/* Target operations for the remote server for GDB. Copyright 2002 Free Software Foundation, Inc. Contributed by MontaVista Software. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef TARGET_H #define TARGET_H /* This structure describes how to resume a particular thread (or all threads) based on the client's request. If thread is -1, then this entry applies to all threads. These are generally passed around as an array, and terminated by a thread == -1 entry. */ struct thread_resume { int thread; /* If non-zero, leave this thread stopped. */ int leave_stopped; /* If non-zero, we want to single-step. */ int step; /* If non-zero, send this signal when we resume. */ int sig; }; struct target_ops { /* Start a new process. PROGRAM is a path to the program to execute. ARGS is a standard NULL-terminated array of arguments, to be passed to the inferior as ``argv''. Returns the new PID on success, -1 on failure. Registers the new process with the process list. */ int (*create_inferior) (char *program, char **args); /* Attach to a running process. PID is the process ID to attach to, specified by the user or a higher layer. */ int (*attach) (int pid); /* Kill all inferiors. */ void (*kill) (void); /* Detach from all inferiors. */ void (*detach) (void); /* Return 1 iff the thread with process ID PID is alive. */ int (*thread_alive) (int pid); /* Resume the inferior process. */ void (*resume) (struct thread_resume *resume_info); /* Wait for the inferior process to change state. STATUSP will be filled in with a response code to send to GDB. Returns the signal which caused the process to stop. */ unsigned char (*wait) (char *status); /* Fetch registers from the inferior process. If REGNO is -1, fetch all registers; otherwise, fetch at least REGNO. */ void (*fetch_registers) (int regno); /* Store registers to the inferior process. If REGNO is -1, store all registers; otherwise, store at least REGNO. */ void (*store_registers) (int regno); /* Read memory from the inferior process. This should generally be called through read_inferior_memory, which handles breakpoint shadowing. Read LEN bytes at MEMADDR into a buffer at MYADDR. */ void (*read_memory) (CORE_ADDR memaddr, char *myaddr, int len); /* Write memory to the inferior process. This should generally be called through write_inferior_memory, which handles breakpoint shadowing. Write LEN bytes from the buffer at MYADDR to MEMADDR. Returns 0 on success and errno on failure. */ int (*write_memory) (CORE_ADDR memaddr, const char *myaddr, int len); /* Query GDB for the values of any symbols we're interested in. This function is called whenever we receive a "qSymbols::" query, which corresponds to every time more symbols (might) become available. NULL if we aren't interested in any symbols. */ void (*look_up_symbols) (void); /* Send a signal to the inferior process, however is appropriate. */ void (*send_signal) (int); }; extern struct target_ops *the_target; void set_target_ops (struct target_ops *); #define create_inferior(program, args) \ (*the_target->create_inferior) (program, args) #define myattach(pid) \ (*the_target->attach) (pid) #define kill_inferior() \ (*the_target->kill) () #define detach_inferior() \ (*the_target->detach) () #define mythread_alive(pid) \ (*the_target->thread_alive) (pid) #define fetch_inferior_registers(regno) \ (*the_target->fetch_registers) (regno) #define store_inferior_registers(regno) \ (*the_target->store_registers) (regno) unsigned char mywait (char *statusp, int connected_wait); void read_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len); int write_inferior_memory (CORE_ADDR memaddr, const char *myaddr, int len); void set_desired_inferior (int id); #endif /* TARGET_H */