/* Find a variable's value in memory, for GDB, the GNU debugger. Copyright 1986, 87, 89, 91, 94, 95, 96, 1998 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "symtab.h" #include "gdbtypes.h" #include "frame.h" #include "value.h" #include "gdbcore.h" #include "inferior.h" #include "target.h" #include "gdb_string.h" #include "floatformat.h" #include "symfile.h" /* for overlay functions */ /* This is used to indicate that we don't know the format of the floating point number. Typically, this is useful for native ports, where the actual format is irrelevant, since no conversions will be taking place. */ const struct floatformat floatformat_unknown; /* Registers we shouldn't try to store. */ #if !defined (CANNOT_STORE_REGISTER) #define CANNOT_STORE_REGISTER(regno) 0 #endif static void write_register_gen PARAMS ((int, char *)); static int read_relative_register_raw_bytes_for_frame PARAMS ((int regnum, char *myaddr, struct frame_info * frame)); /* Basic byte-swapping routines. GDB has needed these for a long time... All extract a target-format integer at ADDR which is LEN bytes long. */ #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8 /* 8 bit characters are a pretty safe assumption these days, so we assume it throughout all these swapping routines. If we had to deal with 9 bit characters, we would need to make len be in bits and would have to re-write these routines... */ you lose #endif LONGEST extract_signed_integer (void *addr, int len) { LONGEST retval; unsigned char *p; unsigned char *startaddr = (unsigned char *) addr; unsigned char *endaddr = startaddr + len; if (len > (int) sizeof (LONGEST)) error ("\ That operation is not available on integers of more than %d bytes.", sizeof (LONGEST)); /* Start at the most significant end of the integer, and work towards the least significant. */ if (TARGET_BYTE_ORDER == BIG_ENDIAN) { p = startaddr; /* Do the sign extension once at the start. */ retval = ((LONGEST) * p ^ 0x80) - 0x80; for (++p; p < endaddr; ++p) retval = (retval << 8) | *p; } else { p = endaddr - 1; /* Do the sign extension once at the start. */ retval = ((LONGEST) * p ^ 0x80) - 0x80; for (--p; p >= startaddr; --p) retval = (retval << 8) | *p; } return retval; } ULONGEST extract_unsigned_integer (void *addr, int len) { ULONGEST retval; unsigned char *p; unsigned char *startaddr = (unsigned char *) addr; unsigned char *endaddr = startaddr + len; if (len > (int) sizeof (ULONGEST)) error ("\ That operation is not available on integers of more than %d bytes.", sizeof (ULONGEST)); /* Start at the most significant end of the integer, and work towards the least significant. */ retval = 0; if (TARGET_BYTE_ORDER == BIG_ENDIAN) { for (p = startaddr; p < endaddr; ++p) retval = (retval << 8) | *p; } else { for (p = endaddr - 1; p >= startaddr; --p) retval = (retval << 8) | *p; } return retval; } /* Sometimes a long long unsigned integer can be extracted as a LONGEST value. This is done so that we can print these values better. If this integer can be converted to a LONGEST, this function returns 1 and sets *PVAL. Otherwise it returns 0. */ int extract_long_unsigned_integer (void *addr, int orig_len, LONGEST *pval) { char *p, *first_addr; int len; len = orig_len; if (TARGET_BYTE_ORDER == BIG_ENDIAN) { for (p = (char *) addr; len > (int) sizeof (LONGEST) && p < (char *) addr + orig_len; p++) { if (*p == 0) len--; else break; } first_addr = p; } else { first_addr = (char *) addr; for (p = (char *) addr + orig_len - 1; len > (int) sizeof (LONGEST) && p >= (char *) addr; p--) { if (*p == 0) len--; else break; } } if (len <= (int) sizeof (LONGEST)) { *pval = (LONGEST) extract_unsigned_integer (first_addr, sizeof (LONGEST)); return 1; } return 0; } /* Treat the LEN bytes at ADDR as a target-format address, and return that address. ADDR is a buffer in the GDB process, not in the inferior. This function should only be used by target-specific code. It assumes that a pointer has the same representation as that thing's address represented as an integer. Some machines use word addresses, or similarly munged things, for certain types of pointers, so that assumption doesn't hold everywhere. Common code should use extract_typed_address instead, or something else based on POINTER_TO_ADDRESS. */ CORE_ADDR extract_address (void *addr, int len) { /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure whether we want this to be true eventually. */ return (CORE_ADDR) extract_unsigned_integer (addr, len); } /* Treat the bytes at BUF as a pointer of type TYPE, and return the address it represents. */ CORE_ADDR extract_typed_address (void *buf, struct type *type) { if (TYPE_CODE (type) != TYPE_CODE_PTR && TYPE_CODE (type) != TYPE_CODE_REF) internal_error ("findvar.c (extract_typed_address): " "type is not a pointer or reference"); return POINTER_TO_ADDRESS (type, buf); } void store_signed_integer (void *addr, int len, LONGEST val) { unsigned char *p; unsigned char *startaddr = (unsigned char *) addr; unsigned char *endaddr = startaddr + len; /* Start at the least significant end of the integer, and work towards the most significant. */ if (TARGET_BYTE_ORDER == BIG_ENDIAN) { for (p = endaddr - 1; p >= startaddr; --p) { *p = val & 0xff; val >>= 8; } } else { for (p = startaddr; p < endaddr; ++p) { *p = val & 0xff; val >>= 8; } } } void store_unsigned_integer (void *addr, int len, ULONGEST val) { unsigned char *p; unsigned char *startaddr = (unsigned char *) addr; unsigned char *endaddr = startaddr + len; /* Start at the least significant end of the integer, and work towards the most significant. */ if (TARGET_BYTE_ORDER == BIG_ENDIAN) { for (p = endaddr - 1; p >= startaddr; --p) { *p = val & 0xff; val >>= 8; } } else { for (p = startaddr; p < endaddr; ++p) { *p = val & 0xff; val >>= 8; } } } /* Store the address VAL as a LEN-byte value in target byte order at ADDR. ADDR is a buffer in the GDB process, not in the inferior. This function should only be used by target-specific code. It assumes that a pointer has the same representation as that thing's address represented as an integer. Some machines use word addresses, or similarly munged things, for certain types of pointers, so that assumption doesn't hold everywhere. Common code should use store_typed_address instead, or something else based on ADDRESS_TO_POINTER. */ void store_address (void *addr, int len, LONGEST val) { store_unsigned_integer (addr, len, val); } /* Store the address ADDR as a pointer of type TYPE at BUF, in target form. */ void store_typed_address (void *buf, struct type *type, CORE_ADDR addr) { if (TYPE_CODE (type) != TYPE_CODE_PTR && TYPE_CODE (type) != TYPE_CODE_REF) internal_error ("findvar.c (store_typed_address): " "type is not a pointer or reference"); ADDRESS_TO_POINTER (type, buf, addr); } /* Extract a floating-point number from a target-order byte-stream at ADDR. Returns the value as type DOUBLEST. If the host and target formats agree, we just copy the raw data into the appropriate type of variable and return, letting the host increase precision as necessary. Otherwise, we call the conversion routine and let it do the dirty work. */ DOUBLEST extract_floating (void *addr, int len) { DOUBLEST dretval; if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT) { if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT) { float retval; memcpy (&retval, addr, sizeof (retval)); return retval; } else floatformat_to_doublest (TARGET_FLOAT_FORMAT, addr, &dretval); } else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT) { if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT) { double retval; memcpy (&retval, addr, sizeof (retval)); return retval; } else floatformat_to_doublest (TARGET_DOUBLE_FORMAT, addr, &dretval); } else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT) { if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT) { DOUBLEST retval; memcpy (&retval, addr, sizeof (retval)); return retval; } else floatformat_to_doublest (TARGET_LONG_DOUBLE_FORMAT, addr, &dretval); } else { error ("Can't deal with a floating point number of %d bytes.", len); } return dretval; } void store_floating (void *addr, int len, DOUBLEST val) { if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT) { if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT) { float floatval = val; memcpy (addr, &floatval, sizeof (floatval)); } else floatformat_from_doublest (TARGET_FLOAT_FORMAT, &val, addr); } else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT) { if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT) { double doubleval = val; memcpy (addr, &doubleval, sizeof (doubleval)); } else floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &val, addr); } else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT) { if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT) memcpy (addr, &val, sizeof (val)); else floatformat_from_doublest (TARGET_LONG_DOUBLE_FORMAT, &val, addr); } else { error ("Can't deal with a floating point number of %d bytes.", len); } } /* Return the address in which frame FRAME's value of register REGNUM has been saved in memory. Or return zero if it has not been saved. If REGNUM specifies the SP, the value we return is actually the SP value, not an address where it was saved. */ CORE_ADDR find_saved_register (frame, regnum) struct frame_info *frame; int regnum; { register struct frame_info *frame1 = NULL; register CORE_ADDR addr = 0; if (frame == NULL) /* No regs saved if want current frame */ return 0; #ifdef HAVE_REGISTER_WINDOWS /* We assume that a register in a register window will only be saved in one place (since the name changes and/or disappears as you go towards inner frames), so we only call get_frame_saved_regs on the current frame. This is directly in contradiction to the usage below, which assumes that registers used in a frame must be saved in a lower (more interior) frame. This change is a result of working on a register window machine; get_frame_saved_regs always returns the registers saved within a frame, within the context (register namespace) of that frame. */ /* However, note that we don't want this to return anything if nothing is saved (if there's a frame inside of this one). Also, callers to this routine asking for the stack pointer want the stack pointer saved for *this* frame; this is returned from the next frame. */ if (REGISTER_IN_WINDOW_P (regnum)) { frame1 = get_next_frame (frame); if (!frame1) return 0; /* Registers of this frame are active. */ /* Get the SP from the next frame in; it will be this current frame. */ if (regnum != SP_REGNUM) frame1 = frame; FRAME_INIT_SAVED_REGS (frame1); return frame1->saved_regs[regnum]; /* ... which might be zero */ } #endif /* HAVE_REGISTER_WINDOWS */ /* Note that this next routine assumes that registers used in frame x will be saved only in the frame that x calls and frames interior to it. This is not true on the sparc, but the above macro takes care of it, so we should be all right. */ while (1) { QUIT; frame1 = get_prev_frame (frame1); if (frame1 == 0 || frame1 == frame) break; FRAME_INIT_SAVED_REGS (frame1); if (frame1->saved_regs[regnum]) addr = frame1->saved_regs[regnum]; } return addr; } /* Find register number REGNUM relative to FRAME and put its (raw, target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable was optimized out (and thus can't be fetched). Set *LVAL to lval_memory, lval_register, or not_lval, depending on whether the value was fetched from memory, from a register, or in a strange and non-modifiable way (e.g. a frame pointer which was calculated rather than fetched). Set *ADDRP to the address, either in memory on as a REGISTER_BYTE offset into the registers array. Note that this implementation never sets *LVAL to not_lval. But it can be replaced by defining GET_SAVED_REGISTER and supplying your own. The argument RAW_BUFFER must point to aligned memory. */ void default_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) char *raw_buffer; int *optimized; CORE_ADDR *addrp; struct frame_info *frame; int regnum; enum lval_type *lval; { CORE_ADDR addr; if (!target_has_registers) error ("No registers."); /* Normal systems don't optimize out things with register numbers. */ if (optimized != NULL) *optimized = 0; addr = find_saved_register (frame, regnum); if (addr != 0) { if (lval != NULL) *lval = lval_memory; if (regnum == SP_REGNUM) { if (raw_buffer != NULL) { /* Put it back in target format. */ store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), (LONGEST) addr); } if (addrp != NULL) *addrp = 0; return; } if (raw_buffer != NULL) read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); } else { if (lval != NULL) *lval = lval_register; addr = REGISTER_BYTE (regnum); if (raw_buffer != NULL) read_register_gen (regnum, raw_buffer); } if (addrp != NULL) *addrp = addr; } #if !defined (GET_SAVED_REGISTER) #define GET_SAVED_REGISTER(raw_buffer, optimized, addrp, frame, regnum, lval) \ default_get_saved_register(raw_buffer, optimized, addrp, frame, regnum, lval) #endif void get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) char *raw_buffer; int *optimized; CORE_ADDR *addrp; struct frame_info *frame; int regnum; enum lval_type *lval; { GET_SAVED_REGISTER (raw_buffer, optimized, addrp, frame, regnum, lval); } /* Copy the bytes of register REGNUM, relative to the input stack frame, into our memory at MYADDR, in target byte order. The number of bytes copied is REGISTER_RAW_SIZE (REGNUM). Returns 1 if could not be read, 0 if could. */ static int read_relative_register_raw_bytes_for_frame (regnum, myaddr, frame) int regnum; char *myaddr; struct frame_info *frame; { int optim; if (regnum == FP_REGNUM && frame) { /* Put it back in target format. */ store_address (myaddr, REGISTER_RAW_SIZE (FP_REGNUM), (LONGEST) FRAME_FP (frame)); return 0; } get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, frame, regnum, (enum lval_type *) NULL); if (register_valid[regnum] < 0) return 1; /* register value not available */ return optim; } /* Copy the bytes of register REGNUM, relative to the current stack frame, into our memory at MYADDR, in target byte order. The number of bytes copied is REGISTER_RAW_SIZE (REGNUM). Returns 1 if could not be read, 0 if could. */ int read_relative_register_raw_bytes (regnum, myaddr) int regnum; char *myaddr; { return read_relative_register_raw_bytes_for_frame (regnum, myaddr, selected_frame); } /* Return a `value' with the contents of register REGNUM in its virtual format, with the type specified by REGISTER_VIRTUAL_TYPE. NOTE: returns NULL if register value is not available. Caller will check return value or die! */ value_ptr value_of_register (regnum) int regnum; { CORE_ADDR addr; int optim; register value_ptr reg_val; char raw_buffer[MAX_REGISTER_RAW_SIZE]; enum lval_type lval; get_saved_register (raw_buffer, &optim, &addr, selected_frame, regnum, &lval); if (register_valid[regnum] < 0) return NULL; /* register value not available */ reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum)); /* Convert raw data to virtual format if necessary. */ if (REGISTER_CONVERTIBLE (regnum)) { REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, VALUE_CONTENTS_RAW (reg_val)); } else if (REGISTER_RAW_SIZE (regnum) == REGISTER_VIRTUAL_SIZE (regnum)) memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer, REGISTER_RAW_SIZE (regnum)); else internal_error ("Register \"%s\" (%d) has conflicting raw (%d) and virtual (%d) size", REGISTER_NAME (regnum), regnum, REGISTER_RAW_SIZE (regnum), REGISTER_VIRTUAL_SIZE (regnum)); VALUE_LVAL (reg_val) = lval; VALUE_ADDRESS (reg_val) = addr; VALUE_REGNO (reg_val) = regnum; VALUE_OPTIMIZED_OUT (reg_val) = optim; return reg_val; } /* Low level examining and