/* Evaluate expressions for GDB. Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "gdb_string.h" #include "symtab.h" #include "gdbtypes.h" #include "value.h" #include "expression.h" #include "target.h" #include "frame.h" #include "language.h" /* For CAST_IS_CONVERSION */ #include "f-lang.h" /* for array bound stuff */ #include "cp-abi.h" /* Defined in symtab.c */ extern int hp_som_som_object_present; /* This is defined in valops.c */ extern int overload_resolution; /* JYG: lookup rtti type of STRUCTOP_PTR when this is set to continue on with successful lookup for member/method of the rtti type. */ extern int objectprint; /* Prototypes for local functions. */ static struct value *evaluate_subexp_for_sizeof (struct expression *, int *); static struct value *evaluate_subexp_for_address (struct expression *, int *, enum noside); static struct value *evaluate_subexp (struct type *, struct expression *, int *, enum noside); static char *get_label (struct expression *, int *); static struct value *evaluate_struct_tuple (struct value *, struct expression *, int *, enum noside, int); static LONGEST init_array_element (struct value *, struct value *, struct expression *, int *, enum noside, LONGEST, LONGEST); static struct value * evaluate_subexp (struct type *expect_type, register struct expression *exp, register int *pos, enum noside noside) { return (*exp->language_defn->evaluate_exp) (expect_type, exp, pos, noside); } /* Parse the string EXP as a C expression, evaluate it, and return the result as a number. */ CORE_ADDR parse_and_eval_address (char *exp) { struct expression *expr = parse_expression (exp); register CORE_ADDR addr; register struct cleanup *old_chain = make_cleanup (free_current_contents, &expr); addr = value_as_address (evaluate_expression (expr)); do_cleanups (old_chain); return addr; } /* Like parse_and_eval_address but takes a pointer to a char * variable and advanced that variable across the characters parsed. */ CORE_ADDR parse_and_eval_address_1 (char **expptr) { struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0); register CORE_ADDR addr; register struct cleanup *old_chain = make_cleanup (free_current_contents, &expr); addr = value_as_address (evaluate_expression (expr)); do_cleanups (old_chain); return addr; } /* Like parse_and_eval_address, but treats the value of the expression as an integer, not an address, returns a LONGEST, not a CORE_ADDR */ LONGEST parse_and_eval_long (char *exp) { struct expression *expr = parse_expression (exp); register LONGEST retval; register struct cleanup *old_chain = make_cleanup (free_current_contents, &expr); retval = value_as_long (evaluate_expression (expr)); do_cleanups (old_chain); return (retval); } struct value * parse_and_eval (char *exp) { struct expression *expr = parse_expression (exp); struct value *val; register struct cleanup *old_chain = make_cleanup (free_current_contents, &expr); val = evaluate_expression (expr); do_cleanups (old_chain); return val; } /* Parse up to a comma (or to a closeparen) in the string EXPP as an expression, evaluate it, and return the value. EXPP is advanced to point to the comma. */ struct value * parse_to_comma_and_eval (char **expp) { struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1); struct value *val; register struct cleanup *old_chain = make_cleanup (free_current_contents, &expr); val = evaluate_expression (expr); do_cleanups (old_chain); return val; } /* Evaluate an expression in internal prefix form such as is constructed by parse.y. See expression.h for info on the format of an expression. */ struct value * evaluate_expression (struct expression *exp) { int pc = 0; return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL); } /* Evaluate an expression, avoiding all memory references and getting a value whose type alone is correct. */ struct value * evaluate_type (struct expression *exp) { int pc = 0; return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS); } /* If the next expression is an OP_LABELED, skips past it, returning the label. Otherwise, does nothing and returns NULL. */ static char * get_label (register struct expression *exp, int *pos) { if (exp->elts[*pos].opcode == OP_LABELED) { int pc = (*pos)++; char *name = &exp->elts[pc + 2].string; int tem = longest_to_int (exp->elts[pc + 