/* Main code for remote server for GDB. Copyright (C) 1989, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "server.h" #if HAVE_UNISTD_H #include #endif #if HAVE_SIGNAL_H #include #endif #if HAVE_SYS_WAIT_H #include #endif #if HAVE_MALLOC_H #include #endif ptid_t cont_thread; ptid_t general_thread; ptid_t step_thread; int server_waiting; static int extended_protocol; static int response_needed; static int exit_requested; int multi_process; int non_stop; static char **program_argv, **wrapper_argv; /* Enable miscellaneous debugging output. The name is historical - it was originally used to debug LinuxThreads support. */ int debug_threads; /* Enable debugging of h/w breakpoint/watchpoint support. */ int debug_hw_points; int pass_signals[TARGET_SIGNAL_LAST]; jmp_buf toplevel; const char *gdbserver_xmltarget; /* The PID of the originally created or attached inferior. Used to send signals to the process when GDB sends us an asynchronous interrupt (user hitting Control-C in the client), and to wait for the child to exit when no longer debugging it. */ unsigned long signal_pid; #ifdef SIGTTOU /* A file descriptor for the controlling terminal. */ int terminal_fd; /* TERMINAL_FD's original foreground group. */ pid_t old_foreground_pgrp; /* Hand back terminal ownership to the original foreground group. */ static void restore_old_foreground_pgrp (void) { tcsetpgrp (terminal_fd, old_foreground_pgrp); } #endif /* Set if you want to disable optional thread related packets support in gdbserver, for the sake of testing GDB against stubs that don't support them. */ int disable_packet_vCont; int disable_packet_Tthread; int disable_packet_qC; int disable_packet_qfThreadInfo; /* Last status reported to GDB. */ static struct target_waitstatus last_status; static ptid_t last_ptid; static char *own_buf; static unsigned char *mem_buf; /* Structure holding information relative to a single stop reply. We keep a queue of these (really a singly-linked list) to push to GDB in non-stop mode. */ struct vstop_notif { /* Pointer to next in list. */ struct vstop_notif *next; /* Thread or process that got the event. */ ptid_t ptid; /* Event info. */ struct target_waitstatus status; }; /* The pending stop replies list head. */ static struct vstop_notif *notif_queue = NULL; /* Put a stop reply to the stop reply queue. */ static void queue_stop_reply (ptid_t ptid, struct target_waitstatus *status) { struct vstop_notif *new_notif; new_notif = malloc (sizeof (*new_notif)); new_notif->next = NULL; new_notif->ptid = ptid; new_notif->status = *status; if (notif_queue) { struct vstop_notif *tail; for (tail = notif_queue; tail && tail->next; tail = tail->next) ; tail->next = new_notif; } else notif_queue = new_notif; if (remote_debug) { int i = 0; struct vstop_notif *n; for (n = notif_queue; n; n = n->next) i++; fprintf (stderr, "pending stop replies: %d\n", i); } } /* Place an event in the stop reply queue, and push a notification if we aren't sending one yet. */ void push_event (ptid_t ptid, struct target_waitstatus *status) { queue_stop_reply (ptid, status); /* If this is the first stop reply in the queue, then inform GDB about it, by sending a Stop notification. */ if (notif_queue->next == NULL) { char *p = own_buf; strcpy (p, "Stop:"); p += strlen (p); prepare_resume_reply (p, notif_queue->ptid, ¬if_queue->status); putpkt_notif (own_buf); } } /* Get rid of the currently pending stop replies for PID. If PID is -1, then apply to all processes. */ static void discard_queued_stop_replies (int pid) { struct vstop_notif *prev = NULL, *reply, *next; for (reply = notif_queue; reply; reply = next) { next = reply->next; if (pid == -1 || ptid_get_pid (reply->ptid) == pid) { if (reply == notif_queue) notif_queue = next; else prev->next = reply->next; free (reply); } else prev = reply; } } /* If there are more stop replies to push, push one now. */ static void send_next_stop_reply (char *own_buf) { if (notif_queue) prepare_resume_reply (own_buf, notif_queue->ptid, ¬if_queue->status); else write_ok (own_buf); } static int target_running (void) { return all_threads.head != NULL; } static int start_inferior (char **argv) { char **new_argv = argv; if (wrapper_argv != NULL) { int i, count = 1; for (i = 0; wrapper_argv[i] != NULL; i++) count++; for (i = 0; argv[i] != NULL; i++) count++; new_argv = alloca (sizeof (char *) * count); count = 0; for (i = 0; wrapper_argv[i] != NULL; i++) new_argv[count++] = wrapper_argv[i]; for (i = 0; argv[i] != NULL; i++) new_argv[count++] = argv[i]; new_argv[count] = NULL; } #ifdef SIGTTOU signal (SIGTTOU, SIG_DFL); signal (SIGTTIN, SIG_DFL); #endif signal_pid = create_inferior (new_argv[0], new_argv); /* FIXME: we don't actually know at this point that the create actually succeeded. We won't know that until we wait. */ fprintf (stderr, "Process %s created; pid = %ld\n", argv[0], signal_pid); fflush (stderr); #ifdef SIGTTOU signal (SIGTTOU, SIG_IGN); signal (SIGTTIN, SIG_IGN); terminal_fd = fileno (stderr); old_foreground_pgrp = tcgetpgrp (terminal_fd); tcsetpgrp (terminal_fd, signal_pid); atexit (restore_old_foreground_pgrp); #endif if (wrapper_argv != NULL) { struct thread_resume resume_info; ptid_t ptid; resume_info.thread = pid_to_ptid (signal_pid); resume_info.kind = resume_continue; resume_info.sig = 0; ptid = mywait (pid_to_ptid (signal_pid), &last_status, 0, 0); if (last_status.kind != TARGET_WAITKIND_STOPPED) return signal_pid; do { (*the_target->resume) (&resume_info, 1); mywait (pid_to_ptid (signal_pid), &last_status, 0, 0); if (last_status.kind != TARGET_WAITKIND_STOPPED) return signal_pid; } while (last_status.value.sig != TARGET_SIGNAL_TRAP); return signal_pid; } /* Wait till we are at 1st instruction in program, return new pid (assuming success). */ last_ptid = mywait (pid_to_ptid (signal_pid), &last_status, 0, 0); return signal_pid; } static int attach_inferior (int pid) { /* myattach should return -1 if attaching is unsupported, 0 if it succeeded, and call error() otherwise. */ if (myattach (pid) != 0) return -1; fprintf (stderr, "Attached; pid = %d\n", pid); fflush (stderr); /* FIXME - It may be that we should get the SIGNAL_PID from the attach function, so that it can be the main thread instead of whichever we were told to attach to. */ signal_pid = pid; if (!non_stop) { last_ptid = mywait (pid_to_ptid (pid), &last_status, 0, 0); /* GDB knows to ignore the first SIGSTOP after attaching to a running process using the "attach" command, but this is different; it's just using "target remote". Pretend it's just starting up. */ if (last_status.kind == TARGET_WAITKIND_STOPPED && last_status.value.sig == TARGET_SIGNAL_STOP) last_status.value.sig = TARGET_SIGNAL_TRAP; } return 0; } extern int remote_debug; /* Decode a qXfer read request. Return 0 if everything looks OK, or -1 otherwise. */ static int decode_xfer_read (char *buf, char **annex, CORE_ADDR *ofs, unsigned int *len) { /* Extract and NUL-terminate the annex. */ *annex = buf; while (*buf && *buf != ':') buf++; if (*buf == '\0') return -1; *buf++ = 0; /* After the read marker and annex, qXfer looks like a traditional 'm' packet. */ decode_m_packet (buf, ofs, len); return 0; } /* Write the response to a successful qXfer read. Returns the length of the (binary) data stored in BUF, corresponding to as much of DATA/LEN as we could fit. IS_MORE controls the first character of the response. */ static int write_qxfer_response (char *buf, const void *data, int len, int is_more) { int out_len; if (is_more) buf[0] = 'm'; else buf[0] = 'l'; return remote_escape_output (data, len, (unsigned char *) buf + 1, &out_len, PBUFSIZ - 2) + 1; } /* Handle all of the extended 'Q' packets. */ void handle_general_set (char *own_buf) { if (strncmp ("QPassSignals:", own_buf, strlen ("QPassSignals:")) == 0) { int numsigs = (int) TARGET_SIGNAL_LAST, i; const char *p = own_buf + strlen ("QPassSignals:"); CORE_ADDR cursig; p = decode_address_to_semicolon (&cursig, p); for (i = 0; i < numsigs; i++) { if (i == cursig) { pass_signals[i] = 1; if (*p == '\0') /* Keep looping, to clear the remaining signals. */ cursig = -1; else p = decode_address_to_semicolon (&cursig, p); } else pass_signals[i] = 0; } strcpy (own_buf, "OK"); return; } if (strcmp (own_buf, "QStartNoAckMode") == 0) { if (remote_debug) { fprintf (stderr, "[noack mode enabled]\n"); fflush (stderr); } noack_mode = 1; write_ok (own_buf); return; } if (strncmp (own_buf, "QNonStop:", 9) == 0) { char *mode = own_buf + 9; int req = -1; char *req_str; if (strcmp (mode, "0") == 0) req = 0; else if (strcmp (mode, "1") == 0) req = 1; else { /* We don't know what this mode is, so complain to GDB. */ fprintf (stderr, "Unknown non-stop mode requested: %s\n", own_buf); write_enn (own_buf); return; } req_str = req ? "non-stop" : "all-stop"; if (start_non_stop (req) != 0) { fprintf (stderr, "Setting %s mode failed\n", req_str); write_enn (own_buf); return; } non_stop = req; if (remote_debug) fprintf (stderr, "[%s mode enabled]\n", req_str); write_ok (own_buf); return; } /* Otherwise we didn't know what packet it was. Say we didn't understand it. */ own_buf[0] = 0; } static const char * get_features_xml (const char *annex) { /* gdbserver_xmltarget defines what to return when looking for the "target.xml" file. Its contents can either be verbatim XML code (prefixed with a '@') or else the name of the actual XML file to be used in place of "target.xml". This variable is set up from the auto-generated init_registers_... routine for the current target. */ if (gdbserver_xmltarget && strcmp (annex, "target.xml") == 0) { if (*gdbserver_xmltarget == '@') return gdbserver_xmltarget + 1; else annex = gdbserver_xmltarget; } #ifdef USE_XML { extern const char *const xml_builtin[][2]; int i; /* Look for the annex. */ for (i = 0; xml_builtin[i][0] != NULL; i++) if (strcmp (annex, xml_builtin[i][0]) == 0) break; if (xml_builtin[i][0] != NULL) return xml_builtin[i][1]; } #endif return NULL; } void monitor_show_help (void) { monitor_output ("The following monitor commands are supported:\n"); monitor_output (" set debug <0|1>\n"); monitor_output (" Enable general debugging messages\n"); monitor_output (" set debug-hw-points <0|1>\n"); monitor_output (" Enable h/w breakpoint/watchpoint debugging messages\n"); monitor_output (" set remote-debug <0|1>\n"); monitor_output (" Enable remote protocol debugging messages\n"); monitor_output (" exit\n"); monitor_output (" Quit GDBserver\n"); } /* Subroutine of handle_search_memory to simplify it. */ static int handle_search_memory_1 (CORE_ADDR start_addr, CORE_ADDR search_space_len, gdb_byte *pattern, unsigned pattern_len, gdb_byte *search_buf, unsigned chunk_size, unsigned search_buf_size, CORE_ADDR *found_addrp) { /* Prime the search buffer. */ if (read_inferior_memory (start_addr, search_buf, search_buf_size) != 0) { warning ("Unable to access target memory at 0x%lx, halting search.", (long) start_addr); return -1; } /* Perform the search. The loop is kept simple by allocating [N + pattern-length - 1] bytes. When we've scanned N bytes we copy the trailing bytes to the start and read in another N bytes. */ while (search_space_len >= pattern_len) { gdb_byte *found_ptr; unsigned nr_search_bytes = (search_space_len < search_buf_size ? search_space_len : search_buf_size); found_ptr = memmem (search_buf, nr_search_bytes, pattern, pattern_len); if (found_ptr != NULL) { CORE_ADDR found_addr = start_addr + (found_ptr - search_buf); *found_addrp = found_addr; return 1; } /* Not found in this chunk, skip to next chunk. */ /* Don't let search_space_len wrap here, it's unsigned. */ if (search_space_len >= chunk_size) search_space_len -= chunk_size; else search_space_len = 0; if (search_space_len >= pattern_len) { unsigned keep_len = search_buf_size - chunk_size; CORE_ADDR read_addr = start_addr + keep_len; int nr_to_read; /* Copy the trailing part of the previous iteration to the front of the buffer for the next iteration. */ memcpy (search_buf, search_buf + chunk_size, keep_len); nr_to_read = (search_space_len - keep_len < chunk_size ? search_space_len - keep_len : chunk_size); if (read_inferior_memory (read_addr, search_buf + keep_len, nr_to_read) != 0) { warning ("Unable to access target memory at 0x%lx, halting search.", (long) read_addr); return -1; } start_addr += chunk_size; } } /* Not found. */ return 0; } /* Handle qSearch:memory packets. */ static void handle_search_memory (char *own_buf, int packet_len) { CORE_ADDR start_addr; CORE_ADDR search_space_len; gdb_byte *pattern; unsigned int pattern_len; /* NOTE: also defined in find.c testcase. */ #define SEARCH_CHUNK_SIZE 16000 const unsigned chunk_size = SEARCH_CHUNK_SIZE; /* Buffer to hold memory contents for searching. */ gdb_byte *search_buf; unsigned search_buf_size; int found; CORE_ADDR found_addr; int cmd_name_len = sizeof ("qSearch:memory:") - 1; pattern = malloc (packet_len); if (pattern == NULL) { error ("Unable to allocate memory to perform the search"); strcpy (own_buf, "E00"); return; } if (decode_search_memory_packet (own_buf + cmd_name_len, packet_len - cmd_name_len, &start_addr, &search_space_len, pattern, &pattern_len) < 