2"); break; case 9: strcpy (cpu_brand, "-K6-III"); break; } break; case 6: switch (cpu_model) { case 1: case 2: case 4: strcpy (cpu_brand, " Athlon"); break; case 3: strcpy (cpu_brand, " Duron"); break; } break; } } sprintf (cpu_string, "%s%s Model %d Stepping %d", intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"), cpu_brand, cpu_model, cpuid_eax & 0xf); printfi_filtered (31, "%s\n", cpu_string); if (((cpuid_edx & (6 | (0x0d << 23))) != 0) || ((cpuid_edx & 1) == 0) || (amd_p && (cpuid_edx & (3 << 30)) != 0)) { puts_filtered ("CPU Features..................."); /* We only list features which might be useful in the DPMI environment. */ if ((cpuid_edx & 1) == 0) puts_filtered ("No FPU "); /* it's unusual to not have an FPU */ if ((cpuid_edx & (1 << 1)) != 0) puts_filtered ("VME "); if ((cpuid_edx & (1 << 2)) != 0) puts_filtered ("DE "); if ((cpuid_edx & (1 << 4)) != 0) puts_filtered ("TSC "); if ((cpuid_edx & (1 << 23)) != 0) puts_filtered ("MMX "); if ((cpuid_edx & (1 << 25)) != 0) puts_filtered ("SSE "); if ((cpuid_edx & (1 << 26)) != 0) puts_filtered ("SSE2 "); if (amd_p) { if ((cpuid_edx & (1 << 31)) != 0) puts_filtered ("3DNow! "); if ((cpuid_edx & (1 << 30)) != 0) puts_filtered ("3DNow!Ext"); } puts_filtered ("\n"); } } puts_filtered ("\n"); printf_filtered ("DOS Version....................%s %s.%s", _os_flavor, u.release, u.version); if (true_dos_version != advertized_dos_version) printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor); puts_filtered ("\n"); if (!windows_major) go32_get_windows_version (); if (windows_major != 0xff) { const char *windows_flavor; printf_filtered ("Windows Version................%d.%02d (Windows ", windows_major, windows_minor); switch (windows_major) { case 3: windows_flavor = "3.X"; break; case 4: switch (windows_minor) { case 0: windows_flavor = "95, 95A, or 95B"; break; case 3: windows_flavor = "95B OSR2.1 or 95C OSR2.5"; break; case 10: windows_flavor = "98 or 98 SE"; break; case 90: windows_flavor = "ME"; break; default: windows_flavor = "9X"; break; } break; default: windows_flavor = "??"; break; } printf_filtered ("%s)\n", windows_flavor); } else if (true_dos_version == 0x532 && advertized_dos_version == 0x500) printf_filtered ("Windows Version................Windows NT or Windows 2000\n"); puts_filtered ("\n"); if (dpmi_vendor_available == 0) { /* The DPMI spec says the vendor string should be ASCIIZ, but I don't trust the vendors to follow that... */ if (!memchr (&dpmi_vendor_info[2], 0, 126)) dpmi_vendor_info[128] = '\0'; printf_filtered ("DPMI Host......................%s v%d.%d (capabilities: %#x)\n", &dpmi_vendor_info[2], (unsigned)dpmi_vendor_info[0], (unsigned)dpmi_vendor_info[1], ((unsigned)dpmi_flags & 0x7f)); } __dpmi_get_version (&dpmi_version_data); printf_filtered ("DPMI Version...................%d.%02d\n", dpmi_version_data.major, dpmi_version_data.minor); printf_filtered ("DPMI Info......................%s-bit DPMI, with%s Virtual Memory support\n", (dpmi_version_data.flags & 1) ? "32" : "16", (dpmi_version_data.flags & 4) ? "" : "out"); printfi_filtered (31, "Interrupts reflected to %s mode\n", (dpmi_version_data.flags & 2) ? "V86" : "Real"); printfi_filtered (31, "Processor type: i%d86\n", dpmi_version_data.cpu); printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n", dpmi_version_data.master_pic, dpmi_version_data.slave_pic); /* a_tss is only initialized when the debuggee is first run. */ if (prog_has_started) { __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags)); printf_filtered ("Protection.....................Ring %d (in %s), with%s I/O protection\n", a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT", (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out"); } puts_filtered ("\n"); __dpmi_get_free_memory_information (&mem_info); print_mem (mem_info.total_number_of_physical_pages, "DPMI Total Physical Memory.....", 