/* Low level interface to SPUs, for the remote server for GDB. Copyright (C) 2006-2018 Free Software Foundation, Inc. Contributed by Ulrich Weigand . This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "server.h" #include "gdb_wait.h" #include #include #include #include #include "filestuff.h" #include "hostio.h" #include "nat/fork-inferior.h" /* Some older glibc versions do not define this. */ #ifndef __WNOTHREAD #define __WNOTHREAD 0x20000000 /* Don't wait on children of other threads in this group */ #endif #define PTRACE_TYPE_RET long #define PTRACE_TYPE_ARG3 long /* Number of registers. */ #define SPU_NUM_REGS 130 #define SPU_NUM_CORE_REGS 128 /* Special registers. */ #define SPU_ID_REGNUM 128 #define SPU_PC_REGNUM 129 /* PPU side system calls. */ #define INSTR_SC 0x44000002 #define NR_spu_run 0x0116 /* These are used in remote-utils.c. */ int using_threads = 0; /* Defined in auto-generated file reg-spu.c. */ void init_registers_spu (void); extern const struct target_desc *tdesc_spu; /* Software breakpoint instruction. */ static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff }; /* Fetch PPU register REGNO. */ static CORE_ADDR fetch_ppc_register (int regno) { PTRACE_TYPE_RET res; int tid = current_ptid.lwp (); #ifndef __powerpc64__ /* If running as a 32-bit process on a 64-bit system, we attempt to get the full 64-bit register content of the target process. If the PPC special ptrace call fails, we're on a 32-bit system; just fall through to the regular ptrace call in that case. */ { char buf[8]; errno = 0; ptrace ((PTRACE_TYPE_ARG1) PPC_PTRACE_PEEKUSR_3264, tid, (PTRACE_TYPE_ARG3) (regno * 8), buf); if (errno == 0) ptrace ((PTRACE_TYPE_ARG1) PPC_PTRACE_PEEKUSR_3264, tid, (PTRACE_TYPE_ARG3) (regno * 8 + 4), buf + 4); if (errno == 0) return (CORE_ADDR) *(unsigned long long *)buf; } #endif errno = 0; res = ptrace (PT_READ_U, tid, (PTRACE_TYPE_ARG3) (regno * sizeof (PTRACE_TYPE_RET)), 0); if (errno != 0) { char mess[128]; sprintf (mess, "reading PPC register #%d", regno); perror_with_name (mess); } return (CORE_ADDR) (unsigned long) res; } /* Fetch WORD from PPU memory at (aligned) MEMADDR in thread TID. */ static int fetch_ppc_memory_1 (int tid, CORE_ADDR memaddr, PTRACE_TYPE_RET *word) { errno = 0; #ifndef __powerpc64__ if (memaddr >> 32) { unsigned long long addr_8 = (unsigned long long) memaddr; ptrace ((PTRACE_TYPE_ARG1) PPC_PTRACE_PEEKTEXT_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word); } else #endif *word = ptrace (PT_READ_I, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, 0); return errno; } /* Store WORD into PPU memory at (aligned) MEMADDR in thread TID. */ static int store_ppc_memory_1 (int tid, CORE_ADDR memaddr, PTRACE_TYPE_RET word) { errno = 0; #ifndef __powerpc64__ if (memaddr >> 32) { unsigned long long addr_8 = (unsigned long long) memaddr; ptrace ((PTRACE_TYPE_ARG1) PPC_PTRACE_POKEDATA_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word); } else #endif ptrace (PT_WRITE_D, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, word); return errno; } /* Fetch LEN bytes of PPU memory at MEMADDR to MYADDR. */ static int fetch_ppc_memory (CORE_ADDR memaddr, char *myaddr, int len) { int i, ret; CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET); int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1) / sizeof (PTRACE_TYPE_RET)); PTRACE_TYPE_RET *buffer; int tid = current_ptid.lwp (); buffer = XALLOCAVEC (PTRACE_TYPE_RET, count); for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET)) if ((ret = fetch_ppc_memory_1 (tid, addr, &buffer[i])) != 0) return ret; memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)), len); return 0; } /* Store LEN bytes from MYADDR to PPU memory at MEMADDR. */ static int store_ppc_memory (CORE_ADDR memaddr, char *myaddr, int len) { int i, ret; CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET); int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1) / sizeof (PTRACE_TYPE_RET)); PTRACE_TYPE_RET *buffer; int tid = current_ptid.lwp (); buffer = XALLOCAVEC (PTRACE_TYPE_RET, count); if (addr != memaddr || len < (int) sizeof (PTRACE_TYPE_RET)) if ((ret = fetch_ppc_memory_1 (tid, addr, &buffer[0])) != 0) return ret; if (count > 1) if ((ret = fetch_ppc_memory_1 (tid, addr + (count - 1) * sizeof (PTRACE_TYPE_RET), &buffer[count - 1])) != 0) return ret; memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)), myaddr, len); for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET)) if ((ret = store_ppc_memory_1 (tid, addr, buffer[i])) != 0) return ret; return 0; } /* If the PPU thread is currently stopped on a spu_run system call, return to FD and ADDR the file handle and NPC parameter address used with the system call. Return non-zero if successful. */ static int parse_spufs_run (int *fd, CORE_ADDR *addr) { unsigned int insn; CORE_ADDR pc = fetch_ppc_register (32); /* nip */ /* Fetch instruction preceding current NIP. */ if (fetch_ppc_memory (pc-4, (char *) &insn, 4) != 0) return 0; /* It should be a "sc" instruction. */ if (insn != INSTR_SC) return 0; /* System call number should be NR_spu_run. */ if (fetch_ppc_register (0) != NR_spu_run) return 0; /* Register 3 contains fd, register 4 the NPC param pointer. */ *fd = fetch_ppc_register (34); /* orig_gpr3 */ *addr = fetch_ppc_register (4); return 1; } /* Copy LEN bytes at OFFSET in spufs file ANNEX into/from READBUF or WRITEBUF, using the /proc file system. */ static int spu_proc_xfer_spu (const char *annex, unsigned char *readbuf, const unsigned char *writebuf, CORE_ADDR offset, int len) { char buf[128]; int fd = 0; int ret = -1; if (!annex) return 0; sprintf (buf, "/proc/%ld/fd/%s", current_ptid.lwp (), annex); fd = open (buf, writebuf? O_WRONLY : O_RDONLY); if (fd <= 0) return -1; if (offset != 0 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset) { close (fd); return 0; } if (writebuf) ret = write (fd, writebuf, (size_t) len); else if (readbuf) ret = read (fd, readbuf, (size_t) len); close (fd); return ret; } /* Callback to be used when calling fork_inferior, responsible for actually initiating the tracing of the inferior. */ static void spu_ptrace_fun () { if (ptrace (PTRACE_TRACEME, 0, 0, 0) < 0) trace_start_error_with_name ("ptrace"); if (setpgid (0, 0) < 0) trace_start_error_with_name ("setpgid"); } /* Start an inferior process and returns its pid. PROGRAM is the name of the program to be started, and PROGRAM_ARGS are its arguments. */ static int spu_create_inferior (const char *program, const std::vector &program_args) { int pid; ptid_t ptid; struct process_info *proc; std::string str_program_args = stringify_argv (program_args); pid = fork_inferior (program, str_program_args.c_str (), get_environ ()->envp (), spu_ptrace_fun, NULL, NULL, NULL, NULL); post_fork_inferior (pid, program); proc = add_process (pid, 0); proc->tdesc = tdesc_spu; ptid = ptid_t (pid, pid, 0); add_thread (ptid, NULL); return pid; } /* Attach to an inferior process. */ int spu_attach (unsigned long pid) { ptid_t ptid; struct process_info *proc; if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0) { fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid, strerror (errno), errno); fflush (stderr); _exit (0177); } proc = add_process (pid, 1); proc->tdesc = tdesc_spu; ptid = ptid_t (pid, pid, 0); add_thread (ptid, NULL); return 0; } /* Kill the inferior process. */ static int spu_kill (process_info *process) { int status, ret; int pid = process->pid; ptrace (PTRACE_KILL, pid, 0, 0); do { ret = waitpid (pid, &status, 0); if (WIFEXITED (status) || WIFSIGNALED (status)) break; } while (ret != -1 || errno != ECHILD); clear_inferiors (); remove_process (process); return 0; } /* Detach from inferior process. */ static int spu_detach (process_info *process) { ptrace (PTRACE_DETACH, process->pid, 0, 0); clear_inferiors (); remove_process (process); return 0; } static void spu_mourn (struct process_info *process) { remove_process (process); } static void spu_join (int pid) { int status, ret; do { ret = waitpid (pid, &status, 0); if (WIFEXITED (status) || WIFSIGNALED (status)) break; } while (ret != -1 || errno != ECHILD); } /* Return nonzero if the given thread is still alive. */ static int spu_thread_alive (ptid_t ptid) { return ptid == current_ptid; } /* Resume process. */ static void spu_resume (struct thread_resume *resume_info, size_t n) { struct thread_info *thr = get_first_thread (); size_t i; for (i = 0; i < n; i++) if (resume_info[i].thread == minus_one_ptid || resume_info[i].thread == ptid_of (thr)) break; if (i == n) return; /* We don't support hardware single-stepping right now, assume GDB knows to use software single-stepping. */ if (resume_info[i].kind == resume_step) fprintf (stderr, "Hardware single-step not supported.