depositing of registers. The caller is responsible for making sure that the inferior is stopped before calling the fetching routines, or it will get garbage. (a change from GDB version 3, in which the caller got the value from the last stop). */ /* Contents and state of the registers (in target byte order). */ char *registers; /* VALID_REGISTER is non-zero if it has been fetched, -1 if the register value was not available. */ signed char *register_valid; /* The thread/process associated with the current set of registers. For now, -1 is special, and means `no current process'. */ int registers_pid = -1; /* Indicate that registers may have changed, so invalidate the cache. */ void registers_changed () { int i; int numregs = ARCH_NUM_REGS; registers_pid = -1; /* Force cleanup of any alloca areas if using C alloca instead of a builtin alloca. This particular call is used to clean up areas allocated by low level target code which may build up during lengthy interactions between gdb and the target before gdb gives control to the user (ie watchpoints). */ alloca (0); for (i = 0; i < numregs; i++) register_valid[i] = 0; if (registers_changed_hook) registers_changed_hook (); } /* Indicate that all registers have been fetched, so mark them all valid. */ void registers_fetched () { int i; int numregs = ARCH_NUM_REGS; for (i = 0; i < numregs; i++) register_valid[i] = 1; } /* read_register_bytes and write_register_bytes are generally a *BAD* idea. They are inefficient because they need to check for partial updates, which can only be done by scanning through all of the registers and seeing if the bytes that are being read/written fall inside of an invalid register. [The main reason this is necessary is that register sizes can vary, so a simple index won't suffice.] It is far better to call read_register_gen and write_register_gen if you want to get at the raw register contents, as it only takes a regno as an argument, and therefore can't do a partial register update. Prior to the recent fixes to check for partial updates, both read and write_register_bytes always checked to see if any registers were stale, and then called target_fetch_registers (-1) to update the whole set. This caused really slowed things down for remote targets. */ /* Copy INLEN bytes of consecutive data from registers starting with the INREGBYTE'th byte of register data into memory at MYADDR. */ void read_register_bytes (inregbyte, myaddr, inlen) int inregbyte; char *myaddr; int inlen; { int inregend = inregbyte + inlen; int regno; if (registers_pid != inferior_pid) { registers_changed (); registers_pid = inferior_pid; } /* See if we are trying to read bytes from out-of-date registers. If so, update just those registers. */ for (regno = 0; regno < NUM_REGS; regno++) { int regstart, regend; if (register_valid[regno]) continue; if (REGISTER_NAME (regno) == NULL || *REGISTER_NAME (regno) == '\0') continue; regstart = REGISTER_BYTE (regno); regend = regstart + REGISTER_RAW_SIZE (regno); if (regend <= inregbyte || inregend <= regstart) /* The range the user wants to read doesn't overlap with regno. */ continue; /* We've found an invalid register where at least one byte will be read. Update it from the target. */ target_fetch_registers (regno); if (!register_valid[regno]) error ("read_register_bytes: Couldn't update register %d.", regno); } if (myaddr != NULL) memcpy (myaddr, ®isters[inregbyte], inlen); } /* Read register REGNO into memory at MYADDR, which must be large enough for REGISTER_RAW_BYTES (REGNO). Target byte-order. If the register is known to be the size of a CORE_ADDR or smaller, read_register can be used instead. */ void read_register_gen (regno, myaddr) int regno; char *myaddr; { if (registers_pid != inferior_pid) { registers_changed (); registers_pid = inferior_pid; } if (!register_valid[regno]) target_fetch_registers (regno); memcpy (myaddr, ®isters[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno)); } /* Write register REGNO at MYADDR to the target. MYADDR points at REGISTER_RAW_BYTES(REGNO), which must be in target byte-order. */ static void write_register_gen (regno, myaddr) int regno; char *myaddr; { int size; /* On the sparc, writing %g0 is a no-op, so we don't even want to change the registers array if something writes to this register. */ if (CANNOT_STORE_REGISTER (regno)) return; if (registers_pid != inferior_pid) { registers_changed (); registers_pid = inferior_pid; } size = REGISTER_RAW_SIZE (regno); /* If we have a valid copy of the register, and new value == old value, then don't bother doing the actual store. */ if (register_valid[regno] && memcmp (®isters[REGISTER_BYTE (regno)], myaddr, size) == 0) return; target_prepare_to_store (); memcpy (®isters[REGISTER_BYTE (regno)], myaddr, size); register_valid[regno] = 1; target_store_registers (regno); } /* Copy INLEN bytes of consecutive data from memory at MYADDR into registers starting with the MYREGSTART'th byte of register data. */ void write_register_bytes (myregstart, myaddr, inlen) int myregstart; char *myaddr; int inlen; { int myregend = myregstart + inlen; int regno; target_prepare_to_store (); /* Scan through the registers updating any that are covered by the range myregstart<=>myregend