/* GNU/Linux/ARM specific low level interface, for the remote server for GDB.
Copyright (C) 1995-2015 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
#include "server.h"
#include "linux-low.h"
/* Don't include elf.h if linux/elf.h got included by gdb_proc_service.h.
On Bionic elf.h and linux/elf.h have conflicting definitions. */
#ifndef ELFMAG0
#include
#endif
#include
#include
/* Defined in auto-generated files. */
void init_registers_arm (void);
extern const struct target_desc *tdesc_arm;
void init_registers_arm_with_iwmmxt (void);
extern const struct target_desc *tdesc_arm_with_iwmmxt;
void init_registers_arm_with_vfpv2 (void);
extern const struct target_desc *tdesc_arm_with_vfpv2;
void init_registers_arm_with_vfpv3 (void);
extern const struct target_desc *tdesc_arm_with_vfpv3;
void init_registers_arm_with_neon (void);
extern const struct target_desc *tdesc_arm_with_neon;
#ifndef PTRACE_GET_THREAD_AREA
#define PTRACE_GET_THREAD_AREA 22
#endif
#ifndef PTRACE_GETWMMXREGS
# define PTRACE_GETWMMXREGS 18
# define PTRACE_SETWMMXREGS 19
#endif
#ifndef PTRACE_GETVFPREGS
# define PTRACE_GETVFPREGS 27
# define PTRACE_SETVFPREGS 28
#endif
#ifndef PTRACE_GETHBPREGS
#define PTRACE_GETHBPREGS 29
#define PTRACE_SETHBPREGS 30
#endif
/* Information describing the hardware breakpoint capabilities. */
static struct
{
unsigned char arch;
unsigned char max_wp_length;
unsigned char wp_count;
unsigned char bp_count;
} arm_linux_hwbp_cap;
/* Enum describing the different types of ARM hardware break-/watch-points. */
typedef enum
{
arm_hwbp_break = 0,
arm_hwbp_load = 1,
arm_hwbp_store = 2,
arm_hwbp_access = 3
} arm_hwbp_type;
/* Type describing an ARM Hardware Breakpoint Control register value. */
typedef unsigned int arm_hwbp_control_t;
/* Structure used to keep track of hardware break-/watch-points. */
struct arm_linux_hw_breakpoint
{
/* Address to break on, or being watched. */
unsigned int address;
/* Control register for break-/watch- point. */
arm_hwbp_control_t control;
};
/* Since we cannot dynamically allocate subfields of arch_process_info,
assume a maximum number of supported break-/watchpoints. */
#define MAX_BPTS 32
#define MAX_WPTS 32
/* Per-process arch-specific data we want to keep. */
struct arch_process_info
{
/* Hardware breakpoints for this process. */
struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
/* Hardware watchpoints for this process. */
struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
};
/* Per-thread arch-specific data we want to keep. */
struct arch_lwp_info
{
/* Non-zero if our copy differs from what's recorded in the thread. */
char bpts_changed[MAX_BPTS];
char wpts_changed[MAX_WPTS];
/* Cached stopped data address. */
CORE_ADDR stopped_data_address;
};
static unsigned long arm_hwcap;
/* These are in in current kernels. */
#define HWCAP_VFP 64
#define HWCAP_IWMMXT 512
#define HWCAP_NEON 4096
#define HWCAP_VFPv3 8192
#define HWCAP_VFPv3D16 16384
#ifdef HAVE_SYS_REG_H
#include
#endif
#define arm_num_regs 26
static int arm_regmap[] = {
0, 4, 8, 12, 16, 20, 24, 28,
32, 36, 40, 44, 48, 52, 56, 60,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
64
};
static int
arm_cannot_store_register (int regno)
{
return (regno >= arm_num_regs);
}
static int
arm_cannot_fetch_register (int regno)
{
return (regno >= arm_num_regs);
}
static void
arm_fill_gregset (struct regcache *regcache, void *buf)
{
int i;
for (i = 0; i < arm_num_regs; i++)
if (arm_regmap[i] != -1)
collect_register (regcache, i, ((char *) buf) + arm_regmap[i]);
}
static void
arm_store_gregset (struct regcache *regcache, const void *buf)
{
int i;
char zerobuf[8];
memset (zerobuf, 0, 8);
for (i = 0; i < arm_num_regs; i++)
if (arm_regmap[i] != -1)
supply_register (regcache, i, ((char *) buf) + arm_regmap[i]);
else
supply_register (regcache, i, zerobuf);
}
static void
arm_fill_wmmxregset (struct regcache *regcache, void *buf)
{
int i;
if (!(arm_hwcap & HWCAP_IWMMXT))
return;
for (i = 0; i < 16; i++)
collect_register (regcache, arm_num_regs + i, (char *) buf + i * 8);
/* We only have access to wcssf, wcasf, and wcgr0-wcgr3. */
for (i = 0; i < 6; i++)
collect_register (regcache, arm_num_regs + i + 16,
(char *) buf + 16 * 8 + i * 4);
}
static void
arm_store_wmmxregset (struct regcache *regcache, const void *buf)
{
int i;
if (!(arm_hwcap & HWCAP_IWMMXT))
return;
for (i = 0; i < 16; i++)
supply_register (regcache, arm_num_regs + i, (char *) buf + i * 8);
/* We only have access to wcssf, wcasf, and wcgr0-wcgr3. */
for (i = 0; i < 6; i++)
supply_register (regcache, arm_num_regs + i + 16,
(char *) buf + 16 * 8 + i * 4);
}
static void
arm_fill_vfpregset (struct regcache *regcache, void *buf)
{
int i, num, base;
if (!(arm_hwcap & HWCAP_VFP))
return;
if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
num = 32;
else
num = 16;
base = find_regno (regcache->tdesc, "d0");
for (i = 0; i < num; i++)
collect_register (regcache, base + i, (char *) buf + i * 8);
collect_register_by_name (regcache, "fpscr", (char *) buf + 32 * 8);
}
static void
arm_store_vfpregset (struct regcache *regcache, const void *buf)
{
int i, num, base;
if (!(arm_hwcap & HWCAP_VFP))
return;
if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
num = 32;
else
num = 16;
base = find_regno (regcache->tdesc, "d0");
for (i = 0; i < num; i++)
supply_register (regcache, base + i, (char *) buf + i * 8);
supply_register_by_name (regcache, "fpscr", (char *) buf + 32 * 8);
}
extern int debug_threads;
static CORE_ADDR
arm_get_pc (struct regcache *regcache)
{
unsigned long pc;
collect_register_by_name (regcache, "pc", &pc);
if (debug_threads)
debug_printf ("stop pc is %08lx\n", pc);
return pc;
}
static void
arm_set_pc (struct regcache *regcache, CORE_ADDR pc)
{
unsigned long newpc = pc;
supply_register_by_name (regcache, "pc", &newpc);
}
/* Correct in either endianness. */
static const unsigned long arm_breakpoint = 0xef9f0001;
#define arm_breakpoint_len 4
static const unsigned short thumb_breakpoint = 0xde01;
static const unsigned short thumb2_breakpoint[] = { 0xf7f0, 0xa000 };
/* For new EABI binaries. We recognize it regardless of which ABI
is used for gdbserver, so single threaded debugging should work
OK, but for multi-threaded debugging we only insert the current
ABI's breakpoint instruction. For now at least. */
static const unsigned long arm_eabi_breakpoint = 0xe7f001f0;
static int
arm_breakpoint_at (CORE_ADDR where)
{
struct regcache *regcache = get_thread_regcache (current_thread, 1);
unsigned long cpsr;
collect_register_by_name (regcache, "cpsr", &cpsr);
if (cpsr & 0x20)
{
/* Thumb mode. */
unsigned short insn;
(*the_target->read_memory) (where, (unsigned char *) &insn, 2);
if (insn == thumb_breakpoint)
return 1;
if (insn == thumb2_breakpoint[0])
{
(*the_target->read_memory) (where + 2, (unsigned char *) &insn, 2);
if (insn == thumb2_breakpoint[1])
return 1;
}
}
else
{
/* ARM mode. */
unsigned long insn;
(*the_target->read_memory) (where, (unsigned char *) &insn, 4);
if (insn == arm_breakpoint)
return 1;
if (insn == arm_eabi_breakpoint)
return 1;
}
return 0;
}
/* We only place breakpoints in empty marker functions, and thread locking
is outside of the function. So rather than importing software single-step,
we can just run until exit. */
static CORE_ADDR
arm_reinsert_addr (void)
{
struct regcache *regcache = get_thread_regcache (current_thread, 1);
unsigned long pc;
collect_register_by_name (regcache, "lr", &pc);
return pc;
}
/* Fetch the thread-local storage pointer for libthread_db. */
ps_err_e
ps_get_thread_area (const struct ps_prochandle *ph,
lwpid_t lwpid, int idx, void **base)
{
if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
return PS_ERR;
/* IDX is the bias from the thread pointer to the beginning of the
thread descriptor. It has to be subtracted due to implementation
quirks in libthread_db. */
*base = (void *) ((char *)*base - idx);
return PS_OK;
}
/* Query Hardware Breakpoint information for the target we are attached to
(using PID as ptrace argument) and set up arm_linux_hwbp_cap. */
static void
arm_linux_init_hwbp_cap (int pid)
{
unsigned int val;
if (ptrace (PTRACE_GETHBPREGS, pid, 0, &val) < 0)
return;
arm_linux_hwbp_cap.arch = (unsigned char)((val >> 24) & 0xff);
if (arm_linux_hwbp_cap.arch == 0)
return;
arm_linux_hwbp_cap.max_wp_length = (unsigned char)((val >> 16) & 0xff);
arm_linux_hwbp_cap.wp_count = (unsigned char)((val >> 8) & 0xff);
arm_linux_hwbp_cap.bp_count = (unsigned char)(val & 0xff);
if (arm_linux_hwbp_cap.wp_count > MAX_WPTS)
internal_error (__FILE__, __LINE__, "Unsupported number of watchpoints");
if (arm_linux_hwbp_cap.bp_count > MAX_BPTS)
internal_error (__FILE__, __LINE__, "Unsupported number of breakpoints");
}
/* How many hardware breakpoints are available? */
static int
arm_linux_get_hw_breakpoint_count (void)
{
return arm_linux_hwbp_cap.bp_count;
}
/* How many hardware watchpoints are available? */
static int
arm_linux_get_hw_watchpoint_count (void)
{
return arm_linux_hwbp_cap.wp_count;
}
/* Maximum length of area watched by hardware watchpoint. */
static int
arm_linux_get_hw_watchpoint_max_length (void)
{
return arm_linux_hwbp_cap.max_wp_length;
}
/* Initialize an ARM hardware break-/watch-point control register value.
BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
type of break-/watch-point; ENABLE indicates whether the point is enabled.
*/
static arm_hwbp_control_t
arm_hwbp_control_initialize (unsigned byte_address_select,
arm_hwbp_type hwbp_type,
int enable)
{
gdb_assert ((byte_address_select & ~0xffU) == 0);
gdb_assert (hwbp_type != arm_hwbp_break
|| ((byte_address_select & 0xfU) != 0));
return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
}
/* Does the breakpoint control value CONTROL have the enable bit set? */
static int
arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
{
return control & 0x1;
}
/* Is the breakpoint control value CONTROL initialized? */
static int
arm_hwbp_control_is_initialized (arm_hwbp_control_t control)
{
return control != 0;
}
/* Change a breakpoint control word so that it is in the disabled state. */
static arm_hwbp_control_t
arm_hwbp_control_disable (arm_hwbp_control_t control)
{
return control & ~0x1;
}
/* Are two break-/watch-points equal? */
static int
arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
const struct arm_linux_hw_breakpoint *p2)
{
return p1->address == p2->address && p1->control == p2->control;
}
/* Convert a raw breakpoint type to an enum arm_hwbp_type. */
static int
raw_bkpt_type_to_arm_hwbp_type (enum raw_bkpt_type raw_type)
{
switch (raw_type)
{
case raw_bkpt_type_hw:
return arm_hwbp_break;
case raw_bkpt_type_write_wp:
return arm_hwbp_store;
case raw_bkpt_type_read_wp:
return arm_hwbp_load;
case raw_bkpt_type_access_wp:
return arm_hwbp_access;
default:
gdb_assert_not_reached ("unhandled raw type");
}
}
/* Initialize the hardware breakpoint structure P for a breakpoint or
watchpoint at ADDR to LEN. The type of watchpoint is given in TYPE.
Returns -1 if TYPE is unsupported, or -2 if the particular combination
of ADDR and LEN cannot be implemented. Otherwise, returns 0 if TYPE
represents a breakpoint and 1 if type represents a watchpoint. */
static int
arm_linux_hw_point_initialize (enum raw_bkpt_type raw_type, CORE_ADDR addr,
int len, struct arm_linux_hw_breakpoint *p)
{
arm_hwbp_type hwbp_type;
unsigned mask;
hwbp_type = raw_bkpt_type_to_arm_hwbp_type (raw_type);
if (hwbp_type == arm_hwbp_break)
{
/* For breakpoints, the length field encodes the mode. */
switch (len)
{
case 2: /* 16-bit Thumb mode breakpoint */
case 3: /* 32-bit Thumb mode breakpoint */
mask = 0x3;
addr &= ~1;
break;
case 4: /* 32-bit ARM mode breakpoint */
mask = 0xf;
addr &= ~3;
break;
default:
/* Unsupported. */
return -2;
}
}
else
{
CORE_ADDR max_wp_length = arm_linux_get_hw_watchpoint_max_length ();
CORE_ADDR aligned_addr;
/* Can not set watchpoints for zero or negative lengths. */
if (len <= 0)
return -2;
/* The current ptrace interface can only handle watchpoints that are a
power of 2. */
if ((len & (len - 1)) != 0)
return -2;
/* Test that the range [ADDR, ADDR + LEN) fits into the largest address
range covered by a watchpoint. */
aligned_addr = addr & ~(max_wp_length - 1);
if (aligned_addr + max_wp_length < addr + len)
return -2;
mask = (1 << len) - 1;
}
p->address = (unsigned int) addr;
p->control = arm_hwbp_control_initialize (mask, hwbp_type, 1);
return hwbp_type != arm_hwbp_break;
}
/* Callback to mark a watch-/breakpoint to be updated in all threads of
the current process. */
struct update_registers_data
{
int watch;
int i;
};
static int
update_registers_callback (struct inferior_list_entry *entry, void *arg)
{
struct thread_info *thread = (struct thread_info *) entry;
struct lwp_info *lwp = get_thread_lwp (thread);
struct update_registers_data *data = (struct update_registers_data *) arg;
/* Only update the threads of the current process. */
if (pid_of (thread) == pid_of (current_thread))
{
/* The actual update is done later just before resuming the lwp,
we just mark that the registers need updating. */
if (data->watch)
lwp->arch_private->wpts_changed[data->i] = 1;
else
lwp->arch_private->bpts_changed[data->i] = 1;
/* If the lwp isn't stopped, force it to momentarily pause, so
we can update its breakpoint registers. */
if (!lwp->stopped)
linux_stop_lwp (lwp);
}
return 0;
}
static int
arm_supports_z_point_type (char z_type)
{
switch (z_type)
{
case Z_PACKET_HW_BP:
case Z_PACKET_WRITE_WP:
case Z_PACKET_READ_WP:
case Z_PACKET_ACCESS_WP:
return 1;
default:
/* Leave the handling of sw breakpoints with the gdb client. */
return 0;
}
}
/* Insert hardware break-/watchpoint. */
static int
arm_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
int len, struct raw_breakpoint *bp)
{
struct process_info *proc = current_process ();
struct arm_linux_hw_breakpoint p, *pts;
int watch, i, count;
watch = arm_linux_hw_point_initialize (type, addr, len, &p);
if (watch < 0)
{
/* Unsupported. */
return watch == -1 ? 1 : -1;
}
if (watch)
{
count = arm_linux_get_hw_watchpoint_count ();
pts = proc->priv->arch_private->wpts;
}
else
{
count = arm_linux_get_hw_breakpoint_count ();
pts = proc->priv->arch_private->bpts;
}
for (i = 0; i < count; i++)
if (!arm_hwbp_control_is_enabled (pts[i].control))
{
struct update_registers_data data = { watch, i };
pts[i] = p;
find_inferior (&all_threads, update_registers_callback, &data);
return 0;
}
/* We're out of watchpoints. */
return -1;
}
/* Remove hardware break-/watchpoint. */
static int
arm_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
int len, struct raw_breakpoint *bp)
{
struct process_info *proc = current_process ();
struct arm_linux_hw_breakpoint p, *pts;
int watch, i, count;
watch = arm_linux_hw_point_initialize (type, addr, len, &p);
if (watch < 0)
{
/* Unsupported. */
return -1;
}
if (watch)
{
count = arm_linux_get_hw_watchpoint_count ();
pts = proc->priv->arch_private->wpts;
}
else
{
count = arm_linux_get_hw_breakpoint_count ();
pts = proc->priv->arch_private->bpts;
}
for (i = 0; i < count; i++)
if (arm_linux_hw_breakpoint_equal (&p, pts + i))
{
struct update_registers_data data = { watch, i };
pts[i].control = arm_hwbp_control_disable (pts[i].control);
find_inferior (&all_threads, update_registers_callback, &data);
return 0;
}
/* No watchpoint matched. */
return -1;
}
/* Return whether current thread is stopped due to a watchpoint. */
static int
arm_stopped_by_watchpoint (void)
{
struct lwp_info *lwp = get_thread_lwp (current_thread);
siginfo_t siginfo;
/* We must be able to set hardware watchpoints. */
if (arm_linux_get_hw_watchpoint_count () == 0)
return 0;
/* Retrieve siginfo. */
errno = 0;
ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread), 0, &siginfo);
if (errno != 0)
return 0;
/* This must be a hardware breakpoint. */
if (siginfo.si_signo != SIGTRAP
|| (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
return 0;
/* If we are in a positive slot then we're looking at a breakpoint and not
a watchpoint. */
if (siginfo.si_errno >= 0)
return 0;
/* Cache stopped data address for use by arm_stopped_data_address. */
lwp->arch_private->stopped_data_address
= (CORE_ADDR) (uintptr_t) siginfo.si_addr;
return 1;
}
/* Return data address that triggered watchpoint. Called only if
arm_stopped_by_watchpoint returned true. */
static CORE_ADDR
arm_stopped_data_address (void)
{
struct lwp_info *lwp = get_thread_lwp (current_thread);
return lwp->arch_private->stopped_data_address;
}
/* Called when a new process is created. */
static struct arch_process_info *
arm_new_process (void)
{
struct arch_process_info *info = xcalloc (1, sizeof (*info));
return info;
}
/* Called when a new thread is detected. */
static void
arm_new_thread (struct lwp_info *lwp)
{
struct arch_lwp_info *info = xcalloc (1, sizeof (*info));
int i;
for (i = 0; i < MAX_BPTS; i++)
info->bpts_changed[i] = 1;
for (i = 0; i < MAX_WPTS; i++)
info->wpts_changed[i] = 1;
lwp->arch_private = info;
}
static void
arm_new_fork (struct process_info *parent, struct process_info *child)
{
struct arch_process_info *parent_proc_info = parent->priv->arch_private;
struct arch_process_info *child_proc_info = child->priv->arch_private;
struct lwp_info *child_lwp;
struct arch_lwp_info *child_lwp_info;
int i;
/* These are allocated by linux_add_process. */
gdb_assert (parent->priv != NULL
&& parent->priv->arch_private != NULL);
gdb_assert (child->priv != NULL
&& child->priv->arch_private != NULL);
/* Linux kernel before 2.6.33 commit
72f674d203cd230426437cdcf7dd6f681dad8b0d
will inherit hardware debug registers from parent
on fork/vfork/clone. Newer Linux kernels create such tasks with
zeroed debug registers.
GDB core assumes the child inherits the watchpoints/hw
breakpoints of the parent, and will remove them all from the
forked off process. Copy the debug registers mirrors into the
new process so that all breakpoints and watchpoints can be
removed together. The debug registers mirror will become zeroed
in the end before detaching the forked off process, thus making
this compatible with older Linux kernels too. */
*child_proc_info = *parent_proc_info;
/* Mark all the hardware breakpoints and watchpoints as changed to
make sure that the registers will be updated. */
child_lwp = find_lwp_pid (ptid_of (child));
child_lwp_info = child_lwp->arch_private;
for (i = 0; i < MAX_BPTS; i++)
child_lwp_info->bpts_changed[i] = 1;
for (i = 0; i < MAX_WPTS; i++)
child_lwp_info->wpts_changed[i] = 1;
}
/* Called when resuming a thread.
If the debug regs have changed, update the thread's copies. */
static void
arm_prepare_to_resume (struct lwp_info *lwp)
{
struct thread_info *thread = get_lwp_thread (lwp);
int pid = lwpid_of (thread);
struct process_info *proc = find_process_pid (pid_of (thread));
struct arch_process_info *proc_info = proc->priv->arch_private;
struct arch_lwp_info *lwp_info = lwp->arch_private;
int i;
for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
if (lwp_info->bpts_changed[i])
{
errno = 0;
if (arm_hwbp_control_is_enabled (proc_info->bpts[i].control))
if (ptrace (PTRACE_SETHBPREGS, pid,
(PTRACE_TYPE_ARG3) ((i << 1) + 1),
&proc_info->bpts[i].address) < 0)
perror_with_name ("Unexpected error setting breakpoint address");
if (arm_hwbp_control_is_initialized (proc_info->bpts[i].control))
if (ptrace (PTRACE_SETHBPREGS, pid,
(PTRACE_TYPE_ARG3) ((i << 1) + 2),
&proc_info->bpts[i].control) < 0)
perror_with_name ("Unexpected error setting breakpoint");
lwp_info->bpts_changed[i] = 0;
}
for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
if (lwp_info->wpts_changed[i])
{
errno = 0;
if (arm_hwbp_control_is_enabled (proc_info->wpts[i].control))
if (ptrace (PTRACE_SETHBPREGS, pid,
(PTRACE_TYPE_ARG3) -((i << 1) + 1),
&proc_info->wpts[i].address) < 0)
perror_with_name ("Unexpected error setting watchpoint address");
if (arm_hwbp_control_is_initialized (proc_info->wpts[i].control))
if (ptrace (PTRACE_SETHBPREGS, pid,
(PTRACE_TYPE_ARG3) -((i << 1) + 2),
&proc_info->wpts[i].control) < 0)
perror_with_name ("Unexpected error setting watchpoint");
lwp_info->wpts_changed[i] = 0;
}
}
static int
arm_get_hwcap (unsigned long *valp)
{
unsigned char *data = alloca (8);
int offset = 0;
while ((*the_target->read_auxv) (offset, data, 8) == 8)
{
unsigned int *data_p = (unsigned int *)data;
if (data_p[0] == AT_HWCAP)
{
*valp = data_p[1];
return 1;
}
offset += 8;
}
*valp = 0;
return 0;
}
static const struct target_desc *
arm_read_description (void)
{
int pid = lwpid_of (current_thread);
/* Query hardware watchpoint/breakpoint capabilities. */
arm_linux_init_hwbp_cap (pid);
arm_hwcap = 0;
if (arm_get_hwcap (&arm_hwcap) == 0)
return tdesc_arm;
if (arm_hwcap & HWCAP_IWMMXT)
return tdesc_arm_with_iwmmxt;
if (arm_hwcap & HWCAP_VFP)
{
const struct target_desc *result;
char *buf;
/* NEON implies either no VFP, or VFPv3-D32. We only support
it with VFP. */
if (arm_hwcap & HWCAP_NEON)
result = tdesc_arm_with_neon;
else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
result = tdesc_arm_with_vfpv3;
else
result = tdesc_arm_with_vfpv2;
/* Now make sure that the kernel supports reading these
registers. Support was added in 2.6.30. */
errno = 0;
buf = xmalloc (32 * 8 + 4);
if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
&& errno == EIO)
{
arm_hwcap = 0;
result = tdesc_arm;
}
free (buf);
return result;
}
/* The default configuration uses legacy FPA registers, probably
simulated. */
return tdesc_arm;
}
static void
arm_arch_setup (void)
{
current_process ()->tdesc = arm_read_description ();
}
static struct regset_info arm_regsets[] = {
{ PTRACE_GETREGS, PTRACE_SETREGS, 0, 18 * 4,
GENERAL_REGS,
arm_fill_gregset, arm_store_gregset },
{ PTRACE_GETWMMXREGS, PTRACE_SETWMMXREGS, 0, 16 * 8 + 6 * 4,
EXTENDED_REGS,
arm_fill_wmmxregset, arm_store_wmmxregset },
{ PTRACE_GETVFPREGS, PTRACE_SETVFPREGS, 0, 32 * 8 + 4,
EXTENDED_REGS,
arm_fill_vfpregset, arm_store_vfpregset },
{ 0, 0, 0, -1, -1, NULL, NULL }
};
static struct regsets_info arm_regsets_info =
{
arm_regsets, /* regsets */
0, /* num_regsets */
NULL, /* disabled_regsets */
};
static struct usrregs_info arm_usrregs_info =
{
arm_num_regs,
arm_regmap,
};
static struct regs_info regs_info =
{
NULL, /* regset_bitmap */
&arm_usrregs_info,
&arm_regsets_info
};
static const struct regs_info *
arm_regs_info (void)
{
return ®s_info;
}
struct linux_target_ops the_low_target = {
arm_arch_setup,
arm_regs_info,
arm_cannot_fetch_register,
arm_cannot_store_register,
NULL, /* fetch_register */
arm_get_pc,
arm_set_pc,
/* Define an ARM-mode breakpoint; we only set breakpoints in the C
library, which is most likely to be ARM. If the kernel supports
clone events, we will never insert a breakpoint, so even a Thumb
C library will work; so will mixing EABI/non-EABI gdbserver and
application. */
#ifndef __ARM_EABI__
(const unsigned char *) &arm_breakpoint,
#else
(const unsigned char *) &arm_eabi_breakpoint,
#endif
arm_breakpoint_len,
arm_reinsert_addr,
0,
arm_breakpoint_at,
arm_supports_z_point_type,
arm_insert_point,
arm_remove_point,
arm_stopped_by_watchpoint,
arm_stopped_data_address,
NULL, /* collect_ptrace_register */
NULL, /* supply_ptrace_register */
NULL, /* siginfo_fixup */
arm_new_process,
arm_new_thread,
arm_new_fork,
arm_prepare_to_resume,
};
void
initialize_low_arch (void)
{
/* Initialize the Linux target descriptions. */
init_registers_arm ();
init_registers_arm_with_iwmmxt ();
init_registers_arm_with_vfpv2 ();
init_registers_arm_with_vfpv3 ();
init_registers_arm_with_neon ();
initialize_regsets_info (&arm_regsets_info);
}