/* Find a variable's value in memory, for GDB, the GNU debugger. Copyright (C) 1986-2024 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "event-top.h" #include "extract-store-integer.h" #include "symtab.h" #include "gdbtypes.h" #include "frame.h" #include "value.h" #include "gdbcore.h" #include "inferior.h" #include "target.h" #include "symfile.h" #include "regcache.h" #include "user-regs.h" #include "block.h" #include "objfiles.h" #include "language.h" /* Basic byte-swapping routines. All 'extract' functions return a host-format integer from a target-format integer at ADDR which is LEN bytes long. */ #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8 /* 8 bit characters are a pretty safe assumption these days, so we assume it throughout all these swapping routines. If we had to deal with 9 bit characters, we would need to make len be in bits and would have to re-write these routines... */ you lose #endif /* See value.h. */ value * value_of_register (int regnum, const frame_info_ptr &next_frame) { gdbarch *gdbarch = frame_unwind_arch (next_frame); /* User registers lie completely outside of the range of normal registers. Catch them early so that the target never sees them. */ if (regnum >= gdbarch_num_cooked_regs (gdbarch)) return value_of_user_reg (regnum, get_prev_frame_always (next_frame)); value *reg_val = value_of_register_lazy (next_frame, regnum); reg_val->fetch_lazy (); return reg_val; } /* See value.h. */ value * value_of_register_lazy (const frame_info_ptr &next_frame, int regnum) { gdbarch *gdbarch = frame_unwind_arch (next_frame); gdb_assert (regnum < gdbarch_num_cooked_regs (gdbarch)); gdb_assert (next_frame != nullptr); return value::allocate_register_lazy (next_frame, regnum); } /* Given a pointer of type TYPE in target form in BUF, return the address it represents. */ CORE_ADDR unsigned_pointer_to_address (struct gdbarch *gdbarch, struct type *type, const gdb_byte *buf) { enum bfd_endian byte_order = type_byte_order (type); return extract_unsigned_integer (buf, type->length (), byte_order); } CORE_ADDR signed_pointer_to_address (struct gdbarch *gdbarch, struct type *type, const gdb_byte *buf) { enum bfd_endian byte_order = type_byte_order (type); return extract_signed_integer (buf, type->length (), byte_order); } /* Given an address, store it as a pointer of type TYPE in target format in BUF. */ void unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type, gdb_byte *buf, CORE_ADDR addr) { enum bfd_endian byte_order = type_byte_order (type); store_unsigned_integer (buf, type->length (), byte_order, addr); } void address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type, gdb_byte *buf, CORE_ADDR addr) { enum bfd_endian byte_order = type_byte_order (type); store_signed_integer (buf, type->length (), byte_order, addr); } /* See value.h. */ enum symbol_needs_kind symbol_read_needs (struct symbol *sym) { if (const symbol_computed_ops *computed_ops = sym->computed_ops (); computed_ops != nullptr) return computed_ops->get_symbol_read_needs (sym); switch (sym->aclass ()) { /* All cases listed explicitly so that gcc -Wall will detect it if we failed to consider one. */ case LOC_COMPUTED: gdb_assert_not_reached ("LOC_COMPUTED variable missing a method"); case LOC_REGISTER: case LOC_ARG: case LOC_REF_ARG: case LOC_REGPARM_ADDR: case LOC_LOCAL: return SYMBOL_NEEDS_FRAME; case LOC_UNDEF: case LOC_CONST: case LOC_STATIC: case LOC_TYPEDEF: case LOC_LABEL: /* Getting the address of a label can be done independently of the block, even if some *uses* of that address wouldn't work so well without the right frame. */ case LOC_BLOCK: case LOC_CONST_BYTES: case LOC_UNRESOLVED: case LOC_OPTIMIZED_OUT: return SYMBOL_NEEDS_NONE; } return SYMBOL_NEEDS_FRAME; } /* See value.h. */ int symbol_read_needs_frame (struct symbol *sym) { return symbol_read_needs (sym) == SYMBOL_NEEDS_FRAME; } /* Assuming VAR is a symbol that can be reached from FRAME thanks to lexical rules, look for the frame that is actually hosting VAR and return it. If, for some reason, we found no such frame, return NULL. This kind of computation is necessary to correctly handle lexically nested functions. Note that in some cases, we know what scope VAR comes from but we cannot reach the specific frame that hosts the instance of VAR we are looking for. For backward compatibility purposes (with old compilers), we then look for the first frame that can host it. */ static frame_info_ptr get_hosting_frame (struct symbol *var, const struct block *var_block, const frame_info_ptr &initial_frame) { const struct block *frame_block = NULL; if (!symbol_read_needs_frame (var)) return NULL; /* Some symbols for local variables have no block: this happens when they are not produced by a debug information reader, for instance when GDB creates synthetic symbols. Without block information, we must assume they are local to FRAME. In this case, there is nothing to do. */ else if (var_block == NULL) return initial_frame; /* We currently assume that all symbols with a location list need a frame. This is true in practice because selecting the location description requires to compute the CFA, hence requires a frame. However we have tests that embed global/static symbols with null location lists. We want to get instead of when evaluating them so return a frame instead of raising an error. */ else if (var_block->is_global_block () || var_block->is_static_block ()) return initial_frame; /* We have to handle the "my_func::my_local_var" notation. This requires us to look for upper frames when we find no block for the current frame: here and below, handle when frame_block == NULL. */ if (initial_frame != nullptr) frame_block = get_frame_block (initial_frame, NULL); /* Climb up the call stack until reaching the frame we are looking for. */ frame_info_ptr frame = initial_frame; while (frame != NULL && frame_block != var_block) { /* Stacks can be quite deep: give the user a chance to stop this. */ QUIT; if (frame_block == NULL) { frame = get_prev_frame (frame); if (frame == NULL) break; frame_block = get_frame_block (frame, NULL); } /* If we failed to find the proper frame, fallback to the heuristic method below. */ else if (frame_block->is_global_block ()) { frame = NULL; break; } /* Assuming we have a block for this frame: if we are at the function level, the immediate upper lexical block is in an outer function: follow the static link. */ else if (frame_block->function () != nullptr) { frame = frame_follow_static_link (frame); if (frame != nullptr) { frame_block = get_frame_block (frame, nullptr); if (frame_block == nullptr) frame = nullptr; } } else /* We must be in some function nested lexical block. Just get the outer block: both must share the same frame. */ frame_block = frame_block->superblock (); } /* Old compilers may not provide a static link, or they may provide an invalid one. For such cases, fallback on the old way to evaluate non-local references: just climb up the call stack and pick the first frame that contains the variable we are looking for. */ if (frame == NULL) { frame = block_innermost_frame (var_block); if (frame == NULL) { if (var_block->function () && !var_block->inlined_p () && var_block->function ()->print_name ()) error (_("No frame is currently executing in block %s."), var_block->function ()->print_name ()); else error (_("No frame is currently executing in specified" " block")); } } return frame; } /* See language.h. */ struct value * language_defn::read_var_value (struct symbol *var, const struct block *var_block, const frame_info_ptr &frame_param) const { struct value *v; struct type *type = var->type (); CORE_ADDR addr; enum symbol_needs_kind sym_need; frame_info_ptr frame = frame_param; /* Call check_typedef on our type to make sure that, if TYPE is a TYPE_CODE_TYPEDEF, its length is set to the length of the target type instead of zero. However, we do not replace the typedef type by the target type, because we want to keep the typedef in order to be able to set the returned value type description correctly. */ check_typedef (type); sym_need = symbol_read_needs (var); if (sym_need == SYMBOL_NEEDS_FRAME) gdb_assert (frame != NULL); else if (sym_need == SYMBOL_NEEDS_REGISTERS && !target_has_registers ()) error (_("Cannot read `%s' without registers"), var->print_name ()); if (frame != NULL) frame = get_hosting_frame (var, var_block, frame); if (const symbol_computed_ops *computed_ops = var->computed_ops ()) return computed_ops->read_variable (var, frame); switch (var->aclass ()) { case LOC_CONST: if (is_dynamic_type (type)) { gdb_byte bytes[sizeof (LONGEST)]; size_t len = std::min (sizeof (LONGEST), (size_t) type->length ()); store_unsigned_integer (bytes, len, type_byte_order (type), var->value_longest ()); gdb::array_view view (bytes, len); /* Value is a constant byte-sequence. */ type = resolve_dynamic_type (type, view, /* Unused address. */ 0); } /* Put the constant back in target format. */ v = value::allocate (type); store_signed_integer (v->contents_raw ().data (), type->length (), type_byte_order (type), var->value_longest ()); v->set_lval (not_lval); return v; case LOC_LABEL: { /* Put the constant back in target format. */ if (overlay_debugging) { struct objfile *var_objfile = var->objfile (); addr = symbol_overlayed_address (var->value_address (), var->obj_section (var_objfile)); } else addr = var->value_address (); /* First convert the CORE_ADDR to a function pointer type, this ensures the gdbarch knows what type of pointer we are manipulating when value_from_pointer is called. */ type = builtin_type (var->arch ())->builtin_func_ptr; v = value_from_pointer (type, addr); /* But we want to present the value as 'void *', so cast it to the required type now, this will not change the values bit representation. */ struct type *void_ptr_type = builtin_type (var->arch ())->builtin_data_ptr; v = value_cast_pointers (void_ptr_type, v, 0); v->set_lval (not_lval); return v; } case LOC_CONST_BYTES: if (is_dynamic_type (type)) { gdb::array_view view (var->value_bytes (), type->length ()); /* Value is a constant byte-sequence. */ type = resolve_dynamic_type (type, view, /* Unused address. */ 0); } v = value::allocate (type); memcpy (v->contents_raw ().data (), var->value_bytes (), type->length ()); v->set_lval (not_lval); return v; case LOC_STATIC: if (overlay_debugging) addr = symbol_overlayed_address (var->value_address (), var->obj_section (var->objfile ())); else addr = var->value_address (); break; case LOC_ARG: addr = get_frame_args_address (frame); if (!addr) error (_("Unknown argument list address for `%s'."), var->print_name ()); addr += var->value_longest (); break; case LOC_REF_ARG: { struct value *ref; CORE_ADDR argref; argref = get_frame_args_address (frame); if (!argref) error (_("Unknown argument list address for `%s'."), var->print_name ()); argref += var->value_longest (); ref = value_at (lookup_pointer_type (type), argref); addr = value_as_address (ref); break; } case LOC_LOCAL: addr = get_frame_locals_address (frame); addr += var->value_longest (); break; case LOC_TYPEDEF: error (_("Cannot look up value of a typedef `%s'."), var->print_name ()); break; case LOC_BLOCK: if (overlay_debugging) addr = symbol_overlayed_address (var->value_block ()->entry_pc (), var->obj_section (var->objfile ())); else addr = var->value_block ()->entry_pc (); break; case LOC_REGISTER: case LOC_REGPARM_ADDR: { const symbol_register_ops *reg_ops = var->register_ops (); int regno = reg_ops->register_number (var, get_frame_arch (frame)); if (var->aclass () == LOC_REGPARM_ADDR) addr = value_as_address (value_from_register (lookup_pointer_type (type), regno, frame)); else return value_from_register (type, regno, frame); } break; case LOC_COMPUTED: gdb_assert_not_reached ("LOC_COMPUTED variable missing a method"); case LOC_UNRESOLVED: { struct obj_section *obj_section; bound_minimal_symbol bmsym; gdbarch_iterate_over_objfiles_in_search_order (var->arch (), [var, &bmsym] (objfile *objfile) { bmsym = lookup_minimal_symbol (var->linkage_name (), nullptr, objfile); /* Stop if a match is found. */ return bmsym.minsym != nullptr; }, var->objfile ()); /* If we can't find the minsym there's a problem in the symbol info. The symbol exists in the debug info, but it's missing in the minsym table. */ if (bmsym.minsym == nullptr) { const char *flavour_name = objfile_flavour_name (var->objfile ()); /* We can't get here unless we've opened the file, so flavour_name can't be NULL. */ gdb_assert (flavour_name != NULL); error (_("Missing %s symbol \"%s\"."), flavour_name, var->linkage_name ()); } obj_section = bmsym.minsym->obj_section (bmsym.objfile); /* Relocate address, unless there is no section or the variable is a TLS variable. */ if (obj_section == NULL || (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0) addr = CORE_ADDR (bmsym.minsym->unrelocated_address ()); else addr = bmsym.value_address (); if (overlay_debugging) addr = symbol_overlayed_address (addr, obj_section); /* Determine address of TLS variable. */ if (obj_section && (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0) addr = target_translate_tls_address (obj_section->objfile, addr); } break; case LOC_OPTIMIZED_OUT: if (is_dynamic_type (type)) type = resolve_dynamic_type (type, {}, /* Unused address. */ 0); return value::allocate_optimized_out (type); default: error (_("Cannot look up value of a botched symbol `%s'."), var->print_name ()); break; } v = value_at_lazy (type, addr); return v; } /* Calls VAR's language read_var_value hook with the given arguments. */ struct value * read_var_value (struct symbol *var, const struct block *var_block, const frame_info_ptr &frame) { const struct language_defn *lang = language_def (var->language ()); gdb_assert (lang != NULL); return lang->read_var_value (var, var_block, frame); } /* Install default attributes for register values. */ value * default_value_from_register (gdbarch *gdbarch, type *type, int regnum, const frame_info_ptr &this_frame) { value *value = value::allocate_register (get_next_frame_sentinel_okay (this_frame), regnum, type); /* Any structure stored in more than one register will always be an integral number of registers. Otherwise, you need to do some fiddling with the last register copied here for little endian machines. */ if (type_byte_order (type) == BFD_ENDIAN_BIG && type->length () < register_size (gdbarch, regnum)) /* Big-endian, and we want less than full size. */ value->set_offset (register_size (gdbarch, regnum) - type->length ()); else value->set_offset (0); return value; } /* VALUE must be an lval_register value. If regnum is the value's associated register number, and len the length of the value's type, read one or more registers in VALUE's frame, starting with register REGNUM, until we've read LEN bytes. If any of the registers we try to read are optimized out, then mark the complete resulting value as optimized out. */ static void read_frame_register_value (value *value) { gdb_assert (value->lval () == lval_register); frame_info_ptr next_frame = frame_find_by_id (value->next_frame_id ()); gdb_assert (next_frame != nullptr); gdbarch *gdbarch = frame_unwind_arch (next_frame); LONGEST offset = 0; LONGEST reg_offset = value->offset (); int regnum = value->regnum (); int len = type_length_units (check_typedef (value->type ())); /* Skip registers wholly inside of REG_OFFSET. */ while (reg_offset >= register_size (gdbarch, regnum)) { reg_offset -= register_size (gdbarch, regnum); regnum++; } /* Copy the data. */ while (len > 0) { struct value *regval = frame_unwind_register_value (next_frame, regnum); int reg_len = type_length_units (regval->type ()) - reg_offset; /* If the register length is larger than the number of bytes remaining to copy, then only copy the appropriate bytes. */ if (reg_len > len) reg_len = len; regval->contents_copy (value, offset, reg_offset, reg_len); offset += reg_len; len -= reg_len; reg_offset = 0; regnum++; } } /* Return a value of type TYPE, stored in register REGNUM, in frame FRAME. */ struct value * value_from_register (struct type *type, int regnum, const frame_info_ptr &frame) { struct gdbarch *gdbarch = get_frame_arch (frame); struct type *type1 = check_typedef (type); struct value *v; if (gdbarch_convert_register_p (gdbarch, regnum, type1)) { int optim, unavail, ok; /* The ISA/ABI need to something weird when obtaining the specified value from this register. It might need to re-order non-adjacent, starting with REGNUM (see MIPS and i386). It might need to convert the [float] register into the corresponding [integer] type (see Alpha). The assumption is that gdbarch_register_to_value populates the entire value including the location. */ v = value::allocate_register (get_next_frame_sentinel_okay (frame), regnum, type); ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1, v->contents_raw ().data (), &optim, &unavail); if (!ok) { if (optim) v->mark_bytes_optimized_out (0, type->length ()); if (unavail) v->mark_bytes_unavailable (0, type->length ()); } } else { /* Construct the value. */ v = gdbarch_value_from_register (gdbarch, type, regnum, frame); /* Get the data. */ read_frame_register_value (v); } return v; } /* Return contents of register REGNUM in frame FRAME as address. Will abort if register value is not available. */ CORE_ADDR address_from_register (int regnum, const frame_info_ptr &frame) { type *type = builtin_type (get_frame_arch (frame))->builtin_data_ptr; value_ref_ptr v = release_value (value_from_register (type, regnum, frame)); if (v->optimized_out ()) { /* This function is used while computing a location expression. Complain about the value being optimized out, rather than letting value_as_address complain about some random register the expression depends on not being saved. */ error_value_optimized_out (); } return value_as_address (v.get ()); }