using write_register_gen, which does nice things like handling threads, and avoiding updates when the new and old contents are the same. */ for (regno = 0; regno < NUM_REGS; regno++) { int regstart, regend; regstart = REGISTER_BYTE (regno); regend = regstart + REGISTER_RAW_SIZE (regno); /* Is this register completely outside the range the user is writing? */ if (myregend <= regstart || regend <= myregstart) /* do nothing */ ; /* Is this register completely within the range the user is writing? */ else if (myregstart <= regstart && regend <= myregend) write_register_gen (regno, myaddr + (regstart - myregstart)); /* The register partially overlaps the range being written. */ else { char regbuf[MAX_REGISTER_RAW_SIZE]; /* What's the overlap between this register's bytes and those the caller wants to write? */ int overlapstart = max (regstart, myregstart); int overlapend = min (regend, myregend); /* We may be doing a partial update of an invalid register. Update it from the target before scribbling on it. */ read_register_gen (regno, regbuf); memcpy (registers + overlapstart, myaddr + (overlapstart - myregstart), overlapend - overlapstart); target_store_registers (regno); } } } /* Return the raw contents of register REGNO, regarding it as an integer. */ /* This probably should be returning LONGEST rather than CORE_ADDR. */ CORE_ADDR read_register (regno) int regno; { if (registers_pid != inferior_pid) { registers_changed (); registers_pid = inferior_pid; } if (!register_valid[regno]) target_fetch_registers (regno); return ((CORE_ADDR) extract_unsigned_integer (®isters[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno))); } CORE_ADDR read_register_pid (regno, pid) int regno, pid; { int save_pid; CORE_ADDR retval; if (pid == inferior_pid) return read_register (regno); save_pid = inferior_pid; inferior_pid = pid; retval = read_register (regno); inferior_pid = save_pid; return retval; } /* Store VALUE, into the raw contents of register number REGNO. This should probably write a LONGEST rather than a CORE_ADDR */ void write_register (regno, val) int regno; LONGEST val; { PTR buf; int size; /* On the sparc, writing %g0 is a no-op, so we don't even want to change the registers array if something writes to this register. */ if (CANNOT_STORE_REGISTER (regno)) return; if (registers_pid != inferior_pid) { registers_changed (); registers_pid = inferior_pid; } size = REGISTER_RAW_SIZE (regno); buf = alloca (size); store_signed_integer (buf, size, (LONGEST) val); /* If we have a valid copy of the register, and new value == old value, then don't bother doing the actual store. */ if (register_valid[regno] && memcmp (®isters[REGISTER_BYTE (regno)], buf, size) == 0) return; target_prepare_to_store (); memcpy (®isters[REGISTER_BYTE (regno)], buf, size); register_valid[regno] = 1; target_store_registers (regno); } void write_register_pid (regno, val, pid) int regno; CORE_ADDR val; int pid; { int save_pid; if (pid == inferior_pid) { write_register (regno, val); return; } save_pid = inferior_pid; inferior_pid = pid; write_register (regno, val); inferior_pid = save_pid; } /* Record that register REGNO contains VAL. This is used when the value is obtained from the inferior or core dump, so there is no need to store the value there. If VAL is a NULL pointer, then it's probably an unsupported register. We just set it's value to all zeros. We might want to record this fact, and report it to the users of read_register and friends. */ void supply_register (regno, val) int regno; char *val; { #if 1 if (registers_pid != inferior_pid) { registers_changed (); registers_pid = inferior_pid; } #endif register_valid[regno] = 1; if (val) memcpy (®isters[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno)); else memset (®isters[REGISTER_BYTE (regno)], '\000', REGISTER_RAW_SIZE (regno)); /* On some architectures, e.g. HPPA, there are a few stray bits in some registers, that the rest of the code would like to ignore. */ #ifdef CLEAN_UP_REGISTER_VALUE CLEAN_UP_REGISTER_VALUE (regno, ®isters[REGISTER_BYTE (regno)]); #endif } /* This routine is getting awfully cluttered with #if's. It's probably time to turn this into READ_PC and define it in the tm.h file. Ditto for write_pc. 1999-06-08: The following were re-written so that it assumes the existance of a TARGET_READ_PC et.al. macro. A default generic version of that macro is made available where needed. Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled by the multi-arch framework, it will eventually be possible to eliminate the intermediate read_pc_pid(). The client would call TARGET_READ_PC directly. (cagney). */ #ifndef TARGET_READ_PC #define TARGET_READ_PC generic_target_read_pc #endif CORE_ADDR generic_target_read_pc (int pid) { #ifdef PC_REGNUM if (PC_REGNUM >= 0) { CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid)); return pc_val; } #endif internal_error ("generic_target_read_pc"); return 0; } CORE_ADDR read_pc_pid (pid) int pid; { int saved_inferior_pid; CORE_ADDR pc_val; /* In case pid != inferior_pid. */ saved_inferior_pid = inferior_pid; inferior_pid = pid; pc_val = TARGET_READ_PC (pid); inferior_pid = saved_inferior_pid; return pc_val; } CORE_ADDR read_pc () { return read_pc_pid (inferior_pid); } #ifndef