1].longconst); (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); return name; } else return NULL; } /* This function evaluates tuples (in Chill) or brace-initializers (in C/C++) for structure types. */ static struct value * evaluate_struct_tuple (struct value *struct_val, register struct expression *exp, register int *pos, enum noside noside, int nargs) { struct type *struct_type = check_typedef (VALUE_TYPE (struct_val)); struct type *substruct_type = struct_type; struct type *field_type; int fieldno = -1; int variantno = -1; int subfieldno = -1; while (--nargs >= 0) { int pc = *pos; struct value *val = NULL; int nlabels = 0; int bitpos, bitsize; char *addr; /* Skip past the labels, and count them. */ while (get_label (exp, pos) != NULL) nlabels++; do { char *label = get_label (exp, &pc); if (label) { for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) { char *field_name = TYPE_FIELD_NAME (struct_type, fieldno); if (field_name != NULL && STREQ (field_name, label)) { variantno = -1; subfieldno = fieldno; substruct_type = struct_type; goto found; } } for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) { char *field_name = TYPE_FIELD_NAME (struct_type, fieldno); field_type = TYPE_FIELD_TYPE (struct_type, fieldno); if ((field_name == 0 || *field_name == '\0') && TYPE_CODE (field_type) == TYPE_CODE_UNION) { variantno = 0; for (; variantno < TYPE_NFIELDS (field_type); variantno++) { substruct_type = TYPE_FIELD_TYPE (field_type, variantno); if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT) { for (subfieldno = 0; subfieldno < TYPE_NFIELDS (substruct_type); subfieldno++) { if (STREQ (TYPE_FIELD_NAME (substruct_type, subfieldno), label)) { goto found; } } } } } } error ("there is no field named %s", label); found: ; } else { /* Unlabelled tuple element - go to next field. */ if (variantno >= 0) { subfieldno++; if (subfieldno >= TYPE_NFIELDS (substruct_type)) { variantno = -1; substruct_type = struct_type; } } if (variantno < 0) { fieldno++; subfieldno = fieldno; if (fieldno >= TYPE_NFIELDS (struct_type)) error ("too many initializers"); field_type = TYPE_FIELD_TYPE (struct_type, fieldno); if (TYPE_CODE (field_type) == TYPE_CODE_UNION && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0') error ("don't know which variant you want to set"); } } /* Here, struct_type is the type of the inner struct, while substruct_type is the type of the inner struct. These are the same for normal structures, but a variant struct contains anonymous union fields that contain substruct fields. The value fieldno is the index of the top-level (normal or anonymous union) field in struct_field, while the value subfieldno is the index of the actual real (named inner) field in substruct_type. */ field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno); if (val == 0) val = evaluate_subexp (field_type, exp, pos, noside); /* Now actually set the field in struct_val. */ /* Assign val to field fieldno. */ if (VALUE_TYPE (val) != field_type) val = value_cast (field_type, val); bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno); bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno); if (variantno >= 0) bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno); addr = VALUE_CONTENTS (struct_val) + bitpos / 8; if (bitsize) modify_field (addr, value_as_long (val), bitpos % 8, bitsize); else memcpy (addr, VALUE_CONTENTS (val), TYPE_LENGTH (VALUE_TYPE (val))); } while (--nlabels > 0); } return struct_val; } /* Recursive helper function for setting elements of array tuples for Chill. The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS and NOSIDE are as usual. Evaluates index expresions and sets the specified element(s) of ARRAY to ELEMENT. Returns last index value. */ static LONGEST init_array_element (struct value *array, struct value *element, register struct expression *exp, register int *pos, enum noside noside, LONGEST low_bound, LONGEST high_bound) { LONGEST index; int element_size = TYPE_LENGTH (VALUE_TYPE (element)); if (exp->elts[*pos].opcode == BINOP_COMMA) { (*pos)++; init_array_element (array, element, exp, pos, noside, low_bound, high_bound); return init_array_element (array, element, exp, pos, noside, low_bound, high_bound); } else if (exp->elts[*pos].opcode == BINOP_RANGE) { LONGEST low, high; (*pos)++; low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); if (low < low_bound || high > high_bound) error ("tuple range index out of range"); for (index = low; index <= high; index++) { memcpy (VALUE_CONTENTS_RAW (array) + (index - low_bound) * element_size, VALUE_CONTENTS (element), element_size); } } else { index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); if (index < low_bound || index > high_bound) error ("tuple index out of range"); memcpy (VALUE_CONTENTS_RAW (array) + (index - low_bound) * element_size, VALUE_CONTENTS (element), element_size); } return index; } struct value * evaluate_subexp_standard (struct type *expect_type, register struct expression *exp, register int *pos, enum noside noside) { enum exp_opcode op; int tem, tem2, tem3; register int pc, pc2 = 0, oldpos; struct value *arg1 = NULL; struct value *arg2 = NULL; struct value *arg3; struct type *type; int nargs; struct value **argvec; int upper, lower, retcode; int code; int ix; long mem_offset; struct type **arg_types; int save_pos1; pc = (*pos)++; op = exp->elts[pc].opcode; switch (op) { case OP_SCOPE: tem = longest_to_int (exp->elts[pc + 2].longconst); (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1); arg1 = value_struct_elt_for_reference (exp->elts[pc + 1].type, 0, exp->elts[pc + 1].type, &exp->elts[pc + 3].string, NULL_TYPE); if (arg1 == NULL) error ("There is no field named %s", &exp->elts[pc + 3].string); return arg1; case OP_LONG: (*pos) += 3; return value_from_longest (exp->elts[pc + 1].type, exp->elts[pc + 2].longconst); case OP_DOUBLE: (*pos) += 3; return value_from_double (exp->elts[pc + 1].type, exp->elts[pc + 2].doubleconst); case OP_VAR_VALUE: (*pos) += 3; if (noside == EVAL_SKIP) goto nosideret; /* JYG: We used to just return value_zero of the symbol type if we're asked to avoid side effects. Otherwise we return value_of_variable (...). However I'm not sure if value_of_variable () has any side effect. We need a full value object returned here for whatis_exp () to call evaluate_type () and then pass the full value to value_rtti_target_type () if we are dealing with a pointer or reference to a base class and print object is on. */ return value_of_variable (exp->elts[pc + 2].symbol, exp->elts[pc + 1].block); case OP_LAST: (*pos) += 2; return access_value_history (longest_to_int (exp->elts[pc + 1].longconst)); case OP_REGISTER: { int regno = longest_to_int (exp->elts[pc + 1].longconst); struct value *val = value_of_register (regno); (*pos) += 2; if (val == NULL) error ("Value of register %s not available.", REGISTER_NAME (regno)); else return val; } case OP_BOOL: (*pos) += 2; return value_from_longest (LA_BOOL_TYPE, exp->elts[pc + 1].longconst); case OP_INTERNALVAR: (*pos) += 2; return value_of_internalvar (exp->elts[pc + 1].internalvar); case OP_STRING: tem = longest_to_int (exp->elts[pc + 1].longconst); (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); if (noside == EVAL_SKIP) goto nosideret; return value_string (&exp->elts[pc + 2].string, tem); case OP_BITSTRING: tem = longest_to_int (exp->elts[pc + 1].longconst); (*pos) += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT); if (noside == EVAL_SKIP) goto nosideret; return value_bitstring (&exp->elts[pc + 2].string, tem); break; case OP_ARRAY: (*pos) += 3; tem2 = longest_to_int (exp->elts[pc + 1].longconst); tem3 = longest_to_int (exp->elts[pc + 2].longconst); nargs = tem3 - tem2 + 1; type = expect_type ? check_typedef (expect_type) : NULL_TYPE; if (expect_type != NULL_TYPE && noside != EVAL_SKIP && TYPE_CODE (type) == TYPE_CODE_STRUCT) { struct value *rec = allocate_value (expect_type); memset (VALUE_CONTENTS_RAW (rec), '\0', TYPE_LENGTH (type)); return evaluate_struct_tuple (rec, exp, pos, noside, nargs); } if (expect_type != NULL_TYPE && noside != EVAL_SKIP && TYPE_CODE (type) == TYPE_CODE_ARRAY) { struct type *range_type = TYPE_FIELD_TYPE (type, 0); struct type *element_type = TYPE_TARGET_TYPE (type); struct value *array = allocate_value (expect_type); int element_size = TYPE_LENGTH (check_typedef (element_type)); LONGEST low_bound, high_bound, index; if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) { low_bound = 0; high_bound = (TYPE_LENGTH (type) / element_size) - 1; } index = low_bound; memset (VALUE_CONTENTS_RAW (array), 0, TYPE_LENGTH (expect_type)); for (tem = nargs; --nargs >= 0;) { struct value *element; int index_pc = 0; if (exp->elts[*pos].opcode == BINOP_RANGE) { index_pc = ++(*pos); evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); } element = evaluate_subexp (element_type, exp, pos, noside); if (VALUE_TYPE (element) != element_type) element = value_cast (element_type, element); if (index_pc) { int continue_pc = *pos; *pos = index_pc; index = init_array_element (array, element, exp, pos, noside, low_bound, high_bound); *pos = continue_pc; } else { if (index > high_bound) /* to avoid memory corruption */ error ("Too many array elements"); memcpy (VALUE_CONTENTS_RAW (array) + (index - low_bound) * element_size, VALUE_CONTENTS (element), element_size); } index++; } return array; } if (expect_type != NULL_TYPE && noside != EVAL_SKIP && TYPE_CODE (type) == TYPE_CODE_SET) { struct value *set = allocate_value (expect_type); char *valaddr = VALUE_CONTENTS_RAW (set); struct type *element_type = TYPE_INDEX_TYPE (type); struct type *check_type = element_type; LONGEST low_bound, high_bound; /* get targettype of elementtype */ while (TYPE_CODE (check_type) == TYPE_CODE_RANGE || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF) check_type = TYPE_TARGET_TYPE (check_type); if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0) error ("(power)set type with unknown size"); memset (valaddr, '\0', TYPE_LENGTH (type)); for (tem = 0; tem < nargs; tem++) { LONGEST range_low, range_high; struct type *range_low_type, *range_high_type; struct value *elem_val; if (exp->elts[*pos].opcode == BINOP_RANGE) { (*pos)++; elem_val = evaluate_subexp (element_type, exp, pos, noside); range_low_type = VALUE_TYPE (elem_val); range_low = value_as_long (elem_val); elem_val = evaluate_subexp (element_type, exp, pos, noside); range_high_type = VALUE_TYPE (elem_val); range_high = value_as_long (elem_val); } else { elem_val = evaluate_subexp (element_type, exp, pos, noside); range_low_type = range_high_type = VALUE_TYPE (elem_val); range_low = range_high = value_as_long (elem_val); } /* check types of elements to avoid mixture of elements from different types. Also check if type of element is "compatible" with element type of powerset */ if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE) range_low_type = TYPE_TARGET_TYPE (range_low_type); if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE) range_high_type = TYPE_TARGET_TYPE (range_high_type); if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM && (range_low_type != range_high_type))) /* different element modes */ error ("POWERSET tuple elements of different mode"); if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) || (TYPE_CODE (check_type) == TYPE_CODE_ENUM && range_low_type != check_type)) error ("incompatible POWERSET tuple elements"); if (range_low > range_high) { warning ("empty POWERSET tuple range"); continue; } if (range_low < low_bound || range_high > high_bound) error ("POWERSET tuple element out of range"); range_low -= low_bound; range_high -= low_bound; for (; range_low <= range_high; range_low++) { int bit_index = (unsigned) range_low % TARGET_CHAR_BIT; if (BITS_BIG_ENDIAN) bit_index = TARGET_CHAR_BIT - 1 - bit_index; valaddr[(unsigned) range_low / TARGET_CHAR_BIT] |= 1 << bit_index; } } return set; } argvec = (struct value **) alloca (sizeof (struct value *) * nargs); for (tem = 0; tem < nargs; tem++) { /* Ensure that array expressions are coerced into pointer objects. */ argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside); } if (noside == EVAL_SKIP) goto nosideret; return value_array (tem2, tem3, argvec); case TERNOP_SLICE: { struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); int lowbound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); int upper = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); if (noside == EVAL_SKIP) goto nosideret; return value_slice (array, lowbound, upper - lowbound + 1); } case TERNOP_SLICE_COUNT: { struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); int lowbound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); int length = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); return value_slice (array, lowbound, length); } case TERNOP_COND: /* Skip third and second args to evaluate the first one. */ arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); if (value_logical_not (arg1)) { evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); return