\n"); regcache_invalidate (); errno = 0; ptrace (PTRACE_CONT, ptid_of (thr).lwp (), 0, resume_info[i].sig); if (errno) perror_with_name ("ptrace"); } /* Wait for process, returns status. */ static ptid_t spu_wait (ptid_t ptid, struct target_waitstatus *ourstatus, int options) { int pid = ptid.pid (); int w; int ret; while (1) { ret = waitpid (pid, &w, WNOHANG | __WALL | __WNOTHREAD); if (ret == -1) { if (errno != ECHILD) perror_with_name ("waitpid"); } else if (ret > 0) break; usleep (1000); } /* On the first wait, continue running the inferior until we are blocked inside an spu_run system call. */ if (!server_waiting) { int fd; CORE_ADDR addr; while (!parse_spufs_run (&fd, &addr)) { ptrace (PT_SYSCALL, pid, (PTRACE_TYPE_ARG3) 0, 0); waitpid (pid, NULL, __WALL | __WNOTHREAD); } } if (WIFEXITED (w)) { fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w)); ourstatus->kind = TARGET_WAITKIND_EXITED; ourstatus->value.integer = WEXITSTATUS (w); clear_inferiors (); return ptid_t (ret); } else if (!WIFSTOPPED (w)) { fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w)); ourstatus->kind = TARGET_WAITKIND_SIGNALLED; ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w)); clear_inferiors (); return ptid_t (ret); } /* After attach, we may have received a SIGSTOP. Do not return this as signal to GDB, or else it will try to continue with SIGSTOP ... */ if (!server_waiting) { ourstatus->kind = TARGET_WAITKIND_STOPPED; ourstatus->value.sig = GDB_SIGNAL_0; return ptid_t (ret, ret, 0); } ourstatus->kind = TARGET_WAITKIND_STOPPED; ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w)); return ptid_t (ret, ret, 0); } /* Fetch inferior registers. */ static void spu_fetch_registers (struct regcache *regcache, int regno) { int fd; CORE_ADDR addr; /* We must be stopped on a spu_run system call. */ if (!parse_spufs_run (&fd, &addr)) return; /* The ID register holds the spufs file handle. */ if (regno == -1 || regno == SPU_ID_REGNUM) supply_register (regcache, SPU_ID_REGNUM, (char *)&fd); /* The NPC register is found at ADDR. */ if (regno == -1 || regno == SPU_PC_REGNUM) { char buf[4]; if (fetch_ppc_memory (addr, buf, 4) == 0) supply_register (regcache, SPU_PC_REGNUM, buf); } /* The GPRs are found in the "regs" spufs file. */ if (regno == -1 || (regno >= 0 && regno < SPU_NUM_CORE_REGS)) { unsigned char buf[16*SPU_NUM_CORE_REGS]; char annex[32]; int i; sprintf (annex, "%d/regs", fd); if (spu_proc_xfer_spu (annex, buf, NULL, 0, sizeof buf) == sizeof buf) for (i = 0; i < SPU_NUM_CORE_REGS; i++) supply_register (regcache, i, buf + i*16); } } /* Store inferior registers. */ static void spu_store_registers (struct regcache *regcache, int regno) { int fd; CORE_ADDR addr; /* ??? Some callers use 0 to mean all registers. */ if (regno == 0) regno = -1; /* We must be stopped on a spu_run system call. */ if (!parse_spufs_run (&fd, &addr)) return; /* The NPC register is found at ADDR. */ if (regno == -1 || regno == SPU_PC_REGNUM) { char buf[4]; collect_register (regcache, SPU_PC_REGNUM, buf); store_ppc_memory (addr, buf, 4); } /* The GPRs are found in the "regs" spufs file. */ if (regno == -1 || (regno >= 0 && regno < SPU_NUM_CORE_REGS)) { unsigned char buf[16*SPU_NUM_CORE_REGS]; char annex[32]; int i; for (i = 0; i < SPU_NUM_CORE_REGS; i++) collect_register (regcache, i, buf + i*16); sprintf (annex, "%d/regs", fd); spu_proc_xfer_spu (annex, NULL, buf, 0, sizeof buf); } } /* Copy LEN bytes from inferior's memory starting at MEMADDR to debugger memory starting at MYADDR. */ static int spu_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len) { int fd, ret; CORE_ADDR addr; char annex[32], lslr_annex[32], buf[32]; CORE_ADDR lslr; /* We must be stopped on a spu_run system call. */ if (!parse_spufs_run (&fd, &addr)) return 0; /* Use the "mem" spufs file to access SPU local store. */ sprintf (annex, "%d/mem", fd); ret = spu_proc_xfer_spu (annex, myaddr, NULL, memaddr, len); if (ret > 0) return ret == len ? 0 : EIO; /* SPU local store access wraps the address around at the local store limit. We emulate this here. To avoid needing an extra access to retrieve the LSLR, we only do that after trying the original address first, and getting end-of-file. */ sprintf (lslr_annex, "%d/lslr", fd); memset (buf, 0, sizeof buf); if (spu_proc_xfer_spu (lslr_annex, (unsigned char *)buf, NULL, 0, sizeof buf) <= 0) return ret; lslr = strtoul (buf, NULL, 16); ret = spu_proc_xfer_spu (annex, myaddr, NULL, memaddr & lslr, len); return ret == len ? 0 : EIO; } /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's memory at MEMADDR. On failure (cannot write the inferior) returns the value of errno. */ static int spu_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len) { int fd, ret; CORE_ADDR addr; char annex[32], lslr_annex[32], buf[32]; CORE_ADDR lslr; /* We must be stopped on a spu_run system call. */ if (!parse_spufs_run (&fd, &addr)) return 0; /* Use the "mem" spufs file to access SPU local store. */ sprintf (annex, "%d/mem", fd); ret = spu_proc_xfer_spu (annex, NULL, myaddr, memaddr, len); if (ret > 0) return ret == len ? 0 : EIO; /* SPU local store access wraps the address around at the local store limit. We emulate this here. To avoid needing an extra access to retrieve the LSLR, we only do that after trying the original address first, and getting end-of-file. */ sprintf (lslr_annex, "%d/lslr", fd); memset (buf, 0, sizeof buf); if (spu_proc_xfer_spu (lslr_annex, (unsigned char *)buf, NULL, 0, sizeof buf) <= 0) return ret; lslr = strtoul (buf, NULL, 16); ret = spu_proc_xfer_spu (annex, NULL, myaddr, memaddr & lslr, len); return ret == len ? 0 : EIO; } /* Look up special symbols -- unneded here. */ static void spu_look_up_symbols (void) { } /* Send signal to inferior. */ static void spu_request_interrupt (void) { struct thread_info *thr = get_first_thread (); syscall (SYS_tkill, lwpid_of (thr), SIGINT); } /* Implementation of the target_ops method "sw_breakpoint_from_kind". */ static const gdb_byte * spu_sw_breakpoint_from_kind (int kind, int *size) { *size = sizeof breakpoint; return breakpoint; } static struct target_ops spu_target_ops = { spu_create_inferior, NULL, /* post_create_inferior */ spu_attach, spu_kill, spu_detach, spu_mourn, spu_join, spu_thread_alive, spu_resume, spu_wait, spu_fetch_registers, spu_store_registers, NULL, /* prepare_to_access_memory */ NULL, /* done_accessing_memory */ spu_read_memory, spu_write_memory, spu_look_up_symbols, spu_request_interrupt, NULL, NULL, /* supports_z_point_type */ NULL, NULL, NULL, /* stopped_by_sw_breakpoint */ NULL, /* supports_stopped_by_sw_breakpoint */ NULL, /* stopped_by_hw_breakpoint */ NULL, /* supports_stopped_by_hw_breakpoint */ NULL, /* supports_hardware_single_step */ NULL, NULL, NULL, NULL, spu_proc_xfer_spu, hostio_last_error_from_errno, NULL, /* qxfer_osdata */ NULL, /* qxfer_siginfo */ NULL, /* supports_non_stop */ NULL, /* async */ NULL, /* start_non_stop */ NULL, /* supports_multi_process */ NULL, /* supports_fork_events */ NULL, /* supports_vfork_events */ NULL, /* supports_exec_events */ NULL, /* handle_new_gdb_connection */ NULL, /* handle_monitor_command */ NULL, /* core_of_thread */ NULL, /* read_loadmap */ NULL, /* process_qsupported */ NULL, /* supports_tracepoints */ NULL, /* read_pc */ NULL, /* write_pc */ NULL, /* thread_stopped */ NULL, /* get_tib_address */ NULL, /* pause_all */ NULL, /* unpause_all */ NULL, /* stabilize_threads */ NULL, /* install_fast_tracepoint_jump_pad */ NULL, /* emit_ops */ NULL, /* supports_disable_randomization */ NULL, /* get_min_fast_tracepoint_insn_len */ NULL, /* qxfer_libraries_svr4 */ NULL, /* support_agent */ NULL, /* enable_btrace */ NULL, /* disable_btrace */ NULL, /* read_btrace */ NULL, /* read_btrace_conf */ NULL, /* supports_range_stepping */ NULL, /* pid_to_exec_file */ NULL, /* multifs_open */ NULL, /* multifs_unlink */ NULL, /* multifs_readlink */ NULL, /* breakpoint_kind_from_pc */ spu_sw_breakpoint_from_kind, }; void initialize_low (void) { set_target_ops (&spu_target_ops); init_registers_spu (); }