TARGET_WRITE_PC #define TARGET_WRITE_PC generic_target_write_pc #endif void generic_target_write_pc (pc, pid) CORE_ADDR pc; int pid; { #ifdef PC_REGNUM if (PC_REGNUM >= 0) write_register_pid (PC_REGNUM, pc, pid); #ifdef NPC_REGNUM if (NPC_REGNUM >= 0) write_register_pid (NPC_REGNUM, pc + 4, pid); #ifdef NNPC_REGNUM if (NNPC_REGNUM >= 0) write_register_pid (NNPC_REGNUM, pc + 8, pid); #endif #endif #else internal_error ("generic_target_write_pc"); #endif } void write_pc_pid (pc, pid) CORE_ADDR pc; int pid; { int saved_inferior_pid; /* In case pid != inferior_pid. */ saved_inferior_pid = inferior_pid; inferior_pid = pid; TARGET_WRITE_PC (pc, pid); inferior_pid = saved_inferior_pid; } void write_pc (pc) CORE_ADDR pc; { write_pc_pid (pc, inferior_pid); } /* Cope with strage ways of getting to the stack and frame pointers */ #ifndef TARGET_READ_SP #define TARGET_READ_SP generic_target_read_sp #endif CORE_ADDR generic_target_read_sp () { #ifdef SP_REGNUM if (SP_REGNUM >= 0) return read_register (SP_REGNUM); #endif internal_error ("generic_target_read_sp"); } CORE_ADDR read_sp () { return TARGET_READ_SP (); } #ifndef TARGET_WRITE_SP #define TARGET_WRITE_SP generic_target_write_sp #endif void generic_target_write_sp (val) CORE_ADDR val; { #ifdef SP_REGNUM if (SP_REGNUM >= 0) { write_register (SP_REGNUM, val); return; } #endif internal_error ("generic_target_write_sp"); } void write_sp (val) CORE_ADDR val; { TARGET_WRITE_SP (val); } #ifndef TARGET_READ_FP #define TARGET_READ_FP generic_target_read_fp #endif CORE_ADDR generic_target_read_fp () { #ifdef FP_REGNUM if (FP_REGNUM >= 0) return read_register (FP_REGNUM); #endif internal_error ("generic_target_read_fp"); } CORE_ADDR read_fp () { return TARGET_READ_FP (); } #ifndef TARGET_WRITE_FP #define TARGET_WRITE_FP generic_target_write_fp #endif void generic_target_write_fp (val) CORE_ADDR val; { #ifdef FP_REGNUM if (FP_REGNUM >= 0) { write_register (FP_REGNUM, val); return; } #endif internal_error ("generic_target_write_fp"); } void write_fp (val) CORE_ADDR val; { TARGET_WRITE_FP (val); } /* Given a pointer of type TYPE in target form in BUF, return the address it represents. */ CORE_ADDR generic_pointer_to_address (struct type *type, char *buf) { return extract_address (buf, TYPE_LENGTH (type)); } /* Given an address, store it as a pointer of type TYPE in target format in BUF. */ void generic_address_to_pointer (struct type *type, char *buf, CORE_ADDR addr) { store_address (buf, TYPE_LENGTH (type), addr); } /* Will calling read_var_value or locate_var_value on SYM end up caring what frame it is being evaluated relative to? SYM must be non-NULL. */ int symbol_read_needs_frame (sym) struct symbol *sym; { switch (SYMBOL_CLASS (sym)) { /* All cases listed explicitly so that gcc -Wall will detect it if we failed to consider one. */ case LOC_REGISTER: case LOC_ARG: case LOC_REF_ARG: case LOC_REGPARM: case LOC_REGPARM_ADDR: case LOC_LOCAL: case LOC_LOCAL_ARG: case LOC_BASEREG: case LOC_BASEREG_ARG: case LOC_THREAD_LOCAL_STATIC: return 1; case LOC_UNDEF: case LOC_CONST: case LOC_STATIC: case LOC_INDIRECT: case LOC_TYPEDEF: case LOC_LABEL: /* Getting the address of a label can be done independently of the block, even if some *uses* of that address wouldn't work so well without the right frame. */ case LOC_BLOCK: case LOC_CONST_BYTES: case LOC_UNRESOLVED: case LOC_OPTIMIZED_OUT: return 0; } return 1; } /* Given a struct symbol for a variable, and a stack frame id, read the value of the variable and return a (pointer to a) struct value containing the value. If the variable cannot be found, return a zero pointer. If FRAME is NULL, use the selected_frame. */ value_ptr read_var_value (var, frame) register struct symbol *var; struct frame_info *frame; { register value_ptr v; struct type *type = SYMBOL_TYPE (var); CORE_ADDR addr; register int len; v = allocate_value (type); VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */ VALUE_BFD_SECTION (v) = SYMBOL_BFD_SECTION (var); len = TYPE_LENGTH (type); if (frame == NULL) frame = selected_frame; switch (SYMBOL_CLASS (var)) { case LOC_CONST: /* Put the constant back in target format. */ store_signed_integer (VALUE_CONTENTS_RAW (v), len, (LONGEST) SYMBOL_VALUE (var)); VALUE_LVAL (v) = not_lval; return v; case LOC_LABEL: /* Put the constant back in target format. */ if (overlay_debugging) { CORE_ADDR addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var), SYMBOL_BFD_SECTION (var)); store_typed_address (VALUE_CONTENTS_RAW (v), type, addr); } else store_typed_address (VALUE_CONTENTS_RAW (v), type, SYMBOL_VALUE_ADDRESS (var)); VALUE_LVAL (v) = not_lval; return v; case LOC_CONST_BYTES: { char *bytes_addr; bytes_addr = SYMBOL_VALUE_BYTES (var); memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len); VALUE_LVAL (v) = not_lval; return v; } case LOC_STATIC: if (overlay_debugging) addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var), SYMBOL_BFD_SECTION (var)); else addr = SYMBOL_VALUE_ADDRESS (var); break; case LOC_INDIRECT: /* The import slot does not have a real address in it from the dynamic loader (dld.sl on HP-UX), if the target hasn't begun execution yet, so check for that. */ if (!target_has_execution) error ("\ Attempt to access variable defined in different shared object or load module when\n\ addresses have not been bound by the dynamic loader. Try again when executable is running."); addr = SYMBOL_VALUE_ADDRESS (var); addr = read_memory_unsigned_integer (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT); break; case LOC_ARG: if (frame == NULL) return 0; addr = FRAME_ARGS_ADDRESS (frame); if (!addr) return 0; addr += SYMBOL_VALUE (var); break; case LOC_REF_ARG: if (frame == NULL) return 0; addr = FRAME_ARGS_ADDRESS (frame); if (!addr) return 0; addr += SYMBOL_VALUE (var); addr = read_memory_unsigned_integer (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT); break; case LOC_LOCAL: case LOC_LOCAL_ARG: if (frame == NULL) return 0; addr = FRAME_LOCALS_ADDRESS (frame); addr += SYMBOL_VALUE (var); break; case LOC_BASEREG: case LOC_BASEREG_ARG: { char buf[MAX_REGISTER_RAW_SIZE]; get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var), NULL); addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var))); addr += SYMBOL_VALUE (var); break; } case LOC_THREAD_LOCAL_STATIC: { char buf[MAX_REGISTER_RAW_SIZE]; get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var), NULL); addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var))); addr += SYMBOL_VALUE (var); break; } case LOC_TYPEDEF: error ("Cannot look up value of a typedef"); break; case LOC_BLOCK: if (overlay_debugging) VALUE_ADDRESS (v) = symbol_overlayed_address (BLOCK_START (SYMBOL_BLOCK_VALUE (var)), SYMBOL_BFD_SECTION (var)); else VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var)); return v; case LOC_REGISTER: case LOC_REGPARM: case LOC_REGPARM_ADDR: { struct block *b; int regno = SYMBOL_VALUE (var); value_ptr regval; if (frame == NULL) return 0; b = get_frame_block (frame); if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR) { regval = value_from_register (lookup_pointer_type (type), regno, frame); if (regval == NULL) error ("Value of register variable not available."); addr = value_as_pointer (regval); VALUE_LVAL (v) = lval_memory; } else { regval = value_from_register (type, regno, frame); if (regval == NULL) error ("Value of register variable not available."); return regval; } } break; case LOC_UNRESOLVED: { struct minimal_symbol *msym; msym = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL); if (msym == NULL) return 0; if (overlay_debugging) addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (msym), SYMBOL_BFD_SECTION (msym)); else addr = SYMBOL_VALUE_ADDRESS (msym); } break; case LOC_OPTIMIZED_OUT: VALUE_LVAL (v) = not_lval; VALUE_OPTIMIZED_OUT (v) = 1; return v; default: error ("Cannot look up value of a botched symbol."); break; } VALUE_ADDRESS (v) = addr; VALUE_LAZY (v) = 1; return v; } /* Return a value of type TYPE, stored in register REGNUM, in frame FRAME. NOTE: returns NULL if register value is not available. Caller will check return value or die! */ value_ptr value_from_register (type, regnum, frame) struct type *type; int regnum; struct frame_info *frame; { char raw_buffer[MAX_REGISTER_RAW_SIZE]; CORE_ADDR addr; int optim; value_ptr v = allocate_value (type); char *value_bytes = 0; int value_bytes_copied = 0; int num_storage_locs; enum lval_type lval; int len; CHECK_TYPEDEF (type); len = TYPE_LENGTH (type); /* Pointers on D10V are really only 16 bits, but we lie to gdb elsewhere... */ if (GDB_TARGET_IS_D10V && TYPE_CODE (type) == TYPE_CODE_PTR) len = 2; VALUE_REGNO (v) = regnum; num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ? ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 : 1); if (num_storage_locs > 1 #ifdef GDB_TARGET_IS_H8500 || TYPE_CODE (type) == TYPE_CODE_PTR #endif ) { /* Value spread across multiple storage locations. */ int local_regnum; int mem_stor = 0, reg_stor = 0; int mem_tracking = 1; CORE_ADDR last_addr = 0; CORE_ADDR first_addr = 0; value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE); /* Copy all of the data out, whereever it may be. */ #ifdef GDB_TARGET_IS_H8500 /* This piece of hideosity is required because the H8500 treats registers differently depending upon whether they are used as pointers or not. As a pointer, a register needs to have a page register tacked onto the front. An alternate way to do this would be to have gcc output different register numbers for the pointer & non-pointer form of the register. But, it doesn't, so we're stuck with this. */ if (TYPE_CODE (type) == TYPE_CODE_PTR && len > 2) { int page_regnum; switch (regnum) { case R0_REGNUM: case R1_REGNUM: case R2_REGNUM: case R3_REGNUM: page_regnum = SEG_D_REGNUM; break; case R4_REGNUM: case R5_REGNUM: page_regnum = SEG_E_REGNUM; break; case R6_REGNUM: case R7_REGNUM: page_regnum = SEG_T_REGNUM; break; } value_bytes[0] = 0; get_saved_register (value_bytes + 1, &optim, &addr, frame, page_regnum, &lval); if (register_valid[page_regnum] == -1) return NULL; /* register value not available */ if (lval == lval_register) reg_stor++; else mem_stor++; first_addr = addr; last_addr = addr; get_saved_register (value_bytes + 2, &optim, &addr, frame, regnum, &lval); if (register_valid[regnum] == -1) return NULL; /* register value not available */ if (lval == lval_register) reg_stor++; else { mem_stor++; mem_tracking = mem_tracking && (addr == last_addr); } last_addr = addr; } else #endif /* GDB_TARGET_IS_H8500 */ for (local_regnum = regnum; value_bytes_copied < len; (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum), ++local_regnum)) { get_saved_register (value_bytes + value_bytes_copied, &optim, &addr, frame, local_regnum, &lval); if (register_valid[local_regnum] == -1) return NULL; /* register value not available */ if (regnum == local_regnum) first_addr = addr; if (lval == lval_register) reg_stor++; else { mem_stor++; mem_tracking = (mem_tracking && (regnum == local_regnum || addr == last_addr)); } last_addr = addr; } if ((reg_stor && mem_stor) || (mem_stor && !mem_tracking)) /* Mixed storage; all of the hassle we just went through was for some good purpose. */ { VALUE_LVAL (v) = lval_reg_frame_relative; VALUE_FRAME (v) = FRAME_FP (frame); VALUE_FRAME_REGNUM (v) = regnum; } else if (mem_stor) { VALUE_LVAL (v) = lval_memory; VALUE_ADDRESS (v) = first_addr; } else if (reg_stor) { VALUE_LVAL (v) = lval_register; VALUE_ADDRESS (v) = first_addr; } else internal_error ("value_from_register: Value not stored anywhere!"); VALUE_OPTIMIZED_OUT (v) = optim; /* Any structure stored in more than one register will always be an integral number of registers. Otherwise, you'd need to do some fiddling with the last register copied here for little endian machines. */ /* Copy into the contents section of the value. */ memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len); /* Finally do any conversion necessary when extracting this type from more than one register. */ #ifdef REGISTER_CONVERT_TO_TYPE REGISTER_CONVERT_TO_TYPE (regnum, type, VALUE_CONTENTS_RAW (v)); #endif return v; } /* Data is completely contained within a single register. Locate the register's contents in a real register or in core; read the data in raw format. */ get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval); if (register_valid[regnum] == -1) return NULL; /* register value not available */ VALUE_OPTIMIZED_OUT (v) = optim; VALUE_LVAL (v) = lval; VALUE_ADDRESS (v) = addr; /* Convert raw data to virtual format if necessary. */ if (REGISTER_CONVERTIBLE (regnum)) { REGISTER_CONVERT_TO_VIRTUAL (regnum, type, raw_buffer, VALUE_CONTENTS_RAW (v)); } else { /* Raw and virtual formats are the same for this register. */ if (TARGET_BYTE_ORDER == BIG_ENDIAN && len < REGISTER_RAW_SIZE (regnum)) { /* Big-endian, and we want less than full size. */ VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len; } memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len); } if (GDB_TARGET_IS_D10V && TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_TARGET_TYPE (type) && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)) { /* pointer to function */ unsigned long num; unsigned short snum; snum = (unsigned short) extract_unsigned_integer (VALUE_CONTENTS_RAW (v), 2); num = D10V_MAKE_IADDR (snum); store_address (VALUE_CONTENTS_RAW (v), 4, num); } else if (GDB_TARGET_IS_D10V && TYPE_CODE (type) == TYPE_CODE_PTR) { /* pointer to data */ unsigned long num; unsigned short snum; snum = (unsigned short) extract_unsigned_integer (VALUE_CONTENTS_RAW (v), 2); num = D10V_MAKE_DADDR (snum); store_address (VALUE_CONTENTS_RAW (v), 4, num); } return v; } /* Given a struct symbol for a variable or function, and a stack frame id, return a (pointer to a) struct value containing the properly typed address. */ value_ptr locate_var_value (var, frame) register struct symbol *var; struct frame_info *frame; { CORE_ADDR addr = 0; struct type *type = SYMBOL_TYPE (var); value_ptr lazy_value; /* Evaluate it first; if the result is a memory address, we're fine. Lazy evaluation pays off here. */ lazy_value = read_var_value (var, frame); if (lazy_value == 0) error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var)); if (VALUE_LAZY (lazy_value) || TYPE_CODE (type) == TYPE_CODE_FUNC) { value_ptr val; addr = VALUE_ADDRESS (lazy_value); val = value_from_pointer (lookup_pointer_type (type), addr); VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (lazy_value); return val; } /* Not a memory address; check what the problem was. */ switch (VALUE_LVAL (lazy_value)) { case lval_register: case lval_reg_frame_relative: error ("Address requested for identifier \"%s\" which is in a register.", SYMBOL_SOURCE_NAME (var)); break; default: error ("Can't take address of \"%s\" which isn't an lvalue.", SYMBOL_SOURCE_NAME (var)); break; } return 0; /* For lint -- never reached */ } static void build_findvar PARAMS ((void)); static void build_findvar () { /* We allocate some extra slop since we do a lot of memcpy's around `registers', and failing-soft is better than failing hard. */ int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256; int sizeof_register_valid = NUM_REGS * sizeof (*register_valid); registers = xmalloc (sizeof_registers); memset (registers, 0, sizeof_registers); register_valid = xmalloc (sizeof_register_valid); memset (register_valid, 0, sizeof_register_valid); } void _initialize_findvar PARAMS ((void)); void _initialize_findvar () { build_findvar (); register_gdbarch_swap (®isters, sizeof (registers), NULL); register_gdbarch_swap (®ister_valid, sizeof (register_valid), NULL); register_gdbarch_swap (NULL, 0, build_findvar); }