evaluate_subexp (NULL_TYPE, exp, pos, noside); } else { arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); return arg2; } case OP_FUNCALL: (*pos) += 2; op = exp->elts[*pos].opcode; nargs = longest_to_int (exp->elts[pc + 1].longconst); /* Allocate arg vector, including space for the function to be called in argvec[0] and a terminating NULL */ argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3)); if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR) { LONGEST fnptr; /* 1997-08-01 Currently we do not support function invocation via pointers-to-methods with HP aCC. Pointer does not point to the function, but possibly to some thunk. */ if (hp_som_som_object_present) { error ("Not implemented: function invocation through pointer to method with HP aCC"); } nargs++; /* First, evaluate the structure into arg2 */ pc2 = (*pos)++; if (noside == EVAL_SKIP) goto nosideret; if (op == STRUCTOP_MEMBER) { arg2 = evaluate_subexp_for_address (exp, pos, noside); } else { arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); } /* If the function is a virtual function, then the aggregate value (providing the structure) plays its part by providing the vtable. Otherwise, it is just along for the ride: call the function directly. */ arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); fnptr = value_as_long (arg1); if (METHOD_PTR_IS_VIRTUAL (fnptr)) { int fnoffset = METHOD_PTR_TO_VOFFSET (fnptr); struct type *basetype; struct type *domain_type = TYPE_DOMAIN_TYPE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))); int i, j; basetype = TYPE_TARGET_TYPE (VALUE_TYPE (arg2)); if (domain_type != basetype) arg2 = value_cast (lookup_pointer_type (domain_type), arg2); basetype = TYPE_VPTR_BASETYPE (domain_type); for (i = TYPE_NFN_FIELDS (basetype) - 1; i >= 0; i--) { struct fn_field *f = TYPE_FN_FIELDLIST1 (basetype, i); /* If one is virtual, then all are virtual. */ if (TYPE_FN_FIELD_VIRTUAL_P (f, 0)) for (j = TYPE_FN_FIELDLIST_LENGTH (basetype, i) - 1; j >= 0; --j) if ((int) TYPE_FN_FIELD_VOFFSET (f, j) == fnoffset) { struct value *temp = value_ind (arg2); arg1 = value_virtual_fn_field (&temp, f, j, domain_type, 0); arg2 = value_addr (temp); goto got_it; } } if (i < 0) error ("virtual function at index %d not found", fnoffset); } else { VALUE_TYPE (arg1) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))); } got_it: /* Now, say which argument to start evaluating from */ tem = 2; } else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR) { /* Hair for method invocations */ int tem2; nargs++; /* First, evaluate the structure into arg2 */ pc2 = (*pos)++; tem2 = longest_to_int (exp->elts[pc2 + 1].longconst); *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1); if (noside == EVAL_SKIP) goto nosideret; if (op == STRUCTOP_STRUCT) { /* If v is a variable in a register, and the user types v.method (), this will produce an error, because v has no address. A possible way around this would be to allocate a copy of the variable on the stack, copy in the contents, call the function, and copy out the contents. I.e. convert this from call by reference to call by copy-return (or whatever it's called). However, this does not work because it is not the same: the method being called could stash a copy of the address, and then future uses through that address (after the method returns) would be expected to use the variable itself, not some copy of it. */ arg2 = evaluate_subexp_for_address (exp, pos, noside); } else { arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); } /* Now, say which argument to start evaluating from */ tem = 2; } else { /* Non-method function call */ save_pos1 = *pos; argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside); tem = 1; type = VALUE_TYPE (argvec[0]); if (type && TYPE_CODE (type) == TYPE_CODE_PTR) type = TYPE_TARGET_TYPE (type); if (type && TYPE_CODE (type) == TYPE_CODE_FUNC) { for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++) { /* pai: FIXME This seems to be coercing arguments before * overload resolution has been done! */ argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1), exp, pos, noside); } } } /* Evaluate arguments */ for (; tem <= nargs; tem++) { /* Ensure that array expressions are coerced into pointer objects. */ argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside); } /* signal end of