1); print_mem (mem_info.total_number_of_free_pages, "DPMI Free Physical Memory......", 1); print_mem (mem_info.size_of_paging_file_partition_in_pages, "DPMI Swap Space................", 1); print_mem (mem_info.linear_address_space_size_in_pages, "DPMI Total Linear Address Size.", 1); print_mem (mem_info.free_linear_address_space_in_pages, "DPMI Free Linear Address Size..", 1); print_mem (mem_info.largest_available_free_block_in_bytes, "DPMI Largest Free Memory Block.", 0); regs.h.ah = 0x48; regs.x.bx = 0xffff; __dpmi_int (0x21, ®s); print_mem (regs.x.bx << 4, "Free DOS Memory................", 0); regs.x.ax = 0x5800; __dpmi_int (0x21, ®s); if ((regs.x.flags & 1) == 0) { static const char *dos_hilo[] = { "Low", "", "", "", "High", "", "", "", "High, then Low" }; static const char *dos_fit[] = { "First", "Best", "Last" }; int hilo_idx = (regs.x.ax >> 4) & 0x0f; int fit_idx = regs.x.ax & 0x0f; if (hilo_idx > 8) hilo_idx = 0; if (fit_idx > 2) fit_idx = 0; printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n", dos_hilo[hilo_idx], dos_fit[fit_idx]); regs.x.ax = 0x5802; __dpmi_int (0x21, ®s); if ((regs.x.flags & 1) != 0) regs.h.al = 0; printfi_filtered (31, "UMBs %sin DOS memory chain\n", regs.h.al == 0 ? "not " : ""); } } struct seg_descr { unsigned short limit0 __attribute__((packed)); unsigned short base0 __attribute__((packed)); unsigned char base1 __attribute__((packed)); unsigned stype:5 __attribute__((packed)); unsigned dpl:2 __attribute__((packed)); unsigned present:1 __attribute__((packed)); unsigned limit1:4 __attribute__((packed)); unsigned available:1 __attribute__((packed)); unsigned dummy:1 __attribute__((packed)); unsigned bit32:1 __attribute__((packed)); unsigned page_granular:1 __attribute__((packed)); unsigned char base2 __attribute__((packed)); }; struct gate_descr { unsigned short offset0 __attribute__((packed)); unsigned short selector __attribute__((packed)); unsigned param_count:5 __attribute__((packed)); unsigned dummy:3 __attribute__((packed)); unsigned stype:5 __attribute__((packed)); unsigned dpl:2 __attribute__((packed)); unsigned present:1 __attribute__((packed)); unsigned short offset1 __attribute__((packed)); }; /* Read LEN bytes starting at logical address ADDR, and put the result into DEST. Return 1 if success, zero if not. */ static int read_memory_region (unsigned long addr, void *dest, size_t len) { unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds); /* For the low memory, we can simply use _dos_ds. */ if (addr <= dos_ds_limit - len) dosmemget (addr, len, dest); else { /* For memory above 1MB we need to set up a special segment to be able to access that memory. */ int sel = __dpmi_allocate_ldt_descriptors (1); if (sel <= 0 || __dpmi_set_segment_base_address (sel, addr) == -1 || __dpmi_set_segment_limit (sel, len - 1) == -1) return 0; movedata (sel, 0, _my_ds (), (unsigned)dest, len); __dpmi_free_ldt_descriptor (sel); } return 1; } /* Get a segment descriptor stored at index IDX in the descriptor table whose base address is TABLE_BASE. Return the descriptor type, or -1 if failure. */ static int get_descriptor (unsigned long table_base, int idx, void *descr) { unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */ if (read_memory_region (addr, descr, 8)) return (int)((struct seg_descr *)descr)->stype; return -1; } struct dtr_reg { unsigned short limit __attribute__((packed)); unsigned long base __attribute__((packed)); }; /* Display a segment descriptor stored at index IDX in a descriptor table whose type is TYPE and whose base address is BASE_ADDR. If FORCE is non-zero, display even invalid descriptors. */ static void display_descriptor (unsigned type, unsigned long base_addr, int idx, int force) { struct seg_descr descr; struct gate_descr gate; /* Get the descriptor from the table. */ if (idx == 0 && type == 0) puts_filtered ("0x000: null descriptor\n"); else if (get_descriptor (base_addr, idx, &descr) != -1) { /* For each type of descriptor table, this has a bit set if the corresponding type of selectors is valid in that table. */ static unsigned allowed_descriptors[] = { 0xffffdafeL, /* GDT */ 0x0000c0e0L, /* IDT */ 0xffffdafaL /* LDT */ }; /* If the program hasn't started yet, assume the debuggee will have the same CPL as the debugger. */ int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3; unsigned long limit = (descr.limit1 << 16) | descr.limit0; if (descr.present && (allowed_descriptors[type] & (1 << descr.stype)) != 0) { printf_filtered ("0x%03x: ", type == 1 ? idx : (idx * 8) | (type ? (cpl | 4) : 0)); if (descr.page_granular) limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */ if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3 || descr.stype == 9 || descr.stype == 11 || (descr.stype >= 16 && descr.stype < 32)) printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx", descr.base2, descr.base1, descr.base0, limit); switch (descr.stype) { case 1: case 3: printf_filtered (" 16-bit TSS (task %sactive)", descr.stype == 3 ? "" : "in"); break; case 2: puts_filtered (" LDT"); break; case 4: memcpy (&gate, &descr, sizeof gate); printf_filtered ("selector=0x%04x offs=0x%04x%04x", gate.selector, gate.offset1, gate.offset0); printf_filtered (" 16-bit Call Gate (params=%d)", gate.param_count); break; case 5: printf_filtered ("TSS selector=0x%04x", descr.base0); printfi_filtered (16, "Task Gate"); break; case 6: case 7: memcpy (&gate, &descr, sizeof gate); printf_filtered ("selector=0x%04x offs=0x%04x%04x", gate.selector, gate.offset1, gate.offset0); printf_filtered (" 16-bit %s Gate", descr.stype == 6 ? "Interrupt" : "Trap"); break; case 9: case 11: printf_filtered (" 32-bit TSS (task %sactive)", descr.stype == 3 ? "" : "in"); break; case 12: memcpy (&gate, &descr, sizeof gate); printf_filtered ("selector=0x%04x offs=0x%04x%04x", gate.selector, gate.offset1, gate.offset0); printf_filtered (" 32-bit Call Gate (params=%d)", gate.param_count); break; case 14: case 15: memcpy (&gate, &descr, sizeof gate); printf_filtered ("selector=0x%04x offs=0x%04x%04x", gate.selector, gate.offset1, gate.offset0); printf_filtered (" 32-bit %s Gate", descr.stype == 14 ? "Interrupt" : "Trap"); break; case 16: /* data segments */ case 17: case 18: case 19: case 20: case 21: case 22: case 23: printf_filtered (" %s-bit Data (%s Exp-%s%s)", descr.bit32 ? "32" : "16", descr.stype & 2 ? "Read/Write," : "Read-Only, ", descr.stype & 4 ? "down" : "up", descr.stype & 1 ? "" : ", N.Acc"); break; case 24: /* code segments */ case 25: case 26: case 27: case 28: case 29: case 30: case 31: printf_filtered (" %s-bit Code (%s, %sConf%s)", descr.bit32 ? "32" : "16", descr.stype & 2 ? "Exec/Read" : "Exec-Only", descr.stype & 4 ? "" : "N.", descr.stype & 1 ? "" : ", N.Acc"); break; default: printf_filtered ("Unknown type 0x%02x", descr.stype); break; } puts_filtered ("\n"); } else if (force) { printf_filtered ("0x%03x: ", type == 1 ? idx : (idx * 8) | (type ? (cpl | 4) : 0)); if (!descr.present) puts_filtered ("Segment not present\n"); else printf_filtered ("Segment type 0x%02x is invalid in this table\n", descr.stype); } } else if (force) printf_filtered ("0x%03x: Cannot read this descriptor\n", idx); } static void go32_sldt (char *arg, int from_tty) { struct dtr_reg gdtr; unsigned short ldtr = 0; int ldt_idx; struct seg_descr ldt_descr; long ldt_entry = -1L; int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3; if (arg && *arg) { while (*arg && isspace(*arg)) arg++; if (*arg) { ldt_entry = parse_and_eval_long (arg); if (ldt_entry < 0 || (ldt_entry & 4) == 0 || (ldt_entry & 3) != (cpl & 3)) error ("Invalid LDT entry 0x%03x.", ldt_entry); } } __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ ); __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ ); ldt_idx = ldtr / 8; if (ldt_idx == 0) puts_filtered ("There is no LDT.