/* Cache and manage frames for GDB, the GNU debugger. Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001, 2002 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "frame.h" #include "target.h" #include "value.h" #include "inferior.h" /* for inferior_ptid */ #include "regcache.h" #include "gdb_assert.h" #include "gdb_string.h" #include "builtin-regs.h" /* Return a frame uniq ID that can be used to, later re-find the frame. */ void get_frame_id (struct frame_info *fi, struct frame_id *id) { if (fi == NULL) { id->base = 0; id->pc = 0; } else { id->base = FRAME_FP (fi); id->pc = fi->pc; } } struct frame_info * frame_find_by_id (struct frame_id id) { struct frame_info *frame; /* ZERO denotes the null frame, let the caller decide what to do about it. Should it instead return get_current_frame()? */ if (id.base == 0 && id.pc == 0) return NULL; for (frame = get_current_frame (); frame != NULL; frame = get_prev_frame (frame)) { if (INNER_THAN (FRAME_FP (frame), id.base)) /* ``inner/current < frame < id.base''. Keep looking along the frame chain. */ continue; if (INNER_THAN (id.base, FRAME_FP (frame))) /* ``inner/current < id.base < frame''. Oops, gone past it. Just give up. */ return NULL; /* FIXME: cagney/2002-04-21: This isn't sufficient. It should use id.pc to check that the two frames belong to the same function. Otherwise we'll do things like match dummy frames or mis-match frameless functions. However, until someone notices, stick with the existing behavour. */ return frame; } return NULL; } void frame_register_unwind (struct frame_info *frame, int regnum, int *optimizedp, enum lval_type *lvalp, CORE_ADDR *addrp, int *realnump, void *bufferp) { struct frame_unwind_cache *cache; /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates that the value proper does not need to be fetched. */ gdb_assert (optimizedp != NULL); gdb_assert (lvalp != NULL); gdb_assert (addrp != NULL); gdb_assert (realnump != NULL); /* gdb_assert (bufferp != NULL); */ /* NOTE: cagney/2002-04-14: It would be nice if, instead of a special case, there was always an inner frame dedicated to the hardware registers. Unfortunatly, there is too much unwind code around that looks up/down the frame chain while making the assumption that each frame level is using the same unwind code. */ if (frame == NULL) { /* We're in the inner-most frame, get the value direct from the register cache. */ *optimizedp = 0; *lvalp = lval_register; /* ULGH! Code uses the offset into the raw register byte array as a way of identifying a register. */ *addrp = REGISTER_BYTE (regnum); /* Should this code test ``register_cached (regnum) < 0'' and do something like set realnum to -1 when the register isn't available? */ *realnump = regnum; if (bufferp) read_register_gen (regnum, bufferp); return; } /* Ask this frame to unwind its register. */ frame->register_unwind (frame, &frame->register_unwind_cache, regnum, optimizedp, lvalp, addrp, realnump, bufferp); } void frame_unwind_signed_register (struct frame_info *frame, int regnum, LONGEST *val) { int optimized; CORE_ADDR addr; int realnum; enum lval_type lval; void *buf = alloca (MAX_REGISTER_RAW_SIZE); frame_register_unwind (frame, regnum, &optimized, &lval, &addr, &realnum, buf); (*val) = extract_signed_integer (buf, REGISTER_VIRTUAL_SIZE (regnum)); } void frame_unwind_unsigned_register (struct frame_info *frame, int regnum, ULONGEST *val) { int optimized; CORE_ADDR addr; int realnum; enum lval_type lval; void *buf = alloca (MAX_REGISTER_RAW_SIZE); frame_register_unwind (frame, regnum, &optimized, &lval, &addr, &realnum, buf); (*val) = extract_unsigned_integer (buf, REGISTER_VIRTUAL_SIZE (regnum)); } void frame_read_unsigned_register (struct frame_info *frame, int regnum, ULONGEST *val) { /* NOTE: cagney/2002-10-31: There is a bit of dogma here - there is always a frame. Both this, and the equivalent frame_read_signed_register() function, can only be called with a valid frame. If, for some reason, this function is called without a frame then the problem isn't here, but rather in the caller. It should of first created a frame and then passed that in. */ /* NOTE: cagney/2002-10-31: As a side bar, keep in mind that the ``current_frame'' should not be treated as a special case. While ``get_next_frame (current_frame) == NULL'' currently holds, it should, as far as possible, not be relied upon. In the future, ``get_next_frame (current_frame)'' may instead simply return a normal frame object that simply always gets register values from the register cache. Consequently, frame code should try to avoid tests like ``if get_next_frame() == NULL'' and instead just rely on recursive frame calls (like the below code) when manipulating a frame chain. */ gdb_assert (frame != NULL); frame_unwind_unsigned_register (get_next_frame (frame), regnum, val); } void frame_read_signed_register (struct frame_info *frame, int regnum, LONGEST *val) { /* See note in frame_read_unsigned_register(). */ gdb_assert (frame != NULL); frame_unwind_signed_register (get_next_frame (frame), regnum, val); } void generic_unwind_get_saved_register (char *raw_buffer, int *optimizedp, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lvalp) { int optimizedx; CORE_ADDR addrx; int realnumx; enum lval_type lvalx; if (!target_has_registers) error ("No registers."); /* Keep things simple, ensure that all the pointers (except valuep) are non NULL. */ if (optimizedp == NULL) optimizedp = &optimizedx; if (lvalp == NULL) lvalp = &lvalx; if (addrp == NULL) addrp = &addrx; /* Reached the the bottom (youngest, inner most) of the frame chain (youngest, inner most) frame, go direct to the hardware register cache (do not pass go, do not try to cache the value, ...). The unwound value would have been cached in frame->next but that doesn't exist. This doesn't matter as the hardware register cache is stopping any unnecessary accesses to the target. */ /* NOTE: cagney/2002-04-14: It would be nice if, instead of a special case, there was always an inner frame dedicated to the hardware registers. Unfortunatly, there is too much unwind code around that looks up/down the frame chain while making the assumption that each frame level is using the same unwind code. */ if (frame == NULL) frame_register_unwind (NULL, regnum, optimizedp, lvalp, addrp, &realnumx, raw_buffer); else frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp, &realnumx, raw_buffer); } void get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval) { GET_SAVED_REGISTER (raw_buffer, optimized, addrp, frame, regnum, lval); } /* frame_register_read () Find and return the value of REGNUM for the specified stack frame. The number of bytes copied is REGISTER_RAW_SIZE (REGNUM). Returns 0 if the register value could not be found. */ int frame_register_read (struct frame_info *frame, int regnum, void *myaddr) { int optim; get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, frame, regnum, (enum lval_type *) NULL); /* FIXME: cagney/2002-05-15: This test, is just bogus. It indicates that the target failed to supply a value for a register because it was "not available" at this time. Problem is, the target still has the register and so get saved_register() may be returning a value saved on the stack. */ if (register_cached (regnum) < 0) return 0; /* register value not available */ return !optim; } /* Map between a frame register number and its name. A frame register space is a superset of the cooked register space --- it also includes builtin registers. */ int frame_map_name_to_regnum (const char *name, int len) { int i; /* Search register name space. */ for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++) if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i)) && strncmp (name, REGISTER_NAME (i), len) == 0) { return i; } /* Try builtin registers. */ i = builtin_reg_map_name_to_regnum (name, len); if (i >= 0) { /* A builtin register doesn't fall into the architecture's register range. */ gdb_assert (i >= NUM_REGS + NUM_PSEUDO_REGS); return i; } return -1; } const char * frame_map_regnum_to_name (int regnum) { if (regnum < 0) return NULL; if (regnum < NUM_REGS + NUM_PSEUDO_REGS) return REGISTER_NAME (regnum); return builtin_reg_map_regnum_to_name (regnum); }