arglist */ argvec[tem] = 0; if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR) { int static_memfuncp; struct value *temp = arg2; char tstr[256]; /* Method invocation : stuff "this" as first parameter */ /* pai: this used to have lookup_pointer_type for some reason, * but temp is already a pointer to the object */ argvec[1] = value_from_pointer (VALUE_TYPE (temp), VALUE_ADDRESS (temp) + VALUE_OFFSET (temp)); /* Name of method from expression */ strcpy (tstr, &exp->elts[pc2 + 2].string); if (overload_resolution && (exp->language_defn->la_language == language_cplus)) { /* Language is C++, do some overload resolution before evaluation */ struct value *valp = NULL; /* Prepare list of argument types for overload resolution */ arg_types = (struct type **) alloca (nargs * (sizeof (struct type *))); for (ix = 1; ix <= nargs; ix++) arg_types[ix - 1] = VALUE_TYPE (argvec[ix]); (void) find_overload_match (arg_types, nargs, tstr, 1 /* method */ , 0 /* strict match */ , arg2 /* the object */ , NULL, &valp, NULL, &static_memfuncp); argvec[1] = arg2; /* the ``this'' pointer */ argvec[0] = valp; /* use the method found after overload resolution */ } else /* Non-C++ case -- or no overload resolution */ { temp = arg2; argvec[0] = value_struct_elt (&temp, argvec + 1, tstr, &static_memfuncp, op == STRUCTOP_STRUCT ? "structure" : "structure pointer"); argvec[1] = arg2; /* the ``this'' pointer */ } if (static_memfuncp) { argvec[1] = argvec[0]; nargs--; argvec++; } } else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR) { argvec[1] = arg2; argvec[0] = arg1; } else if (op == OP_VAR_VALUE) { /* Non-member function being called */ /* fn: This can only be done for C++ functions. A C-style function in a C++ program, for instance, does not have the fields that are expected here */ if (overload_resolution && (exp->language_defn->la_language == language_cplus)) { /* Language is C++, do some overload resolution before evaluation */ struct symbol *symp; /* Prepare list of argument types for overload resolution */ arg_types = (struct type **) alloca (nargs * (sizeof (struct type *))); for (ix = 1; ix <= nargs; ix++) arg_types[ix - 1] = VALUE_TYPE (argvec[ix]); (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ , 0 /* not method */ , 0 /* strict match */ , NULL, exp->elts[save_pos1+2].symbol /* the function */ , NULL, &symp, NULL); /* Now fix the expression being evaluated */ exp->elts[save_pos1+2].symbol = symp; argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside); } else { /* Not C++, or no overload resolution allowed */ /* nothing to be done; argvec already correctly set up */ } } else { /* It is probably a C-style function */ /* nothing to be done; argvec already correctly set up */ } do_call_it: if (noside == EVAL_SKIP) goto nosideret; if (argvec[0] == NULL) error ("Cannot evaluate function -- may be inlined"); if (noside == EVAL_AVOID_SIDE_EFFECTS) { /* If the return type doesn't look like a function type, call an error. This can happen if somebody tries to turn a variable into a function call. This is here because people often want to call, eg, strcmp, which gdb doesn't know is a function. If gdb isn't asked for it's opinion (ie. through "whatis"), it won't offer it. */ struct type *ftype = TYPE_TARGET_TYPE (VALUE_TYPE (argvec[0])); if (ftype) return allocate_value (TYPE_TARGET_TYPE (VALUE_TYPE (argvec[0]))); else error ("Expression of type other than \"Function returning ...\" used as function"); } return call_function_by_hand (argvec[0], nargs, argvec + 1); /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */ case OP_F77_UNDETERMINED_ARGLIST: /* Remember that in F77, functions, substring ops and array subscript operations cannot be disambiguated at parse time. We have made all array subscript operations, substring operations as well as function calls come here and we now have to discover what the heck this thing actually was. If it is a function, we process just as if we got an OP_FUNCALL. */ nargs = longest_to_int (exp->elts[pc + 1].longconst); (*pos) += 2; /* First determine the type code we are dealing with. */ arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); type = check_typedef (VALUE_TYPE (arg1)); code = TYPE_CODE (type); switch (code) { case TYPE_CODE_ARRAY: goto multi_f77_subscript; case TYPE_CODE_STRING: goto op_f77_substr; case