\n"); /* LDT's entry in the GDT must have the type LDT, which is 2. */ else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2) printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n", ldt_descr.base0 | (ldt_descr.base1 << 16) | (ldt_descr.base2 << 24)); else { unsigned base = ldt_descr.base0 | (ldt_descr.base1 << 16) | (ldt_descr.base2 << 24); unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16); int max_entry; if (ldt_descr.page_granular) /* Page-granular segments must have the low 12 bits of their limit set. */ limit = (limit << 12) | 0xfff; /* LDT cannot have more than 8K 8-byte entries, i.e. more than 64KB. */ if (limit > 0xffff) limit = 0xffff; max_entry = (limit + 1) / 8; if (ldt_entry >= 0) { if (ldt_entry > limit) error ("Invalid LDT entry %#x: outside valid limits [0..%#x]", ldt_entry, limit); display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1); } else { int i; for (i = 0; i < max_entry; i++) display_descriptor (ldt_descr.stype, base, i, 0); } } } static void go32_sgdt (char *arg, int from_tty) { struct dtr_reg gdtr; long gdt_entry = -1L; int max_entry; if (arg && *arg) { while (*arg && isspace(*arg)) arg++; if (*arg) { gdt_entry = parse_and_eval_long (arg); if (gdt_entry < 0 || (gdt_entry & 7) != 0) error ("Invalid GDT entry 0x%03x: not an integral multiple of 8.", gdt_entry); } } __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ ); max_entry = (gdtr.limit + 1) / 8; if (gdt_entry >= 0) { if (gdt_entry > gdtr.limit) error ("Invalid GDT entry %#x: outside valid limits [0..%#x]", gdt_entry, gdtr.limit); display_descriptor (0, gdtr.base, gdt_entry / 8, 1); } else { int i; for (i = 0; i < max_entry; i++) display_descriptor (0, gdtr.base, i, 0); } } static void go32_sidt (char *arg, int from_tty) { struct dtr_reg idtr; long idt_entry = -1L; int max_entry; if (arg && *arg) { while (*arg && isspace(*arg)) arg++; if (*arg) { idt_entry = parse_and_eval_long (arg); if (idt_entry < 0) error ("Invalid (negative) IDT entry 0x%03x.", idt_entry); } } __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ ); max_entry = (idtr.limit + 1) / 8; if (max_entry > 0x100) /* no more than 256 entries */ max_entry = 0x100; if (idt_entry >= 0) { if (idt_entry > idtr.limit) error ("Invalid IDT entry %#x: outside valid limits [0..%#x]", idt_entry, idtr.limit); display_descriptor (1, idtr.base, idt_entry, 1); } else { int i; for (i = 0; i < max_entry; i++) display_descriptor (1, idtr.base, i, 0); } } static struct cmd_list_element *info_dos_cmdlist = NULL; static void go32_info_dos_command (char *args, int from_tty) { help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout); } void _initialize_go32_nat (void) { init_go32_ops (); add_target (&go32_ops); add_prefix_cmd ("dos", class_info, go32_info_dos_command, "Print information specific to DJGPP (a.k.a. MS-DOS) debugging.", &info_dos_cmdlist, "info dos ", 0, &infolist); add_cmd ("sysinfo", class_info, go32_sysinfo, "Display information about the target system, including CPU, OS, DPMI, etc.", &info_dos_cmdlist); add_cmd ("ldt", class_info, go32_sldt, "Display entries in the LDT (Local Descriptor Table).\n" "Entry number (an expression) as an argument means display only that entry.", &info_dos_cmdlist); add_cmd ("gdt", class_info, go32_sgdt, "Display entries in the GDT (Global Descriptor Table).\n" "Entry number (an expression) as an argument means display only that entry.", &info_dos_cmdlist); add_cmd ("idt", class_info, go32_sidt, "Display entries in the IDT (Interrupt Descriptor Table).\n" "Entry number (an expression) as an argument means display only that entry.", &info_dos_cmdlist); } pid_t tcgetpgrp (int fd) { if (isatty (fd)) return SOME_PID; errno = ENOTTY; return -1; } int tcsetpgrp (int fd, pid_t pgid) { if (isatty (fd) && pgid == SOME_PID) return 0; errno = pgid == SOME_PID ? ENOTTY : ENOSYS; return -1; }