/* Main code for remote server for GDB.
Copyright (C) 1989, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2002, 2003,
2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
#include "server.h"
#if HAVE_UNISTD_H
#include
#endif
#if HAVE_SIGNAL_H
#include
#endif
#if HAVE_SYS_WAIT_H
#include
#endif
ptid_t cont_thread;
ptid_t general_thread;
ptid_t step_thread;
int server_waiting;
static int extended_protocol;
static int response_needed;
static int exit_requested;
int multi_process;
int non_stop;
static char **program_argv, **wrapper_argv;
/* Enable miscellaneous debugging output. The name is historical - it
was originally used to debug LinuxThreads support. */
int debug_threads;
/* Enable debugging of h/w breakpoint/watchpoint support. */
int debug_hw_points;
int pass_signals[TARGET_SIGNAL_LAST];
jmp_buf toplevel;
const char *gdbserver_xmltarget;
/* The PID of the originally created or attached inferior. Used to
send signals to the process when GDB sends us an asynchronous interrupt
(user hitting Control-C in the client), and to wait for the child to exit
when no longer debugging it. */
unsigned long signal_pid;
#ifdef SIGTTOU
/* A file descriptor for the controlling terminal. */
int terminal_fd;
/* TERMINAL_FD's original foreground group. */
pid_t old_foreground_pgrp;
/* Hand back terminal ownership to the original foreground group. */
static void
restore_old_foreground_pgrp (void)
{
tcsetpgrp (terminal_fd, old_foreground_pgrp);
}
#endif
/* Set if you want to disable optional thread related packets support
in gdbserver, for the sake of testing GDB against stubs that don't
support them. */
int disable_packet_vCont;
int disable_packet_Tthread;
int disable_packet_qC;
int disable_packet_qfThreadInfo;
/* Last status reported to GDB. */
static struct target_waitstatus last_status;
static ptid_t last_ptid;
static char *own_buf;
static unsigned char *mem_buf;
/* Structure holding information relative to a single stop reply. We
keep a queue of these (really a singly-linked list) to push to GDB
in non-stop mode. */
struct vstop_notif
{
/* Pointer to next in list. */
struct vstop_notif *next;
/* Thread or process that got the event. */
ptid_t ptid;
/* Event info. */
struct target_waitstatus status;
};
/* The pending stop replies list head. */
static struct vstop_notif *notif_queue = NULL;
/* Put a stop reply to the stop reply queue. */
static void
queue_stop_reply (ptid_t ptid, struct target_waitstatus *status)
{
struct vstop_notif *new_notif;
new_notif = malloc (sizeof (*new_notif));
new_notif->next = NULL;
new_notif->ptid = ptid;
new_notif->status = *status;
if (notif_queue)
{
struct vstop_notif *tail;
for (tail = notif_queue;
tail && tail->next;
tail = tail->next)
;
tail->next = new_notif;
}
else
notif_queue = new_notif;
if (remote_debug)
{
int i = 0;
struct vstop_notif *n;
for (n = notif_queue; n; n = n->next)
i++;
fprintf (stderr, "pending stop replies: %d\n", i);
}
}
/* Place an event in the stop reply queue, and push a notification if
we aren't sending one yet. */
void
push_event (ptid_t ptid, struct target_waitstatus *status)
{
gdb_assert (status->kind != TARGET_WAITKIND_IGNORE);
queue_stop_reply (ptid, status);
/* If this is the first stop reply in the queue, then inform GDB
about it, by sending a Stop notification. */
if (notif_queue->next == NULL)
{
char *p = own_buf;
strcpy (p, "Stop:");
p += strlen (p);
prepare_resume_reply (p,
notif_queue->ptid, ¬if_queue->status);
putpkt_notif (own_buf);
}
}
/* Get rid of the currently pending stop replies for PID. If PID is
-1, then apply to all processes. */
static void
discard_queued_stop_replies (int pid)
{
struct vstop_notif *prev = NULL, *reply, *next;
for (reply = notif_queue; reply; reply = next)
{
next = reply->next;
if (pid == -1
|| ptid_get_pid (reply->ptid) == pid)
{
if (reply == notif_queue)
notif_queue = next;
else
prev->next = reply->next;
free (reply);
}
else
prev = reply;
}
}
/* If there are more stop replies to push, push one now. */
static void
send_next_stop_reply (char *own_buf)
{
if (notif_queue)
prepare_resume_reply (own_buf,
notif_queue->ptid,
¬if_queue->status);
else
write_ok (own_buf);
}
static int
target_running (void)
{
return all_threads.head != NULL;
}
static int
start_inferior (char **argv)
{
char **new_argv = argv;
if (wrapper_argv != NULL)
{
int i, count = 1;
for (i = 0; wrapper_argv[i] != NULL; i++)
count++;
for (i = 0; argv[i] != NULL; i++)
count++;
new_argv = alloca (sizeof (char *) * count);
count = 0;
for (i = 0; wrapper_argv[i] != NULL; i++)
new_argv[count++] = wrapper_argv[i];
for (i = 0; argv[i] != NULL; i++)
new_argv[count++] = argv[i];
new_argv[count] = NULL;
}
if (debug_threads)
{
int i;
for (i = 0; new_argv[i]; ++i)
fprintf (stderr, "new_argv[%d] = \"%s\"\n", i, new_argv[i]);
fflush (stderr);
}
#ifdef SIGTTOU
signal (SIGTTOU, SIG_DFL);
signal (SIGTTIN, SIG_DFL);
#endif
signal_pid = create_inferior (new_argv[0], new_argv);
/* FIXME: we don't actually know at this point that the create
actually succeeded. We won't know that until we wait. */
fprintf (stderr, "Process %s created; pid = %ld\n", argv[0],
signal_pid);
fflush (stderr);
#ifdef SIGTTOU
signal (SIGTTOU, SIG_IGN);
signal (SIGTTIN, SIG_IGN);
terminal_fd = fileno (stderr);
old_foreground_pgrp = tcgetpgrp (terminal_fd);
tcsetpgrp (terminal_fd, signal_pid);
atexit (restore_old_foreground_pgrp);
#endif
if (wrapper_argv != NULL)
{
struct thread_resume resume_info;
resume_info.thread = pid_to_ptid (signal_pid);
resume_info.kind = resume_continue;
resume_info.sig = 0;
mywait (pid_to_ptid (signal_pid), &last_status, 0, 0);
if (last_status.kind != TARGET_WAITKIND_STOPPED)
return signal_pid;
do
{
(*the_target->resume) (&resume_info, 1);
mywait (pid_to_ptid (signal_pid), &last_status, 0, 0);
if (last_status.kind != TARGET_WAITKIND_STOPPED)
return signal_pid;
current_inferior->last_resume_kind = resume_stop;
current_inferior->last_status = last_status;
}
while (last_status.value.sig != TARGET_SIGNAL_TRAP);
current_inferior->last_resume_kind = resume_stop;
current_inferior->last_status = last_status;
return signal_pid;
}
/* Wait till we are at 1st instruction in program, return new pid
(assuming success). */
last_ptid = mywait (pid_to_ptid (signal_pid), &last_status, 0, 0);
if (last_status.kind != TARGET_WAITKIND_EXITED
&& last_status.kind != TARGET_WAITKIND_SIGNALLED)
{
current_inferior->last_resume_kind = resume_stop;
current_inferior->last_status = last_status;
}
return signal_pid;
}
static int
attach_inferior (int pid)
{
/* myattach should return -1 if attaching is unsupported,
0 if it succeeded, and call error() otherwise. */
if (myattach (pid) != 0)
return -1;
fprintf (stderr, "Attached; pid = %d\n", pid);
fflush (stderr);
/* FIXME - It may be that we should get the SIGNAL_PID from the
attach function, so that it can be the main thread instead of
whichever we were told to attach to. */
signal_pid = pid;
if (!non_stop)
{
last_ptid = mywait (pid_to_ptid (pid), &last_status, 0, 0);
/* GDB knows to ignore the first SIGSTOP after attaching to a running
process using the "attach" command, but this is different; it's
just using "target remote". Pretend it's just starting up. */
if (last_status.kind == TARGET_WAITKIND_STOPPED
&& last_status.value.sig == TARGET_SIGNAL_STOP)
last_status.value.sig = TARGET_SIGNAL_TRAP;
current_inferior->last_resume_kind = resume_stop;
current_inferior->last_status = last_status;
}
return 0;
}
extern int remote_debug;
/* Decode a qXfer read request. Return 0 if everything looks OK,
or -1 otherwise. */
static int
decode_xfer_read (char *buf, CORE_ADDR *ofs, unsigned int *len)
{
/* After the read marker and annex, qXfer looks like a
traditional 'm' packet. */
decode_m_packet (buf, ofs, len);
return 0;
}
static int
decode_xfer (char *buf, char **object, char **rw, char **annex, char **offset)
{
/* Extract and NUL-terminate the object. */
*object = buf;
while (*buf && *buf != ':')
buf++;
if (*buf == '\0')
return -1;
*buf++ = 0;
/* Extract and NUL-terminate the read/write action. */
*rw = buf;
while (*buf && *buf != ':')
buf++;
if (*buf == '\0')
return -1;
*buf++ = 0;
/* Extract and NUL-terminate the annex. */
*annex = buf;
while (*buf && *buf != ':')
buf++;
if (*buf == '\0')
return -1;
*buf++ = 0;
*offset = buf;
return 0;
}
/* Write the response to a successful qXfer read. Returns the
length of the (binary) data stored in BUF, corresponding
to as much of DATA/LEN as we could fit. IS_MORE controls
the first character of the response. */
static int
write_qxfer_response (char *buf, const void *data, int len, int is_more)
{
int out_len;
if (is_more)
buf[0] = 'm';
else
buf[0] = 'l';
return remote_escape_output (data, len, (unsigned char *) buf + 1, &out_len,
PBUFSIZ - 2) + 1;
}
/* Handle all of the extended 'Q' packets. */
static void
handle_general_set (char *own_buf)
{
if (strncmp ("QPassSignals:", own_buf, strlen ("QPassSignals:")) == 0)
{
int numsigs = (int) TARGET_SIGNAL_LAST, i;
const char *p = own_buf + strlen ("QPassSignals:");
CORE_ADDR cursig;
p = decode_address_to_semicolon (&cursig, p);
for (i = 0; i < numsigs; i++)
{
if (i == cursig)
{
pass_signals[i] = 1;
if (*p == '\0')
/* Keep looping, to clear the remaining signals. */
cursig = -1;
else
p = decode_address_to_semicolon (&cursig, p);
}
else
pass_signals[i] = 0;
}
strcpy (own_buf, "OK");
return;
}
if (strcmp (own_buf, "QStartNoAckMode") == 0)
{
if (remote_debug)
{
fprintf (stderr, "[noack mode enabled]\n");
fflush (stderr);
}
noack_mode = 1;
write_ok (own_buf);
return;
}
if (strncmp (own_buf, "QNonStop:", 9) == 0)
{
char *mode = own_buf + 9;
int req = -1;
char *req_str;
if (strcmp (mode, "0") == 0)
req = 0;
else if (strcmp (mode, "1") == 0)
req = 1;
else
{
/* We don't know what this mode is, so complain to
GDB. */
fprintf (stderr, "Unknown non-stop mode requested: %s\n",
own_buf);
write_enn (own_buf);
return;
}
req_str = req ? "non-stop" : "all-stop";
if (start_non_stop (req) != 0)
{
fprintf (stderr, "Setting %s mode failed\n", req_str);
write_enn (own_buf);
return;
}
non_stop = req;
if (remote_debug)
fprintf (stderr, "[%s mode enabled]\n", req_str);
write_ok (own_buf);
return;
}
if (target_supports_tracepoints ()
&& handle_tracepoint_general_set (own_buf))
return;
/* Otherwise we didn't know what packet it was. Say we didn't
understand it. */
own_buf[0] = 0;
}
static const char *
get_features_xml (const char *annex)
{
/* gdbserver_xmltarget defines what to return when looking
for the "target.xml" file. Its contents can either be
verbatim XML code (prefixed with a '@') or else the name
of the actual XML file to be used in place of "target.xml".
This variable is set up from the auto-generated
init_registers_... routine for the current target. */
if (gdbserver_xmltarget
&& strcmp (annex, "target.xml") == 0)
{
if (*gdbserver_xmltarget == '@')
return gdbserver_xmltarget + 1;
else
annex = gdbserver_xmltarget;
}
#ifdef USE_XML
{
extern const char *const xml_builtin[][2];
int i;
/* Look for the annex. */
for (i = 0; xml_builtin[i][0] != NULL; i++)
if (strcmp (annex, xml_builtin[i][0]) == 0)
break;
if (xml_builtin[i][0] != NULL)
return xml_builtin[i][1];
}
#endif
return NULL;
}
void
monitor_show_help (void)
{
monitor_output ("The following monitor commands are supported:\n");
monitor_output (" set debug <0|1>\n");
monitor_output (" Enable general debugging messages\n");
monitor_output (" set debug-hw-points <0|1>\n");
monitor_output (" Enable h/w breakpoint/watchpoint debugging messages\n");
monitor_output (" set remote-debug <0|1>\n");
monitor_output (" Enable remote protocol debugging messages\n");
monitor_output (" exit\n");
monitor_output (" Quit GDBserver\n");
}
/* Read trace frame or inferior memory. Returns the number of bytes
actually read, zero when no further transfer is possible, and -1 on
error. Return of a positive value smaller than LEN does not
indicate there's no more to be read, only the end of the transfer.
E.g., when GDB reads memory from a traceframe, a first request may
be served from a memory block that does not cover the whole request
length. A following request gets the rest served from either
another block (of the same traceframe) or from the read-only
regions. */
static int
gdb_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
{
int res;
if (current_traceframe >= 0)
{
ULONGEST nbytes;
ULONGEST length = len;
if (traceframe_read_mem (current_traceframe,
memaddr, myaddr, len, &nbytes))
return EIO;
/* Data read from trace buffer, we're done. */
if (nbytes > 0)
return nbytes;
if (!in_readonly_region (memaddr, length))
return -1;
/* Otherwise we have a valid readonly case, fall through. */
/* (assume no half-trace half-real blocks for now) */
}
res = prepare_to_access_memory ();
if (res == 0)
{
res = read_inferior_memory (memaddr, myaddr, len);
done_accessing_memory ();
return res == 0 ? len : -1;
}
else
return -1;
}
/* Write trace frame or inferior memory. Actually, writing to trace
frames is forbidden. */
static int
gdb_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
{
if (current_traceframe >= 0)
return EIO;
else
{
int ret;
ret = prepare_to_access_memory ();
if (ret == 0)
{
ret = write_inferior_memory (memaddr, myaddr, len);
done_accessing_memory ();
}
return ret;
}
}
/* Subroutine of handle_search_memory to simplify it. */
static int
handle_search_memory_1 (CORE_ADDR start_addr, CORE_ADDR search_space_len,
gdb_byte *pattern, unsigned pattern_len,
gdb_byte *search_buf,
unsigned chunk_size, unsigned search_buf_size,
CORE_ADDR *found_addrp)
{
/* Prime the search buffer. */
if (gdb_read_memory (start_addr, search_buf, search_buf_size)
!= search_buf_size)
{
warning ("Unable to access target memory at 0x%lx, halting search.",
(long) start_addr);
return -1;
}
/* Perform the search.
The loop is kept simple by allocating [N + pattern-length - 1] bytes.
When we've scanned N bytes we copy the trailing bytes to the start and
read in another N bytes. */
while (search_space_len >= pattern_len)
{
gdb_byte *found_ptr;
unsigned nr_search_bytes = (search_space_len < search_buf_size
? search_space_len
: search_buf_size);
found_ptr = memmem (search_buf, nr_search_bytes, pattern, pattern_len);
if (found_ptr != NULL)
{
CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
*found_addrp = found_addr;
return 1;
}
/* Not found in this chunk, skip to next chunk. */
/* Don't let search_space_len wrap here, it's unsigned. */
if (search_space_len >= chunk_size)
search_space_len -= chunk_size;
else
search_space_len = 0;
if (search_space_len >= pattern_len)
{
unsigned keep_len = search_buf_size - chunk_size;
CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
int nr_to_read;
/* Copy the trailing part of the previous iteration to the front
of the buffer for the next iteration. */
memcpy (search_buf, search_buf + chunk_size, keep_len);
nr_to_read = (search_space_len - keep_len < chunk_size
? search_space_len - keep_len
: chunk_size);
if (gdb_read_memory (read_addr, search_buf + keep_len,
nr_to_read) != search_buf_size)
{
warning ("Unable to access target memory "
"at 0x%lx, halting search.",
(long) read_addr);
return -1;
}
start_addr += chunk_size;
}
}
/* Not found. */
return 0;
}
/* Handle qSearch:memory packets. */
static void
handle_search_memory (char *own_buf, int packet_len)
{
CORE_ADDR start_addr;
CORE_ADDR search_space_len;
gdb_byte *pattern;
unsigned int pattern_len;
/* NOTE: also defined in find.c testcase. */
#define SEARCH_CHUNK_SIZE 16000
const unsigned chunk_size = SEARCH_CHUNK_SIZE;
/* Buffer to hold memory contents for searching. */
gdb_byte *search_buf;
unsigned search_buf_size;
int found;
CORE_ADDR found_addr;
int cmd_name_len = sizeof ("qSearch:memory:") - 1;
pattern = malloc (packet_len);
if (pattern == NULL)
{
error ("Unable to allocate memory to perform the search");
strcpy (own_buf, "E00");
return;
}
if (decode_search_memory_packet (own_buf + cmd_name_len,
packet_len - cmd_name_len,
&start_addr, &search_space_len,
pattern, &pattern_len) < 0)
{
free (pattern);
error ("Error in parsing qSearch:memory packet");
strcpy (own_buf, "E00");
return;
}
search_buf_size = chunk_size + pattern_len - 1;
/* No point in trying to allocate a buffer larger than the search space. */
if (search_space_len < search_buf_size)
search_buf_size = search_space_len;
search_buf = malloc (search_buf_size);
if (search_buf == NULL)
{
free (pattern);
error ("Unable to allocate memory to perform the search");
strcpy (own_buf, "E00");
return;
}
found = handle_search_memory_1 (start_addr, search_space_len,
pattern, pattern_len,
search_buf, chunk_size, search_buf_size,
&found_addr);
if (found > 0)
sprintf (own_buf, "1,%lx", (long) found_addr);
else if (found == 0)
strcpy (own_buf, "0");
else
strcpy (own_buf, "E00");
free (search_buf);
free (pattern);
}
#define require_running(BUF) \
if (!target_running ()) \
{ \
write_enn (BUF); \
return; \
}
/* Handle monitor commands not handled by target-specific handlers. */
static void
handle_monitor_command (char *mon)
{
if (strcmp (mon, "set debug 1") == 0)
{
debug_threads = 1;
monitor_output ("Debug output enabled.\n");
}
else if (strcmp (mon, "set debug 0") == 0)
{
debug_threads = 0;
monitor_output ("Debug output disabled.\n");
}
else if (strcmp (mon, "set debug-hw-points 1") == 0)
{
debug_hw_points = 1;
monitor_output ("H/W point debugging output enabled.\n");
}
else if (strcmp (mon, "set debug-hw-points 0") == 0)
{
debug_hw_points = 0;
monitor_output ("H/W point debugging output disabled.\n");
}
else if (strcmp (mon, "set remote-debug 1") == 0)
{
remote_debug = 1;
monitor_output ("Protocol debug output enabled.\n");
}
else if (strcmp (mon, "set remote-debug 0") == 0)
{
remote_debug = 0;
monitor_output ("Protocol debug output disabled.\n");
}
else if (strcmp (mon, "help") == 0)
monitor_show_help ();
else if (strcmp (mon, "exit") == 0)
exit_requested = 1;
else
{
monitor_output ("Unknown monitor command.\n\n");
monitor_show_help ();
write_enn (own_buf);
}
}
/* Associates a callback with each supported qXfer'able object. */
struct qxfer
{
/* The object this handler handles. */
const char *object;
/* Request that the target transfer up to LEN 8-bit bytes of the
target's OBJECT. The OFFSET, for a seekable object, specifies
the starting point. The ANNEX can be used to provide additional
data-specific information to the target.
Return the number of bytes actually transfered, zero when no
further transfer is possible, -1 on error, and -2 when the
transfer is not supported. Return of a positive value smaller
than LEN does not indicate the end of the object, only the end of
the transfer.
One, and only one, of readbuf or writebuf must be non-NULL. */
int (*xfer) (const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, LONGEST len);
};
/* Handle qXfer:auxv:read. */
static int
handle_qxfer_auxv (const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, LONGEST len)
{
if (the_target->read_auxv == NULL || writebuf != NULL)
return -2;
if (annex[0] != '\0' || !target_running ())
return -1;
return (*the_target->read_auxv) (offset, readbuf, len);
}
/* Handle qXfer:features:read. */
static int
handle_qxfer_features (const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, LONGEST len)
{
const char *document;
size_t total_len;
if (writebuf != NULL)
return -2;
if (!target_running ())
return -1;
/* Grab the correct annex. */
document = get_features_xml (annex);
if (document == NULL)
return -1;
total_len = strlen (document);
if (offset > total_len)
return -1;
if (offset + len > total_len)
len = total_len - offset;
memcpy (readbuf, document + offset, len);
return len;
}
/* Handle qXfer:libraries:read. */
static int
handle_qxfer_libraries (const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, LONGEST len)
{
unsigned int total_len;
char *document, *p;
struct inferior_list_entry *dll_ptr;
if (writebuf != NULL)
return -2;
if (annex[0] != '\0' || !target_running ())
return -1;
/* Over-estimate the necessary memory. Assume that every character
in the library name must be escaped. */
total_len = 64;
for (dll_ptr = all_dlls.head; dll_ptr != NULL; dll_ptr = dll_ptr->next)
total_len += 128 + 6 * strlen (((struct dll_info *) dll_ptr)->name);
document = malloc (total_len);
if (document == NULL)
return -1;
strcpy (document, "\n");
p = document + strlen (document);
for (dll_ptr = all_dlls.head; dll_ptr != NULL; dll_ptr = dll_ptr->next)
{
struct dll_info *dll = (struct dll_info *) dll_ptr;
char *name;
strcpy (p, " name);
strcpy (p, name);
free (name);
p = p + strlen (p);
strcpy (p, "\">base_addr);
p = p + strlen (p);
strcpy (p, "\"/>\n");
p = p + strlen (p);
}
strcpy (p, "\n");
total_len = strlen (document);
if (offset > total_len)
{
free (document);
return -1;
}
if (offset + len > total_len)
len = total_len - offset;
memcpy (readbuf, document + offset, len);
free (document);
return len;
}
/* Handle qXfer:osadata:read. */
static int
handle_qxfer_osdata (const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, LONGEST len)
{
if (the_target->qxfer_osdata == NULL || writebuf != NULL)
return -2;
return (*the_target->qxfer_osdata) (annex, readbuf, NULL, offset, len);
}
/* Handle qXfer:siginfo:read and qXfer:siginfo:write. */
static int
handle_qxfer_siginfo (const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, LONGEST len)
{
if (the_target->qxfer_siginfo == NULL)
return -2;
if (annex[0] != '\0' || !target_running ())
return -1;
return (*the_target->qxfer_siginfo) (annex, readbuf, writebuf, offset, len);
}
/* Handle qXfer:spu:read and qXfer:spu:write. */
static int
handle_qxfer_spu (const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, LONGEST len)
{
if (the_target->qxfer_spu == NULL)
return -2;
if (!target_running ())
return -1;
return (*the_target->qxfer_spu) (annex, readbuf, writebuf, offset, len);
}
/* Handle qXfer:statictrace:read. */
static int
handle_qxfer_statictrace (const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, LONGEST len)
{
ULONGEST nbytes;
if (writebuf != NULL)
return -2;
if (annex[0] != '\0' || !target_running () || current_traceframe == -1)
return -1;
if (traceframe_read_sdata (current_traceframe, offset,
readbuf, len, &nbytes))
return -1;
return nbytes;
}
/* Helper for handle_qxfer_threads. */
static void
handle_qxfer_threads_proper (struct buffer *buffer)
{
struct inferior_list_entry *thread;
buffer_grow_str (buffer, "\n");
for (thread = all_threads.head; thread; thread = thread->next)
{
ptid_t ptid = thread_to_gdb_id ((struct thread_info *)thread);
char ptid_s[100];
int core = -1;
char core_s[21];
write_ptid (ptid_s, ptid);
if (the_target->core_of_thread)
core = (*the_target->core_of_thread) (ptid);
if (core != -1)
{
sprintf (core_s, "%d", core);
buffer_xml_printf (buffer, "\n",
ptid_s, core_s);
}
else
{
buffer_xml_printf (buffer, "\n",
ptid_s);
}
}
buffer_grow_str0 (buffer, "\n");
}
/* Handle qXfer:threads:read. */
static int
handle_qxfer_threads (const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, LONGEST len)
{
static char *result = 0;
static unsigned int result_length = 0;
if (writebuf != NULL)
return -2;
if (!target_running () || annex[0] != '\0')
return -1;
if (offset == 0)
{
struct buffer buffer;
/* When asked for data at offset 0, generate everything and store into
'result'. Successive reads will be served off 'result'. */
if (result)
free (result);
buffer_init (&buffer);
handle_qxfer_threads_proper (&buffer);
result = buffer_finish (&buffer);
result_length = strlen (result);
buffer_free (&buffer);
}
if (offset >= result_length)
{
/* We're out of data. */
free (result);
result = NULL;
result_length = 0;
return 0;
}
if (len > result_length - offset)
len = result_length - offset;
memcpy (readbuf, result + offset, len);
return len;
}
/* Handle qXfer:traceframe-info:read. */
static int
handle_qxfer_traceframe_info (const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, LONGEST len)
{
static char *result = 0;
static unsigned int result_length = 0;
if (writebuf != NULL)
return -2;
if (!target_running () || annex[0] != '\0' || current_traceframe == -1)
return -1;
if (offset == 0)
{
struct buffer buffer;
/* When asked for data at offset 0, generate everything and
store into 'result'. Successive reads will be served off
'result'. */
free (result);
buffer_init (&buffer);
traceframe_read_info (current_traceframe, &buffer);
result = buffer_finish (&buffer);
result_length = strlen (result);
buffer_free (&buffer);
}
if (offset >= result_length)
{
/* We're out of data. */
free (result);
result = NULL;
result_length = 0;
return 0;
}
if (len > result_length - offset)
len = result_length - offset;
memcpy (readbuf, result + offset, len);
return len;
}
static const struct qxfer qxfer_packets[] =
{
{ "auxv", handle_qxfer_auxv },
{ "features", handle_qxfer_features },
{ "libraries", handle_qxfer_libraries },
{ "osdata", handle_qxfer_osdata },
{ "siginfo", handle_qxfer_siginfo },
{ "spu", handle_qxfer_spu },
{ "statictrace", handle_qxfer_statictrace },
{ "threads", handle_qxfer_threads },
{ "traceframe-info", handle_qxfer_traceframe_info },
};
static int
handle_qxfer (char *own_buf, int packet_len, int *new_packet_len_p)
{
int i;
char *object;
char *rw;
char *annex;
char *offset;
if (strncmp (own_buf, "qXfer:", 6) != 0)
return 0;
/* Grab the object, r/w and annex. */
if (decode_xfer (own_buf + 6, &object, &rw, &annex, &offset) < 0)
{
write_enn (own_buf);
return 1;
}
for (i = 0;
i < sizeof (qxfer_packets) / sizeof (qxfer_packets[0]);
i++)
{
const struct qxfer *q = &qxfer_packets[i];
if (strcmp (object, q->object) == 0)
{
if (strcmp (rw, "read") == 0)
{
unsigned char *data;
int n;
CORE_ADDR ofs;
unsigned int len;
/* Grab the offset and length. */
if (decode_xfer_read (offset, &ofs, &len) < 0)
{
write_enn (own_buf);
return 1;
}
/* Read one extra byte, as an indicator of whether there is
more. */
if (len > PBUFSIZ - 2)
len = PBUFSIZ - 2;
data = malloc (len + 1);
if (data == NULL)
{
write_enn (own_buf);
return 1;
}
n = (*q->xfer) (annex, data, NULL, ofs, len + 1);
if (n == -2)
{
free (data);
return 0;
}
else if (n < 0)
write_enn (own_buf);
else if (n > len)
*new_packet_len_p = write_qxfer_response (own_buf, data, len, 1);
else
*new_packet_len_p = write_qxfer_response (own_buf, data, n, 0);
free (data);
return 1;
}
else if (strcmp (rw, "write") == 0)
{
int n;
unsigned int len;
CORE_ADDR ofs;
unsigned char *data;
strcpy (own_buf, "E00");
data = malloc (packet_len - (offset - own_buf));
if (data == NULL)
{
write_enn (own_buf);
return 1;
}
if (decode_xfer_write (offset, packet_len - (offset - own_buf),
&ofs, &len, data) < 0)
{
free (data);
write_enn (own_buf);
return 1;
}
n = (*q->xfer) (annex, NULL, data, ofs, len);
if (n == -2)
{
free (data);
return 0;
}
else if (n < 0)
write_enn (own_buf);
else
sprintf (own_buf, "%x", n);
free (data);
return 1;
}
return 0;
}
}
return 0;
}
/* Table used by the crc32 function to calcuate the checksum. */
static unsigned int crc32_table[256] =
{0, 0};
/* Compute 32 bit CRC from inferior memory.
On success, return 32 bit CRC.
On failure, return (unsigned long long) -1. */
static unsigned long long
crc32 (CORE_ADDR base, int len, unsigned int crc)
{
if (!crc32_table[1])
{
/* Initialize the CRC table and the decoding table. */
int i, j;
unsigned int c;
for (i = 0; i < 256; i++)
{
for (c = i << 24, j = 8; j > 0; --j)
c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
crc32_table[i] = c;
}
}
while (len--)
{
unsigned char byte = 0;
/* Return failure if memory read fails. */
if (read_inferior_memory (base, &byte, 1) != 0)
return (unsigned long long) -1;
crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ byte) & 255];
base++;
}
return (unsigned long long) crc;
}
/* Handle all of the extended 'q' packets. */
void
handle_query (char *own_buf, int packet_len, int *new_packet_len_p)
{
static struct inferior_list_entry *thread_ptr;
/* Reply the current thread id. */
if (strcmp ("qC", own_buf) == 0 && !disable_packet_qC)
{
ptid_t gdb_id;
require_running (own_buf);
if (!ptid_equal (general_thread, null_ptid)
&& !ptid_equal (general_thread, minus_one_ptid))
gdb_id = general_thread;
else
{
thread_ptr = all_threads.head;
gdb_id = thread_to_gdb_id ((struct thread_info *)thread_ptr);
}
sprintf (own_buf, "QC");
own_buf += 2;
own_buf = write_ptid (own_buf, gdb_id);
return;
}
if (strcmp ("qSymbol::", own_buf) == 0)
{
/* GDB is suggesting new symbols have been loaded. This may
mean a new shared library has been detected as loaded, so
take the opportunity to check if breakpoints we think are
inserted, still are. Note that it isn't guaranteed that
we'll see this when a shared library is loaded, and nor will
we see this for unloads (although breakpoints in unloaded
libraries shouldn't trigger), as GDB may not find symbols for
the library at all. We also re-validate breakpoints when we
see a second GDB breakpoint for the same address, and or when
we access breakpoint shadows. */
validate_breakpoints ();
if (target_supports_tracepoints ())
tracepoint_look_up_symbols ();
if (target_running () && the_target->look_up_symbols != NULL)
(*the_target->look_up_symbols) ();
strcpy (own_buf, "OK");
return;
}
if (!disable_packet_qfThreadInfo)
{
if (strcmp ("qfThreadInfo", own_buf) == 0)
{
ptid_t gdb_id;
require_running (own_buf);
thread_ptr = all_threads.head;
*own_buf++ = 'm';
gdb_id = thread_to_gdb_id ((struct thread_info *)thread_ptr);
write_ptid (own_buf, gdb_id);
thread_ptr = thread_ptr->next;
return;
}
if (strcmp ("qsThreadInfo", own_buf) == 0)
{
ptid_t gdb_id;
require_running (own_buf);
if (thread_ptr != NULL)
{
*own_buf++ = 'm';
gdb_id = thread_to_gdb_id ((struct thread_info *)thread_ptr);
write_ptid (own_buf, gdb_id);
thread_ptr = thread_ptr->next;
return;
}
else
{
sprintf (own_buf, "l");
return;
}
}
}
if (the_target->read_offsets != NULL
&& strcmp ("qOffsets", own_buf) == 0)
{
CORE_ADDR text, data;
require_running (own_buf);
if (the_target->read_offsets (&text, &data))
sprintf (own_buf, "Text=%lX;Data=%lX;Bss=%lX",
(long)text, (long)data, (long)data);
else
write_enn (own_buf);
return;
}
/* Protocol features query. */
if (strncmp ("qSupported", own_buf, 10) == 0
&& (own_buf[10] == ':' || own_buf[10] == '\0'))
{
char *p = &own_buf[10];
int gdb_supports_qRelocInsn = 0;
/* Start processing qSupported packet. */
target_process_qsupported (NULL);
/* Process each feature being provided by GDB. The first
feature will follow a ':', and latter features will follow
';'. */
if (*p == ':')
{
char **qsupported = NULL;
int count = 0;
int i;
/* Two passes, to avoid nested strtok calls in
target_process_qsupported. */
for (p = strtok (p + 1, ";");
p != NULL;
p = strtok (NULL, ";"))
{
count++;
qsupported = xrealloc (qsupported, count * sizeof (char *));
qsupported[count - 1] = xstrdup (p);
}
for (i = 0; i < count; i++)
{
p = qsupported[i];
if (strcmp (p, "multiprocess+") == 0)
{
/* GDB supports and wants multi-process support if
possible. */
if (target_supports_multi_process ())
multi_process = 1;
}
else if (strcmp (p, "qRelocInsn+") == 0)
{
/* GDB supports relocate instruction requests. */
gdb_supports_qRelocInsn = 1;
}
else
target_process_qsupported (p);
free (p);
}
free (qsupported);
}
sprintf (own_buf, "PacketSize=%x;QPassSignals+", PBUFSIZ - 1);
/* We do not have any hook to indicate whether the target backend
supports qXfer:libraries:read, so always report it. */
strcat (own_buf, ";qXfer:libraries:read+");
if (the_target->read_auxv != NULL)
strcat (own_buf, ";qXfer:auxv:read+");
if (the_target->qxfer_spu != NULL)
strcat (own_buf, ";qXfer:spu:read+;qXfer:spu:write+");
if (the_target->qxfer_siginfo != NULL)
strcat (own_buf, ";qXfer:siginfo:read+;qXfer:siginfo:write+");
/* We always report qXfer:features:read, as targets may
install XML files on a subsequent call to arch_setup.
If we reported to GDB on startup that we don't support
qXfer:feature:read at all, we will never be re-queried. */
strcat (own_buf, ";qXfer:features:read+");
if (transport_is_reliable)
strcat (own_buf, ";QStartNoAckMode+");
if (the_target->qxfer_osdata != NULL)
strcat (own_buf, ";qXfer:osdata:read+");
if (target_supports_multi_process ())
strcat (own_buf, ";multiprocess+");
if (target_supports_non_stop ())
strcat (own_buf, ";QNonStop+");
strcat (own_buf, ";qXfer:threads:read+");
if (target_supports_tracepoints ())
{
strcat (own_buf, ";ConditionalTracepoints+");
strcat (own_buf, ";TraceStateVariables+");
strcat (own_buf, ";TracepointSource+");
strcat (own_buf, ";DisconnectedTracing+");
if (gdb_supports_qRelocInsn && target_supports_fast_tracepoints ())
strcat (own_buf, ";FastTracepoints+");
strcat (own_buf, ";StaticTracepoints+");
strcat (own_buf, ";qXfer:statictrace:read+");
strcat (own_buf, ";qXfer:traceframe-info:read+");
}
return;
}
/* Thread-local storage support. */
if (the_target->get_tls_address != NULL
&& strncmp ("qGetTLSAddr:", own_buf, 12) == 0)
{
char *p = own_buf + 12;
CORE_ADDR parts[2], address = 0;
int i, err;
ptid_t ptid = null_ptid;
require_running (own_buf);
for (i = 0; i < 3; i++)
{
char *p2;
int len;
if (p == NULL)
break;
p2 = strchr (p, ',');
if (p2)
{
len = p2 - p;
p2++;
}
else
{
len = strlen (p);
p2 = NULL;
}
if (i == 0)
ptid = read_ptid (p, NULL);
else
decode_address (&parts[i - 1], p, len);
p = p2;
}
if (p != NULL || i < 3)
err = 1;
else
{
struct thread_info *thread = find_thread_ptid (ptid);
if (thread == NULL)
err = 2;
else
err = the_target->get_tls_address (thread, parts[0], parts[1],
&address);
}
if (err == 0)
{
strcpy (own_buf, paddress(address));
return;
}
else if (err > 0)
{
write_enn (own_buf);
return;
}
/* Otherwise, pretend we do not understand this packet. */
}
/* Windows OS Thread Information Block address support. */
if (the_target->get_tib_address != NULL
&& strncmp ("qGetTIBAddr:", own_buf, 12) == 0)
{
char *annex;
int n;
CORE_ADDR tlb;
ptid_t ptid = read_ptid (own_buf + 12, &annex);
n = (*the_target->get_tib_address) (ptid, &tlb);
if (n == 1)
{
strcpy (own_buf, paddress(tlb));
return;
}
else if (n == 0)
{
write_enn (own_buf);
return;
}
return;
}
/* Handle "monitor" commands. */
if (strncmp ("qRcmd,", own_buf, 6) == 0)
{
char *mon = malloc (PBUFSIZ);
int len = strlen (own_buf + 6);
if (mon == NULL)
{
write_enn (own_buf);
return;
}
if ((len % 2) != 0 || unhexify (mon, own_buf + 6, len / 2) != len / 2)
{
write_enn (own_buf);
free (mon);
return;
}
mon[len / 2] = '\0';
write_ok (own_buf);
if (the_target->handle_monitor_command == NULL
|| (*the_target->handle_monitor_command) (mon) == 0)
/* Default processing. */
handle_monitor_command (mon);
free (mon);
return;
}
if (strncmp ("qSearch:memory:", own_buf,
sizeof ("qSearch:memory:") - 1) == 0)
{
require_running (own_buf);
handle_search_memory (own_buf, packet_len);
return;
}
if (strcmp (own_buf, "qAttached") == 0
|| strncmp (own_buf, "qAttached:", sizeof ("qAttached:") - 1) == 0)
{
struct process_info *process;
if (own_buf[sizeof ("qAttached") - 1])
{
int pid = strtoul (own_buf + sizeof ("qAttached:") - 1, NULL, 16);
process = (struct process_info *)
find_inferior_id (&all_processes, pid_to_ptid (pid));
}
else
{
require_running (own_buf);
process = current_process ();
}
if (process == NULL)
{
write_enn (own_buf);
return;
}
strcpy (own_buf, process->attached ? "1" : "0");
return;
}
if (strncmp ("qCRC:", own_buf, 5) == 0)
{
/* CRC check (compare-section). */
char *comma;
CORE_ADDR base;
int len;
unsigned long long crc;
require_running (own_buf);
base = strtoul (own_buf + 5, &comma, 16);
if (*comma++ != ',')
{
write_enn (own_buf);
return;
}
len = strtoul (comma, NULL, 16);
crc = crc32 (base, len, 0xffffffff);
/* Check for memory failure. */
if (crc == (unsigned long long) -1)
{
write_enn (own_buf);
return;
}
sprintf (own_buf, "C%lx", (unsigned long) crc);
return;
}
if (handle_qxfer (own_buf, packet_len, new_packet_len_p))
return;
if (target_supports_tracepoints () && handle_tracepoint_query (own_buf))
return;
/* Otherwise we didn't know what packet it was. Say we didn't
understand it. */
own_buf[0] = 0;
}
static void gdb_wants_all_threads_stopped (void);
/* Parse vCont packets. */
void
handle_v_cont (char *own_buf)
{
char *p, *q;
int n = 0, i = 0;
struct thread_resume *resume_info;
struct thread_resume default_action = {{0}};
/* Count the number of semicolons in the packet. There should be one
for every action. */
p = &own_buf[5];
while (p)
{
n++;
p++;
p = strchr (p, ';');
}
resume_info = malloc (n * sizeof (resume_info[0]));
if (resume_info == NULL)
goto err;
p = &own_buf[5];
while (*p)
{
p++;
if (p[0] == 's' || p[0] == 'S')
resume_info[i].kind = resume_step;
else if (p[0] == 'c' || p[0] == 'C')
resume_info[i].kind = resume_continue;
else if (p[0] == 't')
resume_info[i].kind = resume_stop;
else
goto err;
if (p[0] == 'S' || p[0] == 'C')
{
int sig;
sig = strtol (p + 1, &q, 16);
if (p == q)
goto err;
p = q;
if (!target_signal_to_host_p (sig))
goto err;
resume_info[i].sig = target_signal_to_host (sig);
}
else
{
resume_info[i].sig = 0;
p = p + 1;
}
if (p[0] == 0)
{
resume_info[i].thread = minus_one_ptid;
default_action = resume_info[i];
/* Note: we don't increment i here, we'll overwrite this entry
the next time through. */
}
else if (p[0] == ':')
{
ptid_t ptid = read_ptid (p + 1, &q);
if (p == q)
goto err;
p = q;
if (p[0] != ';' && p[0] != 0)
goto err;
resume_info[i].thread = ptid;
i++;
}
}
if (i < n)
resume_info[i] = default_action;
/* Still used in occasional places in the backend. */
if (n == 1
&& !ptid_equal (resume_info[0].thread, minus_one_ptid)
&& resume_info[0].kind != resume_stop)
cont_thread = resume_info[0].thread;
else
cont_thread = minus_one_ptid;
set_desired_inferior (0);
if (!non_stop)
enable_async_io ();
(*the_target->resume) (resume_info, n);
free (resume_info);
if (non_stop)
write_ok (own_buf);
else
{
last_ptid = mywait (minus_one_ptid, &last_status, 0, 1);
if (last_status.kind != TARGET_WAITKIND_EXITED
&& last_status.kind != TARGET_WAITKIND_SIGNALLED)
current_inferior->last_status = last_status;
/* From the client's perspective, all-stop mode always stops all
threads implicitly (and the target backend has already done
so by now). Tag all threads as "want-stopped", so we don't
resume them implicitly without the client telling us to. */
gdb_wants_all_threads_stopped ();
prepare_resume_reply (own_buf, last_ptid, &last_status);
disable_async_io ();
if (last_status.kind == TARGET_WAITKIND_EXITED
|| last_status.kind == TARGET_WAITKIND_SIGNALLED)
mourn_inferior (find_process_pid (ptid_get_pid (last_ptid)));
}
return;
err:
write_enn (own_buf);
free (resume_info);
return;
}
/* Attach to a new program. Return 1 if successful, 0 if failure. */
int
handle_v_attach (char *own_buf)
{
int pid;
pid = strtol (own_buf + 8, NULL, 16);
if (pid != 0 && attach_inferior (pid) == 0)
{
/* Don't report shared library events after attaching, even if
some libraries are preloaded. GDB will always poll the
library list. Avoids the "stopped by shared library event"
notice on the GDB side. */
dlls_changed = 0;
if (non_stop)
{
/* In non-stop, we don't send a resume reply. Stop events
will follow up using the normal notification
mechanism. */
write_ok (own_buf);
}
else
prepare_resume_reply (own_buf, last_ptid, &last_status);
return 1;
}
else
{
write_enn (own_buf);
return 0;
}
}
/* Run a new program. Return 1 if successful, 0 if failure. */
static int
handle_v_run (char *own_buf)
{
char *p, *next_p, **new_argv;
int i, new_argc;
new_argc = 0;
for (p = own_buf + strlen ("vRun;"); p && *p; p = strchr (p, ';'))
{
p++;
new_argc++;
}
new_argv = calloc (new_argc + 2, sizeof (char *));
if (new_argv == NULL)
{
write_enn (own_buf);
return 0;
}
i = 0;
for (p = own_buf + strlen ("vRun;"); *p; p = next_p)
{
next_p = strchr (p, ';');
if (next_p == NULL)
next_p = p + strlen (p);
if (i == 0 && p == next_p)
new_argv[i] = NULL;
else
{
/* FIXME: Fail request if out of memory instead of dying. */
new_argv[i] = xmalloc (1 + (next_p - p) / 2);
unhexify (new_argv[i], p, (next_p - p) / 2);
new_argv[i][(next_p - p) / 2] = '\0';
}
if (*next_p)
next_p++;
i++;
}
new_argv[i] = NULL;
if (new_argv[0] == NULL)
{
/* GDB didn't specify a program to run. Use the program from the
last run with the new argument list. */
if (program_argv == NULL)
{
/* FIXME: new_argv memory leak */
write_enn (own_buf);
return 0;
}
new_argv[0] = strdup (program_argv[0]);
if (new_argv[0] == NULL)
{
/* FIXME: new_argv memory leak */
write_enn (own_buf);
return 0;
}
}
/* Free the old argv and install the new one. */
freeargv (program_argv);
program_argv = new_argv;
start_inferior (program_argv);
if (last_status.kind == TARGET_WAITKIND_STOPPED)
{
prepare_resume_reply (own_buf, last_ptid, &last_status);
/* In non-stop, sending a resume reply doesn't set the general
thread, but GDB assumes a vRun sets it (this is so GDB can
query which is the main thread of the new inferior. */
if (non_stop)
general_thread = last_ptid;
return 1;
}
else
{
write_enn (own_buf);
return 0;
}
}
/* Kill process. Return 1 if successful, 0 if failure. */
int
handle_v_kill (char *own_buf)
{
int pid;
char *p = &own_buf[6];
if (multi_process)
pid = strtol (p, NULL, 16);
else
pid = signal_pid;
if (pid != 0 && kill_inferior (pid) == 0)
{
last_status.kind = TARGET_WAITKIND_SIGNALLED;
last_status.value.sig = TARGET_SIGNAL_KILL;
last_ptid = pid_to_ptid (pid);
discard_queued_stop_replies (pid);
write_ok (own_buf);
return 1;
}
else
{
write_enn (own_buf);
return 0;
}
}
/* Handle a 'vStopped' packet. */
static void
handle_v_stopped (char *own_buf)
{
/* If we're waiting for GDB to acknowledge a pending stop reply,
consider that done. */
if (notif_queue)
{
struct vstop_notif *head;
if (remote_debug)
fprintf (stderr, "vStopped: acking %s\n",
target_pid_to_str (notif_queue->ptid));
head = notif_queue;
notif_queue = notif_queue->next;
free (head);
}
/* Push another stop reply, or if there are no more left, an OK. */
send_next_stop_reply (own_buf);
}
/* Handle all of the extended 'v' packets. */
void
handle_v_requests (char *own_buf, int packet_len, int *new_packet_len)
{
if (!disable_packet_vCont)
{
if (strncmp (own_buf, "vCont;", 6) == 0)
{
require_running (own_buf);
handle_v_cont (own_buf);
return;
}
if (strncmp (own_buf, "vCont?", 6) == 0)
{
strcpy (own_buf, "vCont;c;C;s;S;t");
return;
}
}
if (strncmp (own_buf, "vFile:", 6) == 0
&& handle_vFile (own_buf, packet_len, new_packet_len))
return;
if (strncmp (own_buf, "vAttach;", 8) == 0)
{
if (!multi_process && target_running ())
{
fprintf (stderr, "Already debugging a process\n");
write_enn (own_buf);
return;
}
handle_v_attach (own_buf);
return;
}
if (strncmp (own_buf, "vRun;", 5) == 0)
{
if (!multi_process && target_running ())
{
fprintf (stderr, "Already debugging a process\n");
write_enn (own_buf);
return;
}
handle_v_run (own_buf);
return;
}
if (strncmp (own_buf, "vKill;", 6) == 0)
{
if (!target_running ())
{
fprintf (stderr, "No process to kill\n");
write_enn (own_buf);
return;
}
handle_v_kill (own_buf);
return;
}
if (strncmp (own_buf, "vStopped", 8) == 0)
{
handle_v_stopped (own_buf);
return;
}
/* Otherwise we didn't know what packet it was. Say we didn't
understand it. */
own_buf[0] = 0;
return;
}
/* Resume inferior and wait for another event. In non-stop mode,
don't really wait here, but return immediatelly to the event
loop. */
static void
myresume (char *own_buf, int step, int sig)
{
struct thread_resume resume_info[2];
int n = 0;
int valid_cont_thread;
set_desired_inferior (0);
valid_cont_thread = (!ptid_equal (cont_thread, null_ptid)
&& !ptid_equal (cont_thread, minus_one_ptid));
if (step || sig || valid_cont_thread)
{
resume_info[0].thread
= ((struct inferior_list_entry *) current_inferior)->id;
if (step)
resume_info[0].kind = resume_step;
else
resume_info[0].kind = resume_continue;
resume_info[0].sig = sig;
n++;
}
if (!valid_cont_thread)
{
resume_info[n].thread = minus_one_ptid;
resume_info[n].kind = resume_continue;
resume_info[n].sig = 0;
n++;
}
if (!non_stop)
enable_async_io ();
(*the_target->resume) (resume_info, n);
if (non_stop)
write_ok (own_buf);
else
{
last_ptid = mywait (minus_one_ptid, &last_status, 0, 1);
if (last_status.kind != TARGET_WAITKIND_EXITED
&& last_status.kind != TARGET_WAITKIND_SIGNALLED)
{
current_inferior->last_resume_kind = resume_stop;
current_inferior->last_status = last_status;
}
prepare_resume_reply (own_buf, last_ptid, &last_status);
disable_async_io ();
if (last_status.kind == TARGET_WAITKIND_EXITED
|| last_status.kind == TARGET_WAITKIND_SIGNALLED)
mourn_inferior (find_process_pid (ptid_get_pid (last_ptid)));
}
}
/* Callback for for_each_inferior. Make a new stop reply for each
stopped thread. */
static int
queue_stop_reply_callback (struct inferior_list_entry *entry, void *arg)
{
struct thread_info *thread = (struct thread_info *) entry;
/* For now, assume targets that don't have this callback also don't
manage the thread's last_status field. */
if (the_target->thread_stopped == NULL)
{
/* Pass the last stop reply back to GDB, but don't notify
yet. */
queue_stop_reply (entry->id, &thread->last_status);
}
else
{
if (thread_stopped (thread))
{
if (debug_threads)
fprintf (stderr,
"Reporting thread %s as already stopped with %s\n",
target_pid_to_str (entry->id),
target_waitstatus_to_string (&thread->last_status));
gdb_assert (thread->last_status.kind != TARGET_WAITKIND_IGNORE);
/* Pass the last stop reply back to GDB, but don't notify
yet. */
queue_stop_reply (entry->id, &thread->last_status);
}
}
return 0;
}
/* Set this inferior threads's state as "want-stopped". We won't
resume this thread until the client gives us another action for
it. */
static void
gdb_wants_thread_stopped (struct inferior_list_entry *entry)
{
struct thread_info *thread = (struct thread_info *) entry;
thread->last_resume_kind = resume_stop;
if (thread->last_status.kind == TARGET_WAITKIND_IGNORE)
{
/* Most threads are stopped implicitly (all-stop); tag that with
signal 0. */
thread->last_status.kind = TARGET_WAITKIND_STOPPED;
thread->last_status.value.sig = TARGET_SIGNAL_0;
}
}
/* Set all threads' states as "want-stopped". */
static void
gdb_wants_all_threads_stopped (void)
{
for_each_inferior (&all_threads, gdb_wants_thread_stopped);
}
/* Clear the gdb_detached flag of every process. */
static void
gdb_reattached_process (struct inferior_list_entry *entry)
{
struct process_info *process = (struct process_info *) entry;
process->gdb_detached = 0;
}
/* Status handler for the '?' packet. */
static void
handle_status (char *own_buf)
{
/* GDB is connected, don't forward events to the target anymore. */
for_each_inferior (&all_processes, gdb_reattached_process);
/* In non-stop mode, we must send a stop reply for each stopped
thread. In all-stop mode, just send one for the first stopped
thread we find. */
if (non_stop)
{
discard_queued_stop_replies (-1);
find_inferior (&all_threads, queue_stop_reply_callback, NULL);
/* The first is sent immediatly. OK is sent if there is no
stopped thread, which is the same handling of the vStopped
packet (by design). */
send_next_stop_reply (own_buf);
}
else
{
pause_all (0);
stabilize_threads ();
gdb_wants_all_threads_stopped ();
if (all_threads.head)
{
struct target_waitstatus status;
status.kind = TARGET_WAITKIND_STOPPED;
status.value.sig = TARGET_SIGNAL_TRAP;
prepare_resume_reply (own_buf,
all_threads.head->id, &status);
}
else
strcpy (own_buf, "W00");
}
}
static void
gdbserver_version (void)
{
printf ("GNU gdbserver %s%s\n"
"Copyright (C) 2011 Free Software Foundation, Inc.\n"
"gdbserver is free software, covered by the "
"GNU General Public License.\n"
"This gdbserver was configured as \"%s\"\n",
PKGVERSION, version, host_name);
}
static void
gdbserver_usage (FILE *stream)
{
fprintf (stream, "Usage:\tgdbserver [OPTIONS] COMM PROG [ARGS ...]\n"
"\tgdbserver [OPTIONS] --attach COMM PID\n"
"\tgdbserver [OPTIONS] --multi COMM\n"
"\n"
"COMM may either be a tty device (for serial debugging), or \n"
"HOST:PORT to listen for a TCP connection.\n"
"\n"
"Options:\n"
" --debug Enable general debugging output.\n"
" --remote-debug Enable remote protocol debugging output.\n"
" --version Display version information and exit.\n"
" --wrapper WRAPPER -- Run WRAPPER to start new programs.\n");
if (REPORT_BUGS_TO[0] && stream == stdout)
fprintf (stream, "Report bugs to \"%s\".\n", REPORT_BUGS_TO);
}
static void
gdbserver_show_disableable (FILE *stream)
{
fprintf (stream, "Disableable packets:\n"
" vCont \tAll vCont packets\n"
" qC \tQuerying the current thread\n"
" qfThreadInfo\tThread listing\n"
" Tthread \tPassing the thread specifier in the "
"T stop reply packet\n"
" threads \tAll of the above\n");
}
#undef require_running
#define require_running(BUF) \
if (!target_running ()) \
{ \
write_enn (BUF); \
break; \
}
static int
first_thread_of (struct inferior_list_entry *entry, void *args)
{
int pid = * (int *) args;
if (ptid_get_pid (entry->id) == pid)
return 1;
return 0;
}
static void
kill_inferior_callback (struct inferior_list_entry *entry)
{
struct process_info *process = (struct process_info *) entry;
int pid = ptid_get_pid (process->head.id);
kill_inferior (pid);
discard_queued_stop_replies (pid);
}
/* Callback for for_each_inferior to detach or kill the inferior,
depending on whether we attached to it or not.
We inform the user whether we're detaching or killing the process
as this is only called when gdbserver is about to exit. */
static void
detach_or_kill_inferior_callback (struct inferior_list_entry *entry)
{
struct process_info *process = (struct process_info *) entry;
int pid = ptid_get_pid (process->head.id);
if (process->attached)
detach_inferior (pid);
else
kill_inferior (pid);
discard_queued_stop_replies (pid);
}
/* for_each_inferior callback for detach_or_kill_for_exit to print
the pids of started inferiors. */
static void
print_started_pid (struct inferior_list_entry *entry)
{
struct process_info *process = (struct process_info *) entry;
if (! process->attached)
{
int pid = ptid_get_pid (process->head.id);
fprintf (stderr, " %d", pid);
}
}
/* for_each_inferior callback for detach_or_kill_for_exit to print
the pids of attached inferiors. */
static void
print_attached_pid (struct inferior_list_entry *entry)
{
struct process_info *process = (struct process_info *) entry;
if (process->attached)
{
int pid = ptid_get_pid (process->head.id);
fprintf (stderr, " %d", pid);
}
}
/* Call this when exiting gdbserver with possible inferiors that need
to be killed or detached from. */
static void
detach_or_kill_for_exit (void)
{
/* First print a list of the inferiors we will be killing/detaching.
This is to assist the user, for example, in case the inferior unexpectedly
dies after we exit: did we screw up or did the inferior exit on its own?
Having this info will save some head-scratching. */
if (have_started_inferiors_p ())
{
fprintf (stderr, "Killing process(es):");
for_each_inferior (&all_processes, print_started_pid);
fprintf (stderr, "\n");
}
if (have_attached_inferiors_p ())
{
fprintf (stderr, "Detaching process(es):");
for_each_inferior (&all_processes, print_attached_pid);
fprintf (stderr, "\n");
}
/* Now we can kill or detach the inferiors. */
for_each_inferior (&all_processes, detach_or_kill_inferior_callback);
}
static void
join_inferiors_callback (struct inferior_list_entry *entry)
{
struct process_info *process = (struct process_info *) entry;
/* If we are attached, then we can exit. Otherwise, we need to hang
around doing nothing, until the child is gone. */
if (!process->attached)
join_inferior (ptid_get_pid (process->head.id));
}
int
main (int argc, char *argv[])
{
int bad_attach;
int pid;
char *arg_end, *port;
char **next_arg = &argv[1];
int multi_mode = 0;
int attach = 0;
int was_running;
while (*next_arg != NULL && **next_arg == '-')
{
if (strcmp (*next_arg, "--version") == 0)
{
gdbserver_version ();
exit (0);
}
else if (strcmp (*next_arg, "--help") == 0)
{
gdbserver_usage (stdout);
exit (0);
}
else if (strcmp (*next_arg, "--attach") == 0)
attach = 1;
else if (strcmp (*next_arg, "--multi") == 0)
multi_mode = 1;
else if (strcmp (*next_arg, "--wrapper") == 0)
{
next_arg++;
wrapper_argv = next_arg;
while (*next_arg != NULL && strcmp (*next_arg, "--") != 0)
next_arg++;
if (next_arg == wrapper_argv || *next_arg == NULL)
{
gdbserver_usage (stderr);
exit (1);
}
/* Consume the "--". */
*next_arg = NULL;
}
else if (strcmp (*next_arg, "--debug") == 0)
debug_threads = 1;
else if (strcmp (*next_arg, "--remote-debug") == 0)
remote_debug = 1;
else if (strcmp (*next_arg, "--disable-packet") == 0)
{
gdbserver_show_disableable (stdout);
exit (0);
}
else if (strncmp (*next_arg,
"--disable-packet=",
sizeof ("--disable-packet=") - 1) == 0)
{
char *packets, *tok;
packets = *next_arg += sizeof ("--disable-packet=") - 1;
for (tok = strtok (packets, ",");
tok != NULL;
tok = strtok (NULL, ","))
{
if (strcmp ("vCont", tok) == 0)
disable_packet_vCont = 1;
else if (strcmp ("Tthread", tok) == 0)
disable_packet_Tthread = 1;
else if (strcmp ("qC", tok) == 0)
disable_packet_qC = 1;
else if (strcmp ("qfThreadInfo", tok) == 0)
disable_packet_qfThreadInfo = 1;
else if (strcmp ("threads", tok) == 0)
{
disable_packet_vCont = 1;
disable_packet_Tthread = 1;
disable_packet_qC = 1;
disable_packet_qfThreadInfo = 1;
}
else
{
fprintf (stderr, "Don't know how to disable \"%s\".\n\n",
tok);
gdbserver_show_disableable (stderr);
exit (1);
}
}
}
else
{
fprintf (stderr, "Unknown argument: %s\n", *next_arg);
exit (1);
}
next_arg++;
continue;
}
if (setjmp (toplevel))
{
fprintf (stderr, "Exiting\n");
exit (1);
}
port = *next_arg;
next_arg++;
if (port == NULL || (!attach && !multi_mode && *next_arg == NULL))
{
gdbserver_usage (stderr);
exit (1);
}
bad_attach = 0;
pid = 0;
/* --attach used to come after PORT, so allow it there for
compatibility. */
if (*next_arg != NULL && strcmp (*next_arg, "--attach") == 0)
{
attach = 1;
next_arg++;
}
if (attach
&& (*next_arg == NULL
|| (*next_arg)[0] == '\0'
|| (pid = strtoul (*next_arg, &arg_end, 0)) == 0
|| *arg_end != '\0'
|| next_arg[1] != NULL))
bad_attach = 1;
if (bad_attach)
{
gdbserver_usage (stderr);
exit (1);
}
initialize_inferiors ();
initialize_async_io ();
initialize_low ();
if (target_supports_tracepoints ())
initialize_tracepoint ();
own_buf = xmalloc (PBUFSIZ + 1);
mem_buf = xmalloc (PBUFSIZ);
if (pid == 0 && *next_arg != NULL)
{
int i, n;
n = argc - (next_arg - argv);
program_argv = xmalloc (sizeof (char *) * (n + 1));
for (i = 0; i < n; i++)
program_argv[i] = xstrdup (next_arg[i]);
program_argv[i] = NULL;
/* Wait till we are at first instruction in program. */
start_inferior (program_argv);
/* We are now (hopefully) stopped at the first instruction of
the target process. This assumes that the target process was
successfully created. */
}
else if (pid != 0)
{
if (attach_inferior (pid) == -1)
error ("Attaching not supported on this target");
/* Otherwise succeeded. */
}
else
{
last_status.kind = TARGET_WAITKIND_EXITED;
last_status.value.integer = 0;
last_ptid = minus_one_ptid;
}
/* Don't report shared library events on the initial connection,
even if some libraries are preloaded. Avoids the "stopped by
shared library event" notice on gdb side. */
dlls_changed = 0;
if (setjmp (toplevel))
{
detach_or_kill_for_exit ();
exit (1);
}
if (last_status.kind == TARGET_WAITKIND_EXITED
|| last_status.kind == TARGET_WAITKIND_SIGNALLED)
was_running = 0;
else
was_running = 1;
if (!was_running && !multi_mode)
{
fprintf (stderr, "No program to debug. GDBserver exiting.\n");
exit (1);
}
while (1)
{
noack_mode = 0;
multi_process = 0;
/* Be sure we're out of tfind mode. */
current_traceframe = -1;
remote_open (port);
if (setjmp (toplevel) != 0)
{
/* An error occurred. */
if (response_needed)
{
write_enn (own_buf);
putpkt (own_buf);
}
}
/* Wait for events. This will return when all event sources are
removed from the event loop. */
start_event_loop ();
/* If an exit was requested (using the "monitor exit" command),
terminate now. The only other way to get here is for
getpkt to fail; close the connection and reopen it at the
top of the loop. */
if (exit_requested)
{
detach_or_kill_for_exit ();
exit (0);
}
fprintf (stderr,
"Remote side has terminated connection. "
"GDBserver will reopen the connection.\n");
if (tracing)
{
if (disconnected_tracing)
{
/* Try to enable non-stop/async mode, so we we can both
wait for an async socket accept, and handle async
target events simultaneously. There's also no point
either in having the target always stop all threads,
when we're going to pass signals down without
informing GDB. */
if (!non_stop)
{
if (start_non_stop (1))
non_stop = 1;
/* Detaching implicitly resumes all threads; simply
disconnecting does not. */
}
}
else
{
fprintf (stderr,
"Disconnected tracing disabled; stopping trace run.\n");
stop_tracing ();
}
}
}
}
/* Event loop callback that handles a serial event. The first byte in
the serial buffer gets us here. We expect characters to arrive at
a brisk pace, so we read the rest of the packet with a blocking
getpkt call. */
static int
process_serial_event (void)
{
char ch;
int i = 0;
int signal;
unsigned int len;
int res;
CORE_ADDR mem_addr;
int pid;
unsigned char sig;
int packet_len;
int new_packet_len = -1;
/* Used to decide when gdbserver should exit in
multi-mode/remote. */
static int have_ran = 0;
if (!have_ran)
have_ran = target_running ();
disable_async_io ();
response_needed = 0;
packet_len = getpkt (own_buf);
if (packet_len <= 0)
{
remote_close ();
/* Force an event loop break. */
return -1;
}
response_needed = 1;
i = 0;
ch = own_buf[i++];
switch (ch)
{
case 'q':
handle_query (own_buf, packet_len, &new_packet_len);
break;
case 'Q':
handle_general_set (own_buf);
break;
case 'D':
require_running (own_buf);
if (multi_process)
{
i++; /* skip ';' */
pid = strtol (&own_buf[i], NULL, 16);
}
else
pid =
ptid_get_pid (((struct inferior_list_entry *) current_inferior)->id);
if (tracing && disconnected_tracing)
{
struct thread_resume resume_info;
struct process_info *process = find_process_pid (pid);
if (process == NULL)
{
write_enn (own_buf);
break;
}
fprintf (stderr,
"Disconnected tracing in effect, "
"leaving gdbserver attached to the process\n");
/* Make sure we're in non-stop/async mode, so we we can both
wait for an async socket accept, and handle async target
events simultaneously. There's also no point either in
having the target stop all threads, when we're going to
pass signals down without informing GDB. */
if (!non_stop)
{
if (debug_threads)
fprintf (stderr, "Forcing non-stop mode\n");
non_stop = 1;
start_non_stop (1);
}
process->gdb_detached = 1;
/* Detaching implicitly resumes all threads. */
resume_info.thread = minus_one_ptid;
resume_info.kind = resume_continue;
resume_info.sig = 0;
(*the_target->resume) (&resume_info, 1);
write_ok (own_buf);
break; /* from switch/case */
}
fprintf (stderr, "Detaching from process %d\n", pid);
stop_tracing ();
if (detach_inferior (pid) != 0)
write_enn (own_buf);
else
{
discard_queued_stop_replies (pid);
write_ok (own_buf);
if (extended_protocol)
{
/* Treat this like a normal program exit. */
last_status.kind = TARGET_WAITKIND_EXITED;
last_status.value.integer = 0;
last_ptid = pid_to_ptid (pid);
current_inferior = NULL;
}
else
{
putpkt (own_buf);
remote_close ();
/* If we are attached, then we can exit. Otherwise, we
need to hang around doing nothing, until the child is
gone. */
for_each_inferior (&all_processes,
join_inferiors_callback);
exit (0);
}
}
break;
case '!':
extended_protocol = 1;
write_ok (own_buf);
break;
case '?':
handle_status (own_buf);
break;
case 'H':
if (own_buf[1] == 'c' || own_buf[1] == 'g' || own_buf[1] == 's')
{
ptid_t gdb_id, thread_id;
int pid;
require_running (own_buf);
gdb_id = read_ptid (&own_buf[2], NULL);
pid = ptid_get_pid (gdb_id);
if (ptid_equal (gdb_id, null_ptid)
|| ptid_equal (gdb_id, minus_one_ptid))
thread_id = null_ptid;
else if (pid != 0
&& ptid_equal (pid_to_ptid (pid),
gdb_id))
{
struct thread_info *thread =
(struct thread_info *) find_inferior (&all_threads,
first_thread_of,
&pid);
if (!thread)
{
write_enn (own_buf);
break;
}
thread_id = ((struct inferior_list_entry *)thread)->id;
}
else
{
thread_id = gdb_id_to_thread_id (gdb_id);
if (ptid_equal (thread_id, null_ptid))
{
write_enn (own_buf);
break;
}
}
if (own_buf[1] == 'g')
{
if (ptid_equal (thread_id, null_ptid))
{
/* GDB is telling us to choose any thread. Check if
the currently selected thread is still valid. If
it is not, select the first available. */
struct thread_info *thread =
(struct thread_info *) find_inferior_id (&all_threads,
general_thread);
if (thread == NULL)
thread_id = all_threads.head->id;
}
general_thread = thread_id;
set_desired_inferior (1);
}
else if (own_buf[1] == 'c')
cont_thread = thread_id;
else if (own_buf[1] == 's')
step_thread = thread_id;
write_ok (own_buf);
}
else
{
/* Silently ignore it so that gdb can extend the protocol
without compatibility headaches. */
own_buf[0] = '\0';
}
break;
case 'g':
require_running (own_buf);
if (current_traceframe >= 0)
{
struct regcache *regcache = new_register_cache ();
if (fetch_traceframe_registers (current_traceframe,
regcache, -1) == 0)
registers_to_string (regcache, own_buf);
else
write_enn (own_buf);
free_register_cache (regcache);
}
else
{
struct regcache *regcache;
set_desired_inferior (1);
regcache = get_thread_regcache (current_inferior, 1);
registers_to_string (regcache, own_buf);
}
break;
case 'G':
require_running (own_buf);
if (current_traceframe >= 0)
write_enn (own_buf);
else
{
struct regcache *regcache;
set_desired_inferior (1);
regcache = get_thread_regcache (current_inferior, 1);
registers_from_string (regcache, &own_buf[1]);
write_ok (own_buf);
}
break;
case 'm':
require_running (own_buf);
decode_m_packet (&own_buf[1], &mem_addr, &len);
res = gdb_read_memory (mem_addr, mem_buf, len);
if (res < 0)
write_enn (own_buf);
else
convert_int_to_ascii (mem_buf, own_buf, res);
break;
case 'M':
require_running (own_buf);
decode_M_packet (&own_buf[1], &mem_addr, &len, &mem_buf);
if (gdb_write_memory (mem_addr, mem_buf, len) == 0)
write_ok (own_buf);
else
write_enn (own_buf);
break;
case 'X':
require_running (own_buf);
if (decode_X_packet (&own_buf[1], packet_len - 1,
&mem_addr, &len, &mem_buf) < 0
|| gdb_write_memory (mem_addr, mem_buf, len) != 0)
write_enn (own_buf);
else
write_ok (own_buf);
break;
case 'C':
require_running (own_buf);
convert_ascii_to_int (own_buf + 1, &sig, 1);
if (target_signal_to_host_p (sig))
signal = target_signal_to_host (sig);
else
signal = 0;
myresume (own_buf, 0, signal);
break;
case 'S':
require_running (own_buf);
convert_ascii_to_int (own_buf + 1, &sig, 1);
if (target_signal_to_host_p (sig))
signal = target_signal_to_host (sig);
else
signal = 0;
myresume (own_buf, 1, signal);
break;
case 'c':
require_running (own_buf);
signal = 0;
myresume (own_buf, 0, signal);
break;
case 's':
require_running (own_buf);
signal = 0;
myresume (own_buf, 1, signal);
break;
case 'Z': /* insert_ ... */
/* Fallthrough. */
case 'z': /* remove_ ... */
{
char *lenptr;
char *dataptr;
CORE_ADDR addr = strtoul (&own_buf[3], &lenptr, 16);
int len = strtol (lenptr + 1, &dataptr, 16);
char type = own_buf[1];
int res;
const int insert = ch == 'Z';
/* Default to unrecognized/unsupported. */
res = 1;
switch (type)
{
case '0': /* software-breakpoint */
case '1': /* hardware-breakpoint */
case '2': /* write watchpoint */
case '3': /* read watchpoint */
case '4': /* access watchpoint */
require_running (own_buf);
if (insert && the_target->insert_point != NULL)
res = (*the_target->insert_point) (type, addr, len);
else if (!insert && the_target->remove_point != NULL)
res = (*the_target->remove_point) (type, addr, len);
break;
default:
break;
}
if (res == 0)
write_ok (own_buf);
else if (res == 1)
/* Unsupported. */
own_buf[0] = '\0';
else
write_enn (own_buf);
break;
}
case 'k':
response_needed = 0;
if (!target_running ())
/* The packet we received doesn't make sense - but we can't
reply to it, either. */
return 0;
fprintf (stderr, "Killing all inferiors\n");
for_each_inferior (&all_processes, kill_inferior_callback);
/* When using the extended protocol, we wait with no program
running. The traditional protocol will exit instead. */
if (extended_protocol)
{
last_status.kind = TARGET_WAITKIND_EXITED;
last_status.value.sig = TARGET_SIGNAL_KILL;
return 0;
}
else
exit (0);
case 'T':
{
ptid_t gdb_id, thread_id;
require_running (own_buf);
gdb_id = read_ptid (&own_buf[1], NULL);
thread_id = gdb_id_to_thread_id (gdb_id);
if (ptid_equal (thread_id, null_ptid))
{
write_enn (own_buf);
break;
}
if (mythread_alive (thread_id))
write_ok (own_buf);
else
write_enn (own_buf);
}
break;
case 'R':
response_needed = 0;
/* Restarting the inferior is only supported in the extended
protocol. */
if (extended_protocol)
{
if (target_running ())
for_each_inferior (&all_processes,
kill_inferior_callback);
fprintf (stderr, "GDBserver restarting\n");
/* Wait till we are at 1st instruction in prog. */
if (program_argv != NULL)
start_inferior (program_argv);
else
{
last_status.kind = TARGET_WAITKIND_EXITED;
last_status.value.sig = TARGET_SIGNAL_KILL;
}
return 0;
}
else
{
/* It is a request we don't understand. Respond with an
empty packet so that gdb knows that we don't support this
request. */
own_buf[0] = '\0';
break;
}
case 'v':
/* Extended (long) request. */
handle_v_requests (own_buf, packet_len, &new_packet_len);
break;
default:
/* It is a request we don't understand. Respond with an empty
packet so that gdb knows that we don't support this
request. */
own_buf[0] = '\0';
break;
}
if (new_packet_len != -1)
putpkt_binary (own_buf, new_packet_len);
else
putpkt (own_buf);
response_needed = 0;
if (!extended_protocol && have_ran && !target_running ())
{
/* In non-stop, defer exiting until GDB had a chance to query
the whole vStopped list (until it gets an OK). */
if (!notif_queue)
{
fprintf (stderr, "GDBserver exiting\n");
remote_close ();
exit (0);
}
}
if (exit_requested)
return -1;
return 0;
}
/* Event-loop callback for serial events. */
int
handle_serial_event (int err, gdb_client_data client_data)
{
if (debug_threads)
fprintf (stderr, "handling possible serial event\n");
/* Really handle it. */
if (process_serial_event () < 0)
return -1;
/* Be sure to not change the selected inferior behind GDB's back.
Important in the non-stop mode asynchronous protocol. */
set_desired_inferior (1);
return 0;
}
/* Event-loop callback for target events. */
int
handle_target_event (int err, gdb_client_data client_data)
{
if (debug_threads)
fprintf (stderr, "handling possible target event\n");
last_ptid = mywait (minus_one_ptid, &last_status,
TARGET_WNOHANG, 1);
if (last_status.kind != TARGET_WAITKIND_IGNORE)
{
int pid = ptid_get_pid (last_ptid);
struct process_info *process = find_process_pid (pid);
int forward_event = !gdb_connected () || process->gdb_detached;
if (last_status.kind == TARGET_WAITKIND_EXITED
|| last_status.kind == TARGET_WAITKIND_SIGNALLED)
{
mark_breakpoints_out (process);
mourn_inferior (process);
}
else
{
/* We're reporting this thread as stopped. Update its
"want-stopped" state to what the client wants, until it
gets a new resume action. */
current_inferior->last_resume_kind = resume_stop;
current_inferior->last_status = last_status;
}
if (forward_event)
{
if (!target_running ())
{
/* The last process exited. We're done. */
exit (0);
}
if (last_status.kind == TARGET_WAITKIND_STOPPED)
{
/* A thread stopped with a signal, but gdb isn't
connected to handle it. Pass it down to the
inferior, as if it wasn't being traced. */
struct thread_resume resume_info;
if (debug_threads)
fprintf (stderr,
"GDB not connected; forwarding event %d for [%s]\n",
(int) last_status.kind,
target_pid_to_str (last_ptid));
resume_info.thread = last_ptid;
resume_info.kind = resume_continue;
resume_info.sig = target_signal_to_host (last_status.value.sig);
(*the_target->resume) (&resume_info, 1);
}
else if (debug_threads)
fprintf (stderr, "GDB not connected; ignoring event %d for [%s]\n",
(int) last_status.kind,
target_pid_to_str (last_ptid));
}
else
{
/* Something interesting. Tell GDB about it. */
push_event (last_ptid, &last_status);
}
}
/* Be sure to not change the selected inferior behind GDB's back.
Important in the non-stop mode asynchronous protocol. */
set_desired_inferior (1);
return 0;
}