TYPE_CODE_PTR: case TYPE_CODE_FUNC: /* It's a function call. */ /* Allocate arg vector, including space for the function to be called in argvec[0] and a terminating NULL */ argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); argvec[0] = arg1; tem = 1; for (; tem <= nargs; tem++) argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside); argvec[tem] = 0; /* signal end of arglist */ goto do_call_it; default: error ("Cannot perform substring on this type"); } op_f77_substr: /* We have a substring operation on our hands here, let us get the string we will be dealing with */ /* Now evaluate the 'from' and 'to' */ arg2 = evaluate_subexp_with_coercion (exp, pos, noside); if (nargs < 2) return value_subscript (arg1, arg2); arg3 = evaluate_subexp_with_coercion (exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; tem2 = value_as_long (arg2); tem3 = value_as_long (arg3); return value_slice (arg1, tem2, tem3 - tem2 + 1); case OP_COMPLEX: /* We have a complex number, There should be 2 floating point numbers that compose it */ arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); return value_literal_complex (arg1, arg2, builtin_type_f_complex_s16); case STRUCTOP_STRUCT: tem = longest_to_int (exp->elts[pc + 1].longconst); (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (noside == EVAL_AVOID_SIDE_EFFECTS) return value_zero (lookup_struct_elt_type (VALUE_TYPE (arg1), &exp->elts[pc + 2].string, 0), lval_memory); else { struct value *temp = arg1; return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string, NULL, "structure"); } case STRUCTOP_PTR: tem = longest_to_int (exp->elts[pc + 1].longconst); (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; /* JYG: if print object is on we need to replace the base type with rtti type in order to continue on with successful lookup of member / method only available in the rtti type. */ { struct type *type = VALUE_TYPE (arg1); struct type *real_type; int full, top, using_enc; if (objectprint && TYPE_TARGET_TYPE(type) && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS)) { real_type = value_rtti_target_type (arg1, &full, &top, &using_enc); if (real_type) { if (TYPE_CODE (type) == TYPE_CODE_PTR) real_type = lookup_pointer_type (real_type); else real_type = lookup_reference_type (real_type); arg1 = value_cast (real_type, arg1); } } } if (noside == EVAL_AVOID_SIDE_EFFECTS) return value_zero (lookup_struct_elt_type (VALUE_TYPE (arg1), &exp->elts[pc + 2].string, 0), lval_memory); else { struct value *temp = arg1; return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string, NULL, "structure pointer"); } case STRUCTOP_MEMBER: arg1 = evaluate_subexp_for_address (exp, pos, noside); arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); /* With HP aCC, pointers to methods do not point to the function code */ if (hp_som_som_object_present && (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_PTR) && (TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg2))) == TYPE_CODE_METHOD)) error ("Pointers to methods not supported with HP aCC"); /* 1997-08-19 */ mem_offset = value_as_long (arg2); goto handle_pointer_to_member; case STRUCTOP_MPTR: arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); /* With HP aCC, pointers to methods do not point to the function code */ if (hp_som_som_object_present && (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_PTR) && (TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg2))) == TYPE_CODE_METHOD)) error ("Pointers to methods not supported with HP aCC"); /* 1997-08-19 */ mem_offset = value_as_long (arg2); handle_pointer_to_member: /* HP aCC generates offsets that have bit #29 set; turn it off to get a real offset to the member. */ if (hp_som_som_object_present) { if (!mem_offset) /* no bias -> really null */ error ("Attempted dereference of null pointer-to-member"); mem_offset &= ~0x20000000; } if (noside == EVAL_SKIP) goto nosideret; type = check_typedef (VALUE_TYPE (arg2)); if (TYPE_CODE (type) != TYPE_CODE_PTR) goto bad_pointer_to_member; type = check_typedef (TYPE_TARGET_TYPE (type)); if (TYPE_CODE (type) == TYPE_CODE_METHOD) error ("not implemented: pointer-to-method in pointer-to-member construct"); if (TYPE_CODE (type) != TYPE_CODE_MEMBER) goto bad_pointer_to_member; /* Now, convert these values to an address. */ arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)), arg1); arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), value_as_long (arg1) + mem_offset); return value_ind (arg3); bad_pointer_to_member: error ("non-pointer-to-member value used in pointer-to-member construct"); case BINOP_CONCAT: arg1 = evaluate_subexp_with_coercion (exp, pos, noside); arg2 = evaluate_subexp_with_coercion (exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (binop_user_defined_p (op, arg1, arg2)) return value_x_binop (arg1, arg2, op, OP_NULL, noside); else return value_concat (arg1, arg2); case BINOP_ASSIGN: arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); /* Do special stuff for HP aCC pointers to members */ if (hp_som_som_object_present) { /* 1997-08-19 Can't assign HP aCC pointers to methods. No details of the implementation yet; but the pointer appears to point to a code sequence (thunk) in memory -- in any case it is *not* the address of the function as it would be in a naive implementation. */ if ((TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) && (TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_METHOD)) error ("Assignment to pointers to methods not implemented with HP aCC"); /* HP aCC pointers to data members require a constant bias */ if ((TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) && (TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_MEMBER)) { unsigned int *ptr = (unsigned int *) VALUE_CONTENTS (arg2); /* forces evaluation */ *ptr |= 0x20000000; /* set 29th bit */ } } if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) return arg1; if (binop_user_defined_p (op, arg1, arg2)) return value_x_binop (arg1, arg2, op, OP_NULL, noside); else return value_assign (arg1, arg2); case BINOP_ASSIGN_MODIFY: (*pos) += 2; arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) return arg1; op = exp->elts[pc + 1].opcode; if (binop_user_defined_p (op, arg1, arg2)) return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside); else if (op == BINOP_ADD) arg2 = value_add (arg1, arg2); else if (op == BINOP_SUB) arg2 = value_sub (arg1, arg2); else arg2 = value_binop (arg1, arg2, op); return value_assign (arg1, arg2); case BINOP_ADD: arg1 = evaluate_subexp_with_coercion (exp, pos, noside); arg2 = evaluate_subexp_with_coercion (exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (binop_user_defined_p (op, arg1, arg2)) return value_x_binop (arg1, arg2, op, OP_NULL, noside); else return value_add (arg1, arg2); case BINOP_SUB: arg1 = evaluate_subexp_with_coercion (exp, pos, noside); arg2 = evaluate_subexp_with_coercion (exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (binop_user_defined_p (op, arg1, arg2)) return value_x_binop (arg1, arg2, op, OP_NULL, noside); else return value_sub (arg1, arg2); case BINOP_MUL: case BINOP_DIV: case BINOP_REM: case BINOP_MOD: case BINOP_LSH: case BINOP_RSH: case BINOP_BITWISE_AND: case BINOP_BITWISE_IOR: case BINOP_BITWISE_XOR: arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (binop_user_defined_p (op, arg1, arg2)) return value_x_binop (arg1, arg2, op, OP_NULL, noside); else if (noside == EVAL_AVOID_SIDE_EFFECTS && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD)) return value_zero (VALUE_TYPE (arg1), not_lval); else return value_binop (arg1, arg2, op); case BINOP_RANGE: arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; error ("':' operator used in invalid context"); case BINOP_SUBSCRIPT: arg1 = evaluate_subexp_with_coercion (exp, pos, noside); arg2 = evaluate_subexp_with_coercion (exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (binop_user_defined_p (op, arg1, arg2)) return value_x_binop (arg1, arg2, op, OP_NULL, noside); else { /* If the user attempts to subscript something that is not an array or pointer type (like a plain int variable for example), then report this as an error. */ COERCE_REF (arg1); type = check_typedef (VALUE_TYPE (arg1)); if (TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_CODE (type) != TYPE_CODE_PTR) { if (TYPE_NAME (type)) error ("cannot subscript something of type `%s'", TYPE_NAME (type)); else error ("cannot subscript requested type"); } if (noside == EVAL_AVOID_SIDE_EFFECTS) return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1)); else return value_subscript (arg1, arg2); } case BINOP_IN: arg1 = evaluate_subexp_with_coercion (exp, pos, noside); arg2 = evