/* Fortran language support routines for GDB, the GNU debugger. Copyright 1993, 1994 Free Software Foundation, Inc. Contributed by Motorola. Adapted from the C parser by Farooq Butt (fmbutt@engage.sps.mot.com). This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "defs.h" #include #include "symtab.h" #include "gdbtypes.h" #include "expression.h" #include "parser-defs.h" #include "language.h" #include "f-lang.h" /* Print the character C on STREAM as part of the contents of a literal string whose delimiter is QUOTER. Note that that format for printing characters and strings is language specific. FIXME: This is a copy of the same function from c-exp.y. It should be replaced with a true F77 version. */ static void emit_char (c, stream, quoter) register int c; FILE *stream; int quoter; { c &= 0xFF; /* Avoid sign bit follies */ if (PRINT_LITERAL_FORM (c)) { if (c == '\\' || c == quoter) fputs_filtered ("\\", stream); fprintf_filtered (stream, "%c", c); } else { switch (c) { case '\n': fputs_filtered ("\\n", stream); break; case '\b': fputs_filtered ("\\b", stream); break; case '\t': fputs_filtered ("\\t", stream); break; case '\f': fputs_filtered ("\\f", stream); break; case '\r': fputs_filtered ("\\r", stream); break; case '\033': fputs_filtered ("\\e", stream); break; case '\007': fputs_filtered ("\\a", stream); break; default: fprintf_filtered (stream, "\\%.3o", (unsigned int) c); break; } } } /* FIXME: This is a copy of the same function from c-exp.y. It should be replaced with a true F77version. */ static void f_printchar (c, stream) int c; FILE *stream; { fputs_filtered ("'", stream); emit_char (c, stream, '\''); fputs_filtered ("'", stream); } /* Print the character string STRING, printing at most LENGTH characters. Printing stops early if the number hits print_max; repeat counts are printed as appropriate. Print ellipses at the end if we had to stop before printing LENGTH characters, or if FORCE_ELLIPSES. FIXME: This is a copy of the same function from c-exp.y. It should be replaced with a true F77 version. */ static void f_printstr (stream, string, length, force_ellipses) FILE *stream; char *string; unsigned int length; int force_ellipses; { register unsigned int i; unsigned int things_printed = 0; int in_quotes = 0; int need_comma = 0; extern int inspect_it; extern int repeat_count_threshold; extern int print_max; if (length == 0) { fputs_filtered ("''", stdout); return; } for (i = 0; i < length && things_printed < print_max; ++i) { /* Position of the character we are examining to see whether it is repeated. */ unsigned int rep1; /* Number of repetitions we have detected so far. */ unsigned int reps; QUIT; if (need_comma) { fputs_filtered (", ", stream); need_comma = 0; } rep1 = i + 1; reps = 1; while (rep1 < length && string[rep1] == string[i]) { ++rep1; ++reps; } if (reps > repeat_count_threshold) { if (in_quotes) { if (inspect_it) fputs_filtered ("\\', ", stream); else fputs_filtered ("', ", stream); in_quotes = 0; } f_printchar (string[i], stream); fprintf_filtered (stream, " ", reps); i = rep1 - 1; things_printed += repeat_count_threshold; need_comma = 1; } else { if (!in_quotes) { if (inspect_it) fputs_filtered ("\\'", stream); else fputs_filtered ("'", stream); in_quotes = 1; } emit_char (string[i], stream, '"'); ++things_printed; } } /* Terminate the quotes if necessary. */ if (in_quotes) { if (inspect_it) fputs_filtered ("\\'", stream); else fputs_filtered ("'", stream); } if (force_ellipses || i < length) fputs_filtered ("...", stream); } /* FIXME: This is a copy of c_create_fundamental_type(), before all the non-C types were stripped from it. Needs to be fixed by an experienced F77 programmer. */ static struct type * f_create_fundamental_type (objfile, typeid) struct objfile *objfile; int typeid; { register struct type *type = NULL; switch (typeid) { case FT_VOID: type = init_type (TYPE_CODE_VOID, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 0, "VOID", objfile); break; case FT_BOOLEAN: type = init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "boolean", objfile); break; case FT_STRING: type = init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 0, "string", objfile); break; case FT_CHAR: type = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 0, "character", objfile); break; case FT_SIGNED_CHAR: type = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 0, "integer*1", objfile); break; case FT_UNSIGNED_CHAR: type = init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "logical*1", objfile); break; case FT_SHORT: type = init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT, 0, "integer*2", objfile); break; case FT_SIGNED_SHORT: type = init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT, 0, "short", objfile); /* FIXME-fnf */ break; case FT_UNSIGNED_SHORT: type = init_type (TYPE_CODE_BOOL, TARGET_SHORT_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "logical*2", objfile); break; case FT_INTEGER: type = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 0, "integer*4", objfile); break; case FT_SIGNED_INTEGER: type = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 0, "integer", objfile); /* FIXME -fnf */ break; case FT_UNSIGNED_INTEGER: type = init_type (TYPE_CODE_BOOL, TARGET_INT_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "logical*4", objfile); break; case FT_FIXED_DECIMAL: type = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 0, "fixed decimal", objfile); break; case FT_LONG: type = init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT, 0, "long", objfile); break; case FT_SIGNED_LONG: type = init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT, 0, "long", objfile); /* FIXME -fnf */ break; case FT_UNSIGNED_LONG: type = init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "unsigned long", objfile); break; case FT_LONG_LONG: type = init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, 0, "long long", objfile); break; case FT_SIGNED_LONG_LONG: type = init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, 0, "signed long long", objfile); break; case FT_UNSIGNED_LONG_LONG: type = init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "unsigned long long", objfile); break; case FT_FLOAT: type = init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT, 0, "real", objfile); break; case FT_DBL_PREC_FLOAT: type = init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT, 0, "real*8", objfile); break; case FT_FLOAT_DECIMAL: type = init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT, 0, "floating decimal", objfile); break; case FT_EXT_PREC_FLOAT: type = init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT, 0, "real*16", objfile); break; case FT_COMPLEX: type = init_type (TYPE_CODE_FLT, TARGET_COMPLEX_BIT / TARGET_CHAR_BIT, 0, "complex*8", objfile); break; case FT_DBL_PREC_COMPLEX: type = init_type (TYPE_CODE_FLT, TARGET_DOUBLE_COMPLEX_BIT / TARGET_CHAR_BIT, 0, "complex*16", objfile); break; case FT_EXT_PREC_COMPLEX: type = init_type (TYPE_CODE_FLT, TARGET_DOUBLE_COMPLEX_BIT / TARGET_CHAR_BIT, 0, "complex*32", objfile); break; default: /* FIXME: For now, if we are asked to produce a type not in this language, create the equivalent of a C integer type with the name "". When all the dust settles from the type reconstruction work, this should probably become an error. */ type = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 0, "", objfile); warning ("internal error: no F77 fundamental type %d", typeid); break; } return (type); } /* Table of operators and their precedences for printing expressions. */ static const struct op_print f_op_print_tab[] = { { "+", BINOP_ADD, PREC_ADD, 0 }, { "+", UNOP_PLUS, PREC_PREFIX, 0 }, { "-", BINOP_SUB, PREC_ADD, 0 }, { "-", UNOP_NEG, PREC_PREFIX, 0 }, { "*", BINOP_MUL, PREC_MUL, 0 }, { "/", BINOP_DIV, PREC_MUL, 0 }, { "DIV", BINOP_INTDIV, PREC_MUL, 0 }, { "MOD", BINOP_REM, PREC_MUL, 0 }, { "=", BINOP_ASSIGN, PREC_ASSIGN, 1 }, { ".OR.", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0 }, { ".AND.", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0 }, { ".NOT.", UNOP_LOGICAL_NOT, PREC_PREFIX, 0 }, { ".EQ.", BINOP_EQUAL, PREC_EQUAL, 0 }, { ".NE.", BINOP_NOTEQUAL, PREC_EQUAL, 0 }, { ".LE.", BINOP_LEQ, PREC_ORDER, 0 }, { ".GE.", BINOP_GEQ, PREC_ORDER, 0 }, { ".GT.", BINOP_GTR, PREC_ORDER, 0 }, { ".LT.", BINOP_LESS, PREC_ORDER, 0 }, { "**", UNOP_IND, PREC_PREFIX, 0 }, { "@", BINOP_REPEAT, PREC_REPEAT, 0 }, { NULL, 0, 0, 0 } }; /* The built-in types of F77. FIXME: integer*4 is missing, plain logical is missing (builtin_type_logical is logical*4). */ struct type *builtin_type_f_character; struct type *builtin_type_f_logical; struct type *builtin_type_f_logical_s1; struct type *builtin_type_f_logical_s2; struct type *builtin_type_f_integer; struct type *builtin_type_f_integer_s2; struct type *builtin_type_f_real; struct type *builtin_type_f_real_s8; struct type *builtin_type_f_real_s16; struct type *builtin_type_f_complex_s8; struct type *builtin_type_f_complex_s16; struct type *builtin_type_f_complex_s32; struct type *builtin_type_f_void; struct type ** const (f_builtin_types[]) = { &builtin_type_f_character, &builtin_type_f_logical, &builtin_type_f_logical_s1, &builtin_type_f_logical_s2, &builtin_type_f_integer, &builtin_type_f_integer_s2, &builtin_type_f_real, &builtin_type_f_real_s8, &builtin_type_f_real_s16, &builtin_type_f_complex_s8, &builtin_type_f_complex_s16, #if 0 &builtin_type_f_complex_s32, #endif &builtin_type_f_void, 0 }; int c_value_print(); const struct language_defn f_language_defn = { "fortran", language_fortran, f_builtin_types, range_check_on, type_check_on, f_parse, /* parser */ f_error, /* parser error function */ f_printchar, /* Print character constant */ f_printstr, /* function to print string constant */ f_create_fundamental_type, /* Create fundamental type in this language */ f_print_type, /* Print a type using appropriate syntax */ f_val_print, /* Print a value using appropriate syntax */ c_value_print, /* FIXME */ {"", "", "", ""}, /* Binary format info */ {"0%o", "0", "o", ""}, /* Octal format info */ {"%d", "", "d", ""}, /* Decimal format info */ {"0x%x", "0x", "x", ""}, /* Hex format info */ f_op_print_tab, /* expression operators for printing */ LANG_MAGIC }; void _initialize_f_language () { builtin_type_f_void = init_type (TYPE_CODE_VOID, 1, 0, "VOID", (struct objfile *) NULL); builtin_type_f_character = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 0, "character", (struct objfile *) NULL); builtin_type_f_logical_s1 = init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "logical*1", (struct objfile *) NULL); builtin_type_f_integer_s2 = init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT, 0, "integer*2", (struct objfile *) NULL); builtin_type_f_logical_s2 = init_type (TYPE_CODE_BOOL, TARGET_SHORT_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "logical*2", (struct objfile *) NULL); builtin_type_f_integer = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 0, "integer", (struct objfile *) NULL); builtin_type_f_logical = init_type (TYPE_CODE_BOOL, TARGET_INT_BIT / TARGET_CHAR_BIT, TYPE_FLAG_UNSIGNED, "logical*4", (struct objfile *) NULL); builtin_type_f_real = init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT, 0, "real", (struct objfile *) NULL); builtin_type_f_real_s8 = init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT, 0, "real*8", (struct objfile *) NULL); builtin_type_f_real_s16 = init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT, 0, "real*16", (struct objfile *) NULL); builtin_type_f_complex_s8 = init_type (TYPE_CODE_COMPLEX, TARGET_COMPLEX_BIT / TARGET_CHAR_BIT, 0, "complex*8", (struct objfile *) NULL); builtin_type_f_complex_s16 = init_type (TYPE_CODE_COMPLEX, TARGET_DOUBLE_COMPLEX_BIT / TARGET_CHAR_BIT, 0, "complex*16", (struct objfile *) NULL); #if 0 /* We have a new size == 4 double floats for the complex*32 data type */ builtin_type_f_complex_s32 = init_type (TYPE_CODE_COMPLEX, TARGET_EXT_COMPLEX_BIT / TARGET_CHAR_BIT, 0, "complex*32", (struct objfile *) NULL); #endif builtin_type_string = init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 0, "character string", (struct objfile *) NULL); add_language (&f_language_defn); } /* Following is dubious stuff that had been in the xcoff reader. */ struct saved_fcn { long line_offset; /* Line offset for function */ struct saved_fcn *next; }; struct saved_bf_symnum { long symnum_fcn; /* Symnum of function (i.e. .function directive) */ long symnum_bf; /* Symnum of .bf for this function */ struct saved_bf_symnum *next; }; typedef struct saved_fcn SAVED_FUNCTION, *SAVED_FUNCTION_PTR; typedef struct saved_bf_symnum SAVED_BF, *SAVED_BF_PTR; SAVED_BF_PTR allocate_saved_bf_node() { SAVED_BF_PTR new; new = (SAVED_BF_PTR) malloc (sizeof (SAVED_BF)); if (new == NULL) fatal("could not allocate enough memory to save one more .bf on save list"); return(new); } SAVED_FUNCTION *allocate_saved_function_node() { SAVED_FUNCTION *new; new = (SAVED_FUNCTION *) malloc (sizeof (SAVED_FUNCTION)); if (new == NULL) fatal("could not allocate enough memory to save one more function on save list"); return(new); } SAVED_F77_COMMON_PTR allocate_saved_f77_common_node() { SAVED_F77_COMMON_PTR new; new = (SAVED_F77_COMMON_PTR) malloc (sizeof (SAVED_F77_COMMON)); if (new == NULL) fatal("could not allocate enough memory to save one more F77 COMMON blk on save list"); return(new); } COMMON_ENTRY_PTR allocate_common_entry_node() { COMMON_ENTRY_PTR new; new = (COMMON_ENTRY_PTR) malloc (sizeof (COMMON_ENTRY)); if (new == NULL) fatal("could not allocate enough memory to save one more COMMON entry on save list"); return(new); } SAVED_F77_COMMON_PTR head_common_list=NULL; /* Ptr to 1st saved COMMON */ SAVED_F77_COMMON_PTR tail_common_list=NULL; /* Ptr to last saved COMMON */ SAVED_F77_COMMON_PTR current_common=NULL; /* Ptr to current COMMON */ static SAVED_BF_PTR saved_bf_list=NULL; /* Ptr to (.bf,function) list*/ static SAVED_BF_PTR saved_bf_list_end=NULL; /* Ptr to above list's end */ static SAVED_BF_PTR current_head_bf_list=NULL; /* Current head of above list */ static SAVED_BF_PTR tmp_bf_ptr; /* Generic temporary for use in macros */ /* The following function simply enters a given common block onto the global common block chain */ void add_common_block(name,offset,secnum,func_stab) char *name; CORE_ADDR offset; int secnum; char *func_stab; { SAVED_F77_COMMON_PTR tmp; char *c,*local_copy_func_stab; /* If the COMMON block we are trying to add has a blank name (i.e. "#BLNK_COM") then we set it to __BLANK because the darn "#" character makes GDB's input parser have fits. */ if (STREQ(name,BLANK_COMMON_NAME_ORIGINAL) || STREQ(name,BLANK_COMMON_NAME_MF77)) { free(name); name = alloca(strlen(BLANK_COMMON_NAME_LOCAL) + 1); strcpy(name,BLANK_COMMON_NAME_LOCAL); } tmp = allocate_saved_f77_common_node(); local_copy_func_stab = malloc (strlen(func_stab) + 1); strcpy(local_copy_func_stab,func_stab); tmp->name = malloc(strlen(name) + 1); /* local_copy_func_stab is a stabstring, let us first extract the function name from the stab by NULLing out the ':' character. */ c = NULL; c = strchr(local_copy_func_stab,':'); if (c) *c = '\0'; else error("Malformed function STAB found in add_common_block()"); tmp->owning_function = malloc (strlen(local_copy_func_stab) + 1); strcpy(tmp->owning_function,local_copy_func_stab); strcpy(tmp->name,name); tmp->offset = offset; tmp->next = NULL; tmp->entries = NULL; tmp->secnum = secnum; current_common = tmp; if (head_common_list == NULL) { head_common_list = tail_common_list = tmp; } else { tail_common_list->next = tmp; tail_common_list = tmp; } } /* The following function simply enters a given common entry onto the "current_common" block that has been saved away. */ void add_common_entry(entry_sym_ptr) struct symbol *entry_sym_ptr; { COMMON_ENTRY_PTR tmp; /* The order of this list is important, since we expect the entries to appear in decl. order when we later issue "info common" calls */ tmp = allocate_common_entry_node(); tmp->next = NULL; tmp->symbol = entry_sym_ptr; if (current_common == NULL) error("Attempt to add COMMON entry with no block open!"); else { if (current_common->entries == NULL) { current_common->entries = tmp; current_common->end_of_entries = tmp; } else { current_common->end_of_entries->next = tmp; current_common->end_of_entries = tmp; } } } /* This routine finds the first encountred COMMON block named "name" */ SAVED_F77_COMMON_PTR find_first_common_named(name) char *name; { SAVED_F77_COMMON_PTR tmp; tmp = head_common_list; while (tmp != NULL) { if (STREQ(tmp->name,name)) return(tmp); else tmp = tmp->next; } return(NULL); } /* This routine finds the first encountred COMMON block named "name" that belongs to function funcname */ SAVED_F77_COMMON_PTR find_common_for_function(name, funcname) char *name; char *funcname; { SAVED_F77_COMMON_PTR tmp; tmp = head_common_list; while (tmp != NULL) { if (STREQ(tmp->name,name) && STREQ(tmp->owning_function,funcname)) return(tmp); else tmp = tmp->next; } return(NULL); } /* The following function is called to patch up the offsets for the statics contained in the COMMON block named "name." */ void patch_common_entries (blk, offset, secnum) SAVED_F77_COMMON_PTR blk; CORE_ADDR offset; int secnum; { COMMON_ENTRY_PTR entry; blk->offset = offset; /* Keep this around for future use. */ entry = blk->entries; while (entry != NULL) { SYMBOL_VALUE (entry->symbol) += offset; SYMBOL_SECTION (entry->symbol) = secnum; entry = entry->next; } blk->secnum = secnum; } /* Patch all commons named "name" that need patching.Since COMMON blocks occur with relative infrequency, we simply do a linear scan on the name. Eventually, the best way to do this will be a hashed-lookup. Secnum is the section number for the .bss section (which is where common data lives). */ void patch_all_commons_by_name (name, offset, secnum) char *name; CORE_ADDR offset; int secnum; { SAVED_F77_COMMON_PTR tmp; /* For blank common blocks, change the canonical reprsentation of a blank name */ if ((STREQ(name,BLANK_COMMON_NAME_ORIGINAL)) || (STREQ(name,BLANK_COMMON_NAME_MF77))) { free(name); name = alloca(strlen(BLANK_COMMON_NAME_LOCAL) + 1); strcpy(name,BLANK_COMMON_NAME_LOCAL); } tmp = head_common_list; while (tmp != NULL) { if (COMMON_NEEDS_PATCHING(tmp)) if (STREQ(tmp->name,name)) patch_common_entries(tmp,offset,secnum); tmp = tmp->next; } } /* This macro adds the symbol-number for the start of the function (the symbol number of the .bf) referenced by symnum_fcn to a list. This list, in reality should be a FIFO queue but since #line pragmas sometimes cause line ranges to get messed up we simply create a linear list. This list can then be searched first by a queueing algorithm and upon failure fall back to a linear scan. */ #define ADD_BF_SYMNUM(bf_sym,fcn_sym) \ \ if (saved_bf_list == NULL) \ { \ tmp_bf_ptr = allocate_saved_bf_node(); \ \ tmp_bf_ptr->symnum_bf = (bf_sym); \ tmp_bf_ptr->symnum_fcn = (fcn_sym); \ tmp_bf_ptr->next = NULL; \ \ current_head_bf_list = saved_bf_list = tmp_bf_ptr; \ saved_bf_list_end = tmp_bf_ptr; \ } \ else \ { \ tmp_bf_ptr = allocate_saved_bf_node(); \ \ tmp_bf_ptr->symnum_bf = (bf_sym); \ tmp_bf_ptr->symnum_fcn = (fcn_sym); \ tmp_bf_ptr->next = NULL; \ \ saved_bf_list_end->next = tmp_bf_ptr; \ saved_bf_list_end = tmp_bf_ptr; \ } /* This function frees the entire (.bf,function) list */ void clear_bf_list() { SAVED_BF_PTR tmp = saved_bf_list; SAVED_BF_PTR next = NULL; while (tmp != NULL) { next = tmp->next; free(tmp); tmp=next; } saved_bf_list = NULL; } int global_remote_debug; long get_bf_for_fcn (the_function) long the_function; { SAVED_BF_PTR tmp; int nprobes = 0; /* First use a simple queuing algorithm (i.e. look and see if the item at the head of the queue is the one you want) */ if (saved_bf_list == NULL) fatal ("cannot get .bf node off empty list"); if (current_head_bf_list != NULL) if (current_head_bf_list->symnum_fcn == the_function) { if (global_remote_debug) fprintf(stderr,"*"); tmp = current_head_bf_list; current_head_bf_list = current_head_bf_list->next; return(tmp->symnum_bf); } /* If the above did not work (probably because #line directives were used in the sourcefile and they messed up our internal tables) we now do the ugly linear scan */ if (global_remote_debug) fprintf(stderr,"\ndefaulting to linear scan\n"); nprobes = 0; tmp = saved_bf_list; while (tmp != NULL) { nprobes++; if (tmp->symnum_fcn == the_function) { if (global_remote_debug) fprintf(stderr,"Found in %d probes\n",nprobes); current_head_bf_list = tmp->next; return(tmp->symnum_bf); } tmp= tmp->next; } return(-1); } static SAVED_FUNCTION_PTR saved_function_list=NULL; static SAVED_FUNCTION_PTR saved_function_list_end=NULL; void clear_function_list() { SAVED_FUNCTION_PTR tmp = saved_function_list; SAVED_FUNCTION_PTR next = NULL; while (tmp != NULL) { next = tmp->next; free(tmp); tmp = next; } saved_function_list = NULL; }