0) { free (pattern); error ("Error in parsing qSearch:memory packet"); strcpy (own_buf, "E00"); return; } search_buf_size = chunk_size + pattern_len - 1; /* No point in trying to allocate a buffer larger than the search space. */ if (search_space_len < search_buf_size) search_buf_size = search_space_len; search_buf = malloc (search_buf_size); if (search_buf == NULL) { free (pattern); error ("Unable to allocate memory to perform the search"); strcpy (own_buf, "E00"); return; } found = handle_search_memory_1 (start_addr, search_space_len, pattern, pattern_len, search_buf, chunk_size, search_buf_size, &found_addr); if (found > 0) sprintf (own_buf, "1,%lx", (long) found_addr); else if (found == 0) strcpy (own_buf, "0"); else strcpy (own_buf, "E00"); free (search_buf); free (pattern); } #define require_running(BUF) \ if (!target_running ()) \ { \ write_enn (BUF); \ return; \ } /* Handle all of the extended 'q' packets. */ void handle_query (char *own_buf, int packet_len, int *new_packet_len_p) { static struct inferior_list_entry *thread_ptr; /* Reply the current thread id. */ if (strcmp ("qC", own_buf) == 0 && !disable_packet_qC) { ptid_t gdb_id; require_running (own_buf); if (!ptid_equal (general_thread, null_ptid) && !ptid_equal (general_thread, minus_one_ptid)) gdb_id = general_thread; else { thread_ptr = all_threads.head; gdb_id = thread_to_gdb_id ((struct thread_info *)thread_ptr); } sprintf (own_buf, "QC"); own_buf += 2; own_buf = write_ptid (own_buf, gdb_id); return; } if (strcmp ("qSymbol::", own_buf) == 0) { if (target_running () && the_target->look_up_symbols != NULL) (*the_target->look_up_symbols) (); strcpy (own_buf, "OK"); return; } if (!disable_packet_qfThreadInfo) { if (strcmp ("qfThreadInfo", own_buf) == 0) { ptid_t gdb_id; require_running (own_buf); thread_ptr = all_threads.head; *own_buf++ = 'm'; gdb_id = thread_to_gdb_id ((struct thread_info *)thread_ptr); write_ptid (own_buf, gdb_id); thread_ptr = thread_ptr->next; return; } if (strcmp ("qsThreadInfo", own_buf) == 0) { ptid_t gdb_id; require_running (own_buf); if (thread_ptr != NULL) { *own_buf++ = 'm'; gdb_id = thread_to_gdb_id ((struct thread_info *)thread_ptr); write_ptid (own_buf, gdb_id); thread_ptr = thread_ptr->next; return; } else { sprintf (own_buf, "l"); return; } } } if (the_target->read_offsets != NULL && strcmp ("qOffsets", own_buf) == 0) { CORE_ADDR text, data; require_running (own_buf); if (the_target->read_offsets (&text, &data)) sprintf (own_buf, "Text=%lX;Data=%lX;Bss=%lX", (long)text, (long)data, (long)data); else write_enn (own_buf); return; } if (the_target->qxfer_spu != NULL && strncmp ("qXfer:spu:read:", own_buf, 15) == 0) { char *annex; int n; unsigned int len; CORE_ADDR ofs; unsigned char *spu_buf; require_running (own_buf); strcpy (own_buf, "E00"); if (decode_xfer_read (own_buf + 15, &annex, &ofs, &len) < 0) return; if (len > PBUFSIZ - 2) len = PBUFSIZ - 2; spu_buf = malloc (len + 1); if (!spu_buf) return; n = (*the_target->qxfer_spu) (annex, spu_buf, NULL, ofs, len + 1); if (n < 0) write_enn (own_buf); else if (n > len) *new_packet_len_p = write_qxfer_response (own_buf, spu_buf, len, 1); else *new_packet_len_p = write_qxfer_response (own_buf, spu_buf, n, 0); free (spu_buf); return; } if (the_target->qxfer_spu != NULL && strncmp ("qXfer:spu:write:", own_buf, 16) == 0) { char *annex; int n; unsigned int len; CORE_ADDR ofs; unsigned char *spu_buf; require_running (own_buf); strcpy (own_buf, "E00"); spu_buf = malloc (packet_len - 15); if (!spu_buf) return; if (decode_xfer_write (own_buf + 16, packet_len - 16, &annex, &ofs, &len, spu_buf) < 0) { free (spu_buf); return; } n = (*the_target->qxfer_spu) (annex, NULL, (unsigned const char *)spu_buf, ofs, len); if (n < 0) write_enn (own_buf); else sprintf (own_buf, "%x", n); free (spu_buf); return; } if (the_target->read_auxv != NULL && strncmp ("qXfer:auxv:read:", own_buf, 16) == 0) { unsigned char *data; int n; CORE_ADDR ofs; unsigned int len; char *annex; require_running (own_buf); /* Reject any annex; grab the offset and length. */ if (decode_xfer_read (own_buf + 16, &annex, &ofs, &len) < 0 || annex[0] != '\0') { strcpy (own_buf, "E00"); return; } /* Read one extra byte, as an indicator of whether there is more. */ if (len > PBUFSIZ - 2) len = PBUFSIZ - 2; data = malloc (len + 1); if (data == NULL) { write_enn (own_buf); return; } n = (*the_target->read_auxv) (ofs, data, len + 1); if (n < 0) write_enn (own_buf); else if (n > len) *new_packet_len_p = write_qxfer_response (own_buf, data, len, 1); else *new_packet_len_p = write_qxfer_response (own_buf, data, n, 0); free (data); return; } if (strncmp ("qXfer:features:read:", own_buf, 20) == 0) { CORE_ADDR ofs; unsigned int len, total_len; const char *document; char *annex; require_running (own_buf); /* Grab the annex, offset, and length. */ if (decode_xfer_read (own_buf + 20, &annex, &ofs, &len) < 0) { strcpy (own_buf, "E00"); return; } /* Now grab the correct annex. */ document = get_features_xml (annex); if (document == NULL) { strcpy (own_buf, "E00"); return; } total_len = strlen (document); if (len > PBUFSIZ - 2) len = PBUFSIZ - 2; if (ofs > total_len) write_enn (own_buf); else if (len < total_len - ofs) *new_packet_len_p = write_qxfer_response (own_buf, document + ofs, len, 1); else *new_packet_len_p = write_qxfer_response (own_buf, document + ofs, total_len - ofs, 0); return; } if (strncmp ("qXfer:libraries:read:", own_buf, 21) == 0) { CORE_ADDR ofs; unsigned int len, total_len; char *document, *p; struct inferior_list_entry *dll_ptr; char *annex; require_running (own_buf); /* Reject any annex; grab the offset and length. */ if (decode_xfer_read (own_buf + 21, &annex, &ofs, &len) < 0 || annex[0] != '\0') { strcpy (own_buf, "E00"); return; } /* Over-estimate the necessary memory. Assume that every character in the library name must be escaped. */ total_len = 64; for (dll_ptr = all_dlls.head; dll_ptr != NULL; dll_ptr = dll_ptr->next) total_len += 128 + 6 * strlen (((struct dll_info *) dll_ptr)->name); document = malloc (total_len); if (document == NULL) { write_enn (own_buf); return; } strcpy (document, "\n"); p = document + strlen (document); for (dll_ptr = all_dlls.head; dll_ptr != NULL; dll_ptr = dll_ptr->next) { struct dll_info *dll = (struct dll_info *) dll_ptr; char *name; strcpy (p, " name); strcpy (p, name); free (name); p = p + strlen (p); strcpy (p, "\">base_addr); p = p + strlen (p); strcpy (p, "\"/>\n"); p = p + strlen (p); } strcpy (p, "\n"); total_len = strlen (document); if (len > PBUFSIZ - 2) len = PBUFSIZ - 2; if (ofs > total_len) write_enn (own_buf); else if (len < total_len - ofs) *new_packet_len_p = write_qxfer_response (own_buf, document + ofs, len, 1); else *new_packet_len_p = write_qxfer_response (own_buf, document + ofs, total_len - ofs, 0); free (document); return; } if (the_target->qxfer_osdata != NULL && strncmp ("qXfer:osdata:read:", own_buf, 18) == 0) { char *annex; int n; unsigned int len; CORE_ADDR ofs; unsigned char *workbuf; strcpy (own_buf, "E00"); if (decode_xfer_read (own_buf + 18, &annex, &ofs, &len) < 0) return; if (len > PBUFSIZ - 2) len = PBUFSIZ - 2; workbuf = malloc (len + 1); if (!workbuf) return; n = (*the_target->qxfer_osdata) (annex, workbuf, NULL, ofs, len + 1); if (n < 0) write_enn (own_buf); else if (n > len) *new_packet_len_p = write_qxfer_response (own_buf, workbuf, len, 1); else *new_packet_len_p = write_qxfer_response (own_buf, workbuf, n, 0); free (workbuf); return; } if (the_target->qxfer_siginfo != NULL && strncmp ("qXfer:siginfo:read:", own_buf, 19) == 0) { unsigned char *data; int n; CORE_ADDR ofs; unsigned int len; char *annex; require_running (own_buf); /* Reject any annex; grab the offset and length. */ if (decode_xfer_read (own_buf + 19, &annex, &ofs, &len) < 0 || annex[0] != '\0') { strcpy (own_buf, "E00"); return; } /* Read one extra byte, as an indicator of whether there is more. */ if (len > PBUFSIZ - 2) len = PBUFSIZ - 2; data = malloc (len + 1); if (!data) return; n = (*the_target->qxfer_siginfo) (annex, data, NULL, ofs, len + 1); if (n < 0) write_enn (own_buf); else if (n > len) *new_packet_len_p = write_qxfer_response (own_buf, data, len, 1); else *new_packet_len_p = write_qxfer_response (own_buf, data, n, 0); free (data); return; } if (the_target->qxfer_siginfo != NULL && strncmp ("qXfer:siginfo:write:", own_buf, 20) == 0) { char *annex; int n; unsigned int len; CORE_ADDR ofs; unsigned char *data; require_running (own_buf); strcpy (own_buf, "E00"); data = malloc (packet_len - 19); if (!data) return; if (decode_xfer_write (own_buf + 20, packet_len - 20, &annex, &ofs, &len, data) < 0) { free (data); return; } n = (*the_target->qxfer_siginfo) (annex, NULL, (unsigned const char *)data, ofs, len); if (n < 0) write_enn (own_buf); else sprintf (own_buf, "%x", n); free (data); return; } /* Protocol features query. */ if (strncmp ("qSupported", own_buf, 10) == 0 && (own_buf[10] == ':' || own_buf[10] == '\0')) { char *p = &own_buf[10]; /* Process each feature being provided by GDB. The first feature will follow a ':', and latter features will follow ';'. */ if (*p == ':') for (p = strtok (p + 1, ";"); p != NULL; p = strtok (NULL, ";")) { if (strcmp (p, "multiprocess+") == 0) { /* GDB supports and wants multi-process support if possible. */ if (target_supports_multi_process ()) multi_process = 1; } } sprintf (own_buf, "PacketSize=%x;QPassSignals+", PBUFSIZ - 1); /* We do not have any hook to indicate whether the target backend supports qXfer:libraries:read, so always report it. */ strcat (own_buf, ";qXfer:libraries:read+"); if (the_target->read_auxv != NULL) strcat (own_buf, ";qXfer:auxv:read+"); if (the_target->qxfer_spu != NULL) strcat (own_buf, ";qXfer:spu:read+;qXfer:spu:write+"); if (the_target->qxfer_siginfo != NULL) strcat (own_buf, ";qXfer:siginfo:read+;qXfer:siginfo:write+"); /* We always report qXfer:features:read, as targets may install XML files on a subsequent call to arch_setup. If we reported to GDB on startup that we don't support qXfer:feature:read at all, we will never be re-queried. */ strcat (own_buf, ";qXfer:features:read+"); if (transport_is_reliable) strcat (own_buf, ";QStartNoAckMode+"); if (the_target->qxfer_osdata != NULL) strcat (own_buf, ";qXfer:osdata:read+"); if (target_supports_multi_process ()) strcat (own_buf, ";multiprocess+"); if (target_supports_non_stop ()) strcat (own_buf, ";QNonStop+"); return; } /* Thread-local storage support. */ if (the_target->get_tls_address != NULL && strncmp ("qGetTLSAddr:", own_buf, 12) == 0) { char *p = own_buf + 12; CORE_ADDR parts[2], address = 0; int i, err; ptid_t ptid = null_ptid; require_running (own_buf); for (i = 0; i < 3; i++) { char *p2; int len; if (p == NULL) break; p2 = strchr (p, ','); if (p2) { len = p2 - p; p2++; } else { len = strlen (p); p2 = NULL; } if (i == 0) ptid = read_ptid (p, NULL); else decode_address (&parts[i - 1], p, len); p = p2; } if (p != NULL || i < 3) err = 1; else { struct thread_info *thread = find_thread_ptid (ptid); if (thread == NULL) err = 2; else err = the_target->get_tls_address (thread, parts[0], parts[1], &address); } if (err == 0) { sprintf (own_buf, "%llx", address); return; } else if (err > 0) { write_enn (own_buf); return; } /* Otherwise, pretend we do not understand this packet. */ } /* Handle "monitor" commands. */ if (strncmp ("qRcmd,", own_buf, 6) == 0) { char *mon = malloc (PBUFSIZ); int len = strlen (own_buf + 6); if (mon == NULL) { write_enn (own_buf); return; } if ((len % 2) != 0 || unhexify (mon, own_buf + 6, len / 2) != len / 2) { write_enn (own_buf); free (mon); return; } mon[len / 2] = '\0'; write_ok (own_buf); if (strcmp (mon, "set debug 1") == 0) { debug_threads = 1; monitor_output ("Debug output enabled.\n"); } else if (strcmp (mon, "set debug 0") == 0) { debug_threads = 0; monitor_output ("Debug output disabled.\n"); } else if (strcmp (mon, "set debug-hw-points 1") == 0) { debug_hw_points = 1; monitor_output ("H/W point debugging output enabled.\n"); } else if (strcmp (mon, "set debug-hw-points 0") == 0) { debug_hw_points = 0; monitor_output ("H/W point debugging output disabled.\n"); } else if (strcmp (mon, "set remote-debug 1") == 0) { remote_debug = 1; monitor_output ("Protocol debug output enabled.\n"); } else if (strcmp (mon, "set remote-debug 0") == 0) { remote_debug = 0; monitor_output ("Protocol debug output disabled.\n"); } else if (strcmp (mon, "help") == 0) monitor_show_help (); else if (strcmp (mon, "exit") == 0) exit_requested = 1; else { monitor_output ("Unknown monitor command.\n\n"); monitor_show_help (); write_enn (own_buf); } free (mon); return; } if (strncmp ("qSearch:memory:", own_buf, sizeof ("qSearch:memory:") - 1) == 0) { require_running (own_buf); handle_search_memory (own_buf, packet_len); return; } if (strcmp (own_buf, "qAttached") == 0 || strncmp (own_buf, "qAttached:", sizeof ("qAttached:") - 1) == 0) { struct process_info *process; if (own_buf[sizeof ("qAttached") - 1]) { int pid = strtoul (own_buf + sizeof ("qAttached:") - 1, NULL, 16); process = (struct process_info *) find_inferior_id (&all_processes, pid_to_ptid (pid)); } else { require_running (own_buf); process = current_process (); } if (process == NULL) { write_enn (own_buf); return; } strcpy (own_buf, process->attached ? "1" : "0"); return; } /* Otherwise we didn't know what packet it was. Say we didn't understand it. */ own_buf[0] = 0; } /* Parse vCont packets. */ void handle_v_cont (char *own_buf) { char *p, *q; int n = 0, i = 0; struct thread_resume *resume_info; struct thread_resume default_action = {{0}}; /* Count the number of semicolons in the packet. There should be one for every action. */ p = &own_buf[5]; while (p) { n++; p++; p = strchr (p, ';'); } resume_info = malloc (n * sizeof (resume_info[0])); if (resume_info == NULL) goto err; p = &own_buf[5]; while (*p) { p++; if (p[0] == 's' || p[0] == 'S') resume_info[i].kind = resume_step; else if (p[0] == 'c' || p[0] == 'C') resume_info[i].kind = resume_continue; else if (p[0] == 't') resume_info[i].kind = resume_stop; else goto err; if (p[0] == 'S' || p[0] == 'C') { int sig; sig = strtol (p + 1, &q, 16); if (p == q) goto err; p = q; if (!target_signal_to_host_p (sig)) goto err; resume_info[i].sig = target_signal_to_host (sig); } else { resume_info[i].sig = 0; p = p + 1; } if (p[0] == 0) { resume_info[i].thread = minus_one_ptid; default_action = resume_info[i]; /* Note: we don't increment i here, we'll overwrite this entry the next time through. */ } else if (p[0] == ':') { ptid_t ptid = read_ptid (p + 1, &q); if (p == q) goto err; p = q; if (p[0] != ';' && p[0] != 0) goto err; resume_info[i].thread = ptid; i++; } } if (i < n) resume_info[i] = default_action; /* Still used in occasional places in the backend. */ if (n == 1 && !ptid_equal (resume_info[0].thread, minus_one_ptid) && resume_info[0].kind != resume_stop) cont_thread = resume_info[0].thread; else cont_thread = minus_one_ptid; set_desired_inferior (0); if (!non_stop) enable_async_io (); (*the_target->resume) (resume_info, n); free (resume_info); if (non_stop) write_ok (own_buf); else { last_ptid = mywait (minus_one_ptid, &last_status, 0, 1); prepare_resume_reply (own_buf, last_ptid, &last_status); disable_async_io (); } return; err: write_enn (own_buf); free (resume_info); return; } /* Attach to a new program. Return 1 if successful, 0 if failure. */ int handle_v_attach (char *own_buf) { int pid; pid = strtol (own_buf + 8, NULL, 16); if (pid != 0 && attach_inferior (pid) == 0) { /* Don't report shared library events after attaching, even if some libraries are preloaded. GDB will always poll the library list. Avoids the "stopped by shared library event" notice on the GDB side. */ dlls_changed = 0; if (non_stop) { /* In non-stop, we don't send a resume reply. Stop events will follow up using the normal notification mechanism. */ write_ok (own_buf); } else prepare_resume_reply (own_buf, last_ptid, &last_status); return 1; } else { write_enn (own_buf); return 0; } } /* Run a new program. Return 1 if successful, 0 if failure. */ static int handle_v_run (char *own_buf) { char *p, *next_p, **new_argv; int i, new_argc; new_argc = 0; for (p = own_buf + strlen ("vRun;"); p && *p; p = strchr (p, ';')) { p++; new_argc++; } new_argv = calloc (new_argc + 2, sizeof (char *)); if (new_argv == NULL) { write_enn (own_buf); return 0; } i = 0; for (p = own_buf + strlen ("vRun;"); *p; p = next_p) { next_p = strchr (p, ';'); if (next_p == NULL) next_p = p + strlen (p); if (i == 0 && p == next_p) new_argv[i] = NULL; else { /* FIXME: Fail request if out of memory instead of dying. */ new_argv[i] = xmalloc (1 + (next_p - p) / 2); unhexify (new_argv[i], p, (next_p - p) / 2); new_argv[i][(next_p - p) / 2] = '\0'; } if (*next_p) next_p++; i++; } new_argv[i] = NULL; if (new_argv[0] == NULL) { /* GDB didn't specify a program to run. Use the program from the last run with the new argument list. */ if (program_argv == NULL) { /* FIXME: new_argv memory leak */ write_enn (own_buf); return 0; } new_argv[0] = strdup (program_argv[0]); if (new_argv[0] == NULL) { /* FIXME: new_argv memory leak */ write_enn (own_buf); return 0; } } /* Free the old argv and install the new one. */ freeargv (program_argv); program_argv = new_argv; start_inferior (program_argv); if (last_status.kind == TARGET_WAITKIND_STOPPED) { prepare_resume_reply (own_buf, last_ptid, &last_status); /* In non-stop, sending a resume reply doesn't set the general thread, but GDB assumes a vRun sets it (this is so GDB can query which is the main thread of the new inferior. */ if (non_stop) general_thread = last_ptid; return 1; } else { write_enn (own_buf); return 0; } } /* Kill process. Return 1 if successful, 0 if failure. */ int handle_v_kill (char *own_buf) { int pid; char *p = &own_buf[6]; if (multi_process) pid = strtol (p, NULL, 16); else pid = signal_pid; if (pid != 0 && kill_inferior (pid) == 0) { last_status.kind = TARGET_WAITKIND_SIGNALLED; last_status.value.sig = TARGET_SIGNAL_KILL; last_ptid = pid_to_ptid (pid); discard_queued_stop_replies (pid); write_ok (own_buf); return 1; } else { write_enn (own_buf); return 0; } } /* Handle a 'vStopped' packet. */ static void handle_v_stopped (char *own_buf) { /* If we're waiting for GDB to acknowledge a pending stop reply, consider that done. */ if (notif_queue) { struct vstop_notif *head; if (remote_debug) fprintf (stderr, "vStopped: acking %s\n", target_pid_to_str (notif_queue->ptid)); head = notif_queue; notif_queue = notif_queue->next; free (head); } /* Push another stop reply, or if there are no more left, an OK. */ send_next_stop_reply (own_buf); } /* Handle all of the extended 'v' packets. */ void handle_v_requests (char *own_buf, int packet_len, int *new_packet_len) { if (!disable_packet_vCont) { if (strncmp (own_buf, "vCont;", 6) == 0) { require_running (own_buf); handle_v_cont (own_buf); return; } if (strncmp (own_buf, "vCont?", 6) == 0) { strcpy (own_buf, "vCont;c;C;s;S;t"); return; } } if (strncmp (own_buf, "vFile:", 6) == 0 && handle_vFile (own_buf, packet_len, new_packet_len)) return; if (strncmp (own_buf, "vAttach;", 8) == 0) { if (!multi_process && target_running ()) { fprintf (stderr, "Already debugging a process\n"); write_enn (own_buf); return; } handle_v_attach (own_buf); return; } if (strncmp (own_buf, "vRun;", 5) == 0) { if (!multi_process && target_running ()) { fprintf (stderr, "Already debugging a process\n"); write_enn (own_buf); return; } handle_v_run (own_buf); return; } if (strncmp (own_buf, "vKill;", 6) == 0) { if (!target_running ()) { fprintf (stderr, "No process to kill\n"); write_enn (own_buf); return; } handle_v_kill (own_buf); return; } if (strncmp (own_buf, "vStopped", 8) == 0) { handle_v_stopped (own_buf); return; } /* Otherwise we didn't know what packet it was. Say we didn't understand it. */ own_buf[0] = 0; return; } /* Resume inferior and wait for another event. In non-stop mode, don't really wait here, but return immediatelly to the event loop. */ void myresume (char *own_buf, int step, int sig) { struct thread_resume resume_info[2]; int n = 0; int valid_cont_thread; set_desired_inferior (0); valid_cont_thread = (!ptid_equal (cont_thread, null_ptid) && !ptid_equal (cont_thread, minus_one_ptid)); if (step || sig || valid_cont_thread) { resume_info[0].thread = ((struct inferior_list_entry *) current_inferior)->id; if (step) resume_info[0].kind = resume_step; else resume_info[0].kind = resume_continue; resume_info[0].sig = sig; n++; } if (!valid_cont_thread) { resume_info[n].thread = minus_one_ptid; resume_info[n].kind = resume_continue; resume_info[n].sig = 0; n++; } if (!non_stop) enable_async_io (); (*the_target->resume) (resume_info, n); if (non_stop) write_ok (own_buf); else { last_ptid = mywait (minus_one_ptid, &last_status, 0, 1); prepare_resume_reply (own_buf, last_ptid, &last_status); disable_async_io (); } } /* Callback for for_each_inferior. Make a new stop reply for each stopped thread. */ static int queue_stop_reply_callback (struct inferior_list_entry *entry, void *arg) { int pid = * (int *) arg; if (pid == -1 || ptid_get_pid (entry->id) == pid) { struct target_waitstatus status; status.kind = TARGET_WAITKIND_STOPPED; status.value.sig = TARGET_SIGNAL_TRAP; /* Pass the last stop reply back to GDB, but don't notify. */ queue_stop_reply (entry->id, &status); } return 0; } /* Status handler for the '?' packet. */ static void handle_status (char *own_buf) { struct target_waitstatus status; status.kind = TARGET_WAITKIND_STOPPED; status.value.sig = TARGET_SIGNAL_TRAP; /* In non-stop mode, we must send a stop reply for each stopped thread. In all-stop mode, just send one for the first stopped thread we find. */ if (non_stop) { int pid = -1; discard_queued_stop_replies (pid); find_inferior (&all_threads, queue_stop_reply_callback, &pid); /* The first is sent immediatly. OK is sent if there is no stopped thread, which is the same handling of the vStopped packet (by design). */ send_next_stop_reply (own_buf); } else { if (all_threads.head) prepare_resume_reply (own_buf, all_threads.head->id, &status); else strcpy (own_buf, "W00"); } } static void gdbserver_version (void) { printf ("GNU gdbserver %s%s\n" "Copyright (C) 2009 Free Software Foundation, Inc.\n" "gdbserver is free software, covered by the GNU General Public License.\n" "This gdbserver was configured as \"%s\"\n", PKGVERSION, version, host_name); } static void gdbserver_usage (FILE *stream) { fprintf (stream, "Usage:\tgdbserver [OPTIONS] COMM PROG [ARGS ...]\n" "\tgdbserver [OPTIONS] --attach COMM PID\n" "\tgdbserver [OPTIONS] --multi COMM\n" "\n" "COMM may either be a tty device (for serial debugging), or \n" "HOST:PORT to listen for a TCP connection.\n" "\n" "Options:\n" " --debug Enable general debugging output.\n" " --remote-debug Enable remote protocol debugging output.\n" " --version Display version information and exit.\n" " --wrapper WRAPPER -- Run WRAPPER to start new programs.\n"); if (REPORT_BUGS_TO[0] && stream == stdout) fprintf (stream, "Report bugs to \"%s\".\n", REPORT_BUGS_TO); } static void gdbserver_show_disableable (FILE *stream) { fprintf (stream, "Disableable packets:\n" " vCont \tAll vCont packets\n" " qC \tQuerying the current thread\n" " qfThreadInfo\tThread listing\n" " Tthread \tPassing the thread specifier in the T stop reply packet\n" " threads \tAll of the above\n"); } #undef require_running #define require_running(BUF) \ if (!target_running ()) \ { \ write_enn (BUF); \ break; \ } static int first_thread_of (struct inferior_list_entry *entry, void *args) { int pid = * (int *) args; if (ptid_get_pid (entry->id) == pid) return 1; return 0; } static void kill_inferior_callback (struct inferior_list_entry *entry) { struct process_info *process = (struct process_info *) entry; int pid = ptid_get_pid (process->head.id); kill_inferior (pid); discard_queued_stop_replies (pid); } /* Callback for for_each_inferior to detach or kill the inferior, depending on whether we attached to it or not. We inform the user whether we're detaching or killing the process as this is only called when gdbserver is about to exit. */ static void detach_or_kill_inferior_callback (struct inferior_list_entry *entry) { struct process_info *process = (struct process_info *) entry; int pid = ptid_get_pid (process->head.id); if (process->attached) detach_inferior (pid); else kill_inferior (pid); discard_queued_stop_replies (pid); } /* for_each_inferior callback for detach_or_kill_for_exit to print the pids of started inferiors. */ static void print_started_pid (struct inferior_list_entry *entry) { struct process_info *process = (struct process_info *) entry; if (! process->attached) { int pid = ptid_get_pid (process->head.id); fprintf (stderr, " %d", pid); } } /* for_each_inferior callback for detach_or_kill_for_exit to print the pids of attached inferiors. */ static void print_attached_pid (struct inferior_list_entry *entry) { struct process_info *process = (struct process_info *) entry; if (process->attached) { int pid = ptid_get_pid (process->head.id); fprintf (stderr, " %d", pid); } } /* Call this when exiting gdbserver with possible inferiors that need to be killed or detached from. */ static void detach_or_kill_for_exit (void) { /* First print a list of the inferiors we will be killing/detaching. This is to assist the user, for example, in case the inferior unexpectedly dies after we exit: did we screw up or did the inferior exit on its own? Having this info will save some head-scratching. */ if (have_started_inferiors_p ()) { fprintf (stderr, "Killing process(es):"); for_each_inferior (&all_processes, print_started_pid); fprintf (stderr, "\n"); } if (have_attached_inferiors_p ()) { fprintf (stderr, "Detaching process(es):"); for_each_inferior (&all_processes, print_attached_pid); fprintf (stderr, "\n"); } /* Now we can kill or detach the inferiors. */ for_each_inferior (&all_processes, detach_or_kill_inferior_callback); } static void join_inferiors_callback (struct inferior_list_entry *entry) { struct process_info *process = (struct process_info *) entry; /* If we are attached, then we can exit. Otherwise, we need to hang around doing nothing, until the child is gone. */ if (!process->attached) join_inferior (ptid_get_pid (process->head.id)); } int main (int argc, char *argv[]) { int bad_attach; int pid; char *arg_end, *port; char **next_arg = &argv[1]; int multi_mode = 0; int attach = 0; int was_running; while (*next_arg != NULL && **next_arg == '-') { if (strcmp (*next_arg, "--version") == 0) { gdbserver_version (); exit (0); } else if (strcmp (*next_arg, "--help") == 0) { gdbserver_usage (stdout); exit (0); } else if (strcmp (*next_arg, "--attach") == 0) attach = 1; else if (strcmp (*next_arg, "--multi") == 0) multi_mode = 1; else if (strcmp (*next_arg, "--wrapper") == 0) { next_arg++; wrapper_argv = next_arg; while (*next_arg != NULL && strcmp (*next_arg, "--") != 0) next_arg++; if (next_arg == wrapper_argv || *next_arg == NULL) { gdbserver_usage (stderr); exit (1); } /* Consume the "--". */ *next_arg = NULL; } else if (strcmp (*next_arg, "--debug") == 0) debug_threads = 1; else if (strcmp (*next_arg, "--remote-debug") == 0) remote_debug = 1; else if (strcmp (*next_arg, "--disable-packet") == 0) { gdbserver_show_disableable (stdout); exit (0); } else if (strncmp (*next_arg, "--disable-packet=", sizeof ("--disable-packet=") - 1) == 0) { char *packets, *tok; packets = *next_arg += sizeof ("--disable-packet=") - 1; for (tok = strtok (packets, ","); tok != NULL; tok = strtok (NULL, ",")) { if (strcmp ("vCont", tok) == 0) disable_packet_vCont = 1; else if (strcmp ("Tthread", tok) == 0) disable_packet_Tthread = 1; else if (strcmp ("qC", tok) == 0) disable_packet_qC = 1; else if (strcmp ("qfThreadInfo", tok) == 0) disable_packet_qfThreadInfo = 1; else if (strcmp ("threads", tok) == 0) { disable_packet_vCont = 1; disable_packet_Tthread = 1; disable_packet_qC = 1; disable_packet_qfThreadInfo = 1; } else { fprintf (stderr, "Don't know how to disable \"%s\".\n\n", tok); gdbserver_show_disableable (stderr); exit (1); } } } else { fprintf (stderr, "Unknown argument: %s\n", *next_arg); exit (1); } next_arg++; continue; } if (setjmp (toplevel)) { fprintf (stderr, "Exiting\n"); exit (1); } port = *next_arg; next_arg++; if (port == NULL || (!attach && !multi_mode && *next_arg == NULL)) { gdbserver_usage (stderr); exit (1); } bad_attach = 0; pid = 0; /* --attach used to come after PORT, so allow it there for compatibility. */ if (*next_arg != NULL && strcmp (*next_arg, "--attach") == 0) { attach = 1; next_arg++; } if (attach && (*next_arg == NULL || (*next_arg)[0] == '\0' || (pid = strtoul (*next_arg, &arg_end, 0)) == 0 || *arg_end != '\0' || next_arg[1] != NULL)) bad_attach = 1; if (bad_attach) { gdbserver_usage (stderr); exit (1); } initialize_inferiors (); initialize_async_io (); initialize_low (); own_buf = xmalloc (PBUFSIZ + 1); mem_buf = xmalloc (PBUFSIZ); if (pid == 0 && *next_arg != NULL) { int i, n; n = argc - (next_arg - argv); program_argv = xmalloc (sizeof (char *) * (n + 1)); for (i = 0; i < n; i++) program_argv[i] = xstrdup (next_arg[i]); program_argv[i] = NULL; /* Wait till we are at first instruction in program. */ start_inferior (program_argv); /* We are now (hopefully) stopped at the first instruction of the target process. This assumes that the target process was successfully created. */ } else if (pid != 0) { if (attach_inferior (pid) == -1) error ("Attaching not supported on this target"); /* Otherwise succeeded. */ } else { last_status.kind = TARGET_WAITKIND_EXITED; last_status.value.integer = 0; last_ptid = minus_one_ptid; } /* Don't report shared library events on the initial connection, even if some libraries are preloaded. Avoids the "stopped by shared library event" notice on gdb side. */ dlls_changed = 0; if (setjmp (toplevel)) { detach_or_kill_for_exit (); exit (1); } if (last_status.kind == TARGET_WAITKIND_EXITED || last_status.kind == TARGET_WAITKIND_SIGNALLED) was_running = 0; else was_running = 1; if (!was_running && !multi_mode) { fprintf (stderr, "No program to debug. GDBserver exiting.\n"); exit (1); } while (1) { noack_mode = 0; multi_process = 0; non_stop = 0; remote_open (port); if (setjmp (toplevel) != 0) { /* An error occurred. */ if (response_needed) { write_enn (own_buf); putpkt (own_buf); } } /* Wait for events. This will return when all event sources are removed from the event loop. */ start_event_loop (); /* If an exit was requested (using the "monitor exit" command), terminate now. The only other way to get here is for getpkt to fail; close the connection and reopen it at the top of the loop. */ if (exit_requested) { detach_or_kill_for_exit (); exit (0); } else fprintf (stderr, "Remote side has terminated connection. " "GDBserver will reopen the connection.\n"); } } /* Event loop callback that handles a serial event. The first byte in the serial buffer gets us here. We expect characters to arrive at a brisk pace, so we read the rest of the packet with a blocking getpkt call. */ static void process_serial_event (void) { char ch; int i = 0; int signal; unsigned int len; CORE_ADDR mem_addr; int pid; unsigned char sig; int packet_len; int new_packet_len = -1; /* Used to decide when gdbserver should exit in multi-mode/remote. */ static int have_ran = 0; if (!have_ran) have_ran = target_running (); disable_async_io (); response_needed = 0; packet_len = getpkt (own_buf); if (packet_len <= 0) { target_async (0); remote_close (); return; } response_needed = 1; i = 0; ch = own_buf[i++]; switch (ch) { case 'q': handle_query (own_buf, packet_len, &new_packet_len); break; case 'Q': handle_general_set (own_buf); break; case 'D': require_running (own_buf); if (multi_process) { i++; /* skip ';' */ pid = strtol (&own_buf[i], NULL, 16); } else pid = ptid_get_pid (((struct inferior_list_entry *) current_inferior)->id); fprintf (stderr, "Detaching from process %d\n", pid); if (detach_inferior (pid) != 0) write_enn (own_buf); else { discard_queued_stop_replies (pid); write_ok (own_buf); if (extended_protocol) { /* Treat this like a normal program exit. */ last_status.kind = TARGET_WAITKIND_EXITED; last_status.value.integer = 0; last_ptid = pid_to_ptid (pid); current_inferior = NULL; } else { putpkt (own_buf); remote_close (); /* If we are attached, then we can exit. Otherwise, we need to hang around doing nothing, until the child is gone. */ for_each_inferior (&all_processes, join_inferiors_callback); exit (0); } } break; case '!': extended_protocol = 1; write_ok (own_buf); break; case '?': handle_status (own_buf); break; case 'H': if (own_buf[1] == 'c' || own_buf[1] == 'g' || own_buf[1] == 's') { ptid_t gdb_id, thread_id; int pid; require_running (own_buf); gdb_id = read_ptid (&own_buf[2], NULL); pid = ptid_get_pid (gdb_id); if (ptid_equal (gdb_id, null_ptid) || ptid_equal (gdb_id, minus_one_ptid)) thread_id = null_ptid; else if (pid != 0 && ptid_equal (pid_to_ptid (pid), gdb_id)) { struct thread_info *thread = (struct thread_info *) find_inferior (&all_threads, first_thread_of, &pid); if (!thread) { write_enn (own_buf); break; } thread_id = ((struct inferior_list_entry *)thread)->id; } else { thread_id = gdb_id_to_thread_id (gdb_id); if (ptid_equal (thread_id, null_ptid)) { write_enn (own_buf); break; } } if (own_buf[1] == 'g') { if (ptid_equal (thread_id, null_ptid)) { /* GDB is telling us to choose any thread. Check if the currently selected thread is still valid. If it is not, select the first available. */ struct thread_info *thread = (struct thread_info *) find_inferior_id (&all_threads, general_thread); if (thread == NULL) thread_id = all_threads.head->id; } general_thread = thread_id; set_desired_inferior (1); } else if (own_buf[1] == 'c') cont_thread = thread_id; else if (own_buf[1] == 's') step_thread = thread_id; write_ok (own_buf); } else { /* Silently ignore it so that gdb can extend the protocol without compatibility headaches. */ own_buf[0] = '\0'; } break; case 'g': require_running (own_buf); set_desired_inferior (1); registers_to_string (own_buf); break; case 'G': require_running (own_buf); set_desired_inferior (1); registers_from_string (&own_buf[1]); write_ok (own_buf); break; case 'm': require_running (own_buf); decode_m_packet (&own_buf[1], &mem_addr, &len); if (read_inferior_memory (mem_addr, mem_buf, len) == 0) convert_int_to_ascii (mem_buf, own_buf, len); else write_enn (own_buf); break; case 'M': require_running (own_buf); decode_M_packet (&own_buf[1], &mem_addr, &len, mem_buf); if (write_inferior_memory (mem_addr, mem_buf, len) == 0) write_ok (own_buf); else write_enn (own_buf); break; case 'X': require_running (own_buf); if (decode_X_packet (&own_buf[1], packet_len - 1, &mem_addr, &len, mem_buf) < 0 || write_inferior_memory (mem_addr, mem_buf, len) != 0) write_enn (own_buf); else write_ok (own_buf); break; case 'C': require_running (own_buf); convert_ascii_to_int (own_buf + 1, &sig, 1); if (target_signal_to_host_p (sig)) signal = target_signal_to_host (sig); else signal = 0; myresume (own_buf, 0, signal); break; case 'S': require_running (own_buf); convert_ascii_to_int (own_buf + 1, &sig, 1); if (target_signal_to_host_p (sig)) signal = target_signal_to_host (sig); else signal = 0; myresume (own_buf, 1, signal); break; case 'c': require_running (own_buf); signal = 0; myresume (own_buf, 0, signal); break; case 's': require_running (own_buf); signal = 0; myresume (own_buf, 1, signal); break; case 'Z': /* insert_ ... */ /* Fallthrough. */ case 'z': /* remove_ ... */ { char *lenptr; char *dataptr; CORE_ADDR addr = strtoul (&own_buf[3], &lenptr, 16); int len = strtol (lenptr + 1, &dataptr, 16); char type = own_buf[1]; int res; const int insert = ch == 'Z'; /* Default to unrecognized/unsupported. */ res = 1; switch (type) { case '0': /* software-breakpoint */ case '1': /* hardware-breakpoint */ case '2': /* write watchpoint */ case '3': /* read watchpoint */ case '4': /* access watchpoint */ require_running (own_buf); if (insert && the_target->insert_point != NULL) res = (*the_target->insert_point) (type, addr, len); else if (!insert && the_target->remove_point != NULL) res = (*the_target->remove_point) (type, addr, len); break; default: break; } if (res == 0) write_ok (own_buf); else if (res == 1) /* Unsupported. */ own_buf[0] = '\0'; else write_enn (own_buf); break; } case 'k': response_needed = 0; if (!target_running ()) /* The packet we received doesn't make sense - but we can't reply to it, either. */ return; fprintf (stderr, "Killing all inferiors\n"); for_each_inferior (&all_processes, kill_inferior_callback); /* When using the extended protocol, we wait with no program running. The traditional protocol will exit instead. */ if (extended_protocol) { last_status.kind = TARGET_WAITKIND_EXITED; last_status.value.sig = TARGET_SIGNAL_KILL; return; } else { exit (0); break; } case 'T': { ptid_t gdb_id, thread_id; require_running (own_buf); gdb_id = read_ptid (&own_buf[1], NULL); thread_id = gdb_id_to_thread_id (gdb_id); if (ptid_equal (thread_id, null_ptid)) { write_enn (own_buf); break; } if (mythread_alive (thread_id)) write_ok (own_buf); else write_enn (own_buf); } break; case 'R': response_needed = 0; /* Restarting the inferior is only supported in the extended protocol. */ if (extended_protocol) { if (target_running ()) for_each_inferior (&all_processes, kill_inferior_callback); fprintf (stderr, "GDBserver restarting\n"); /* Wait till we are at 1st instruction in prog. */ if (program_argv != NULL) start_inferior (program_argv); else { last_status.kind = TARGET_WAITKIND_EXITED; last_status.value.sig = TARGET_SIGNAL_KILL; } return; } else { /* It is a request we don't understand. Respond with an empty packet so that gdb knows that we don't support this request. */ own_buf[0] = '\0'; break; } case 'v': /* Extended (long) request. */ handle_v_requests (own_buf, packet_len, &new_packet_len); break; default: /* It is a request we don't understand. Respond with an empty packet so that gdb knows that we don't support this request. */ own_buf[0] = '\0'; break; } if (new_packet_len != -1) putpkt_binary (own_buf, new_packet_len); else putpkt (own_buf); response_needed = 0; if (!extended_protocol && have_ran && !target_running ()) { /* In non-stop, defer exiting until GDB had a chance to query the whole vStopped list (until it gets an OK). */ if (!notif_queue) { fprintf (stderr, "GDBserver exiting\n"); remote_close (); exit (0); } } } /* Event-loop callback for serial events. */ void handle_serial_event (int err, gdb_client_data client_data) { if (debug_threads) fprintf (stderr, "handling possible serial event\n"); /* Really handle it. */ process_serial_event (); /* Be sure to not change the selected inferior behind GDB's back. Important in the non-stop mode asynchronous protocol. */ set_desired_inferior (1); } /* Event-loop callback for target events. */ void handle_target_event (int err, gdb_client_data client_data) { if (debug_threads) fprintf (stderr, "handling possible target event\n"); last_ptid = mywait (minus_one_ptid, &last_status, TARGET_WNOHANG, 1); if (last_status.kind != TARGET_WAITKIND_IGNORE) { /* Something interesting. Tell GDB about it. */ push_event (last_ptid, &last_status); } /* Be sure to not change the selected inferior behind GDB's back. Important in the non-stop mode asynchronous protocol. */ set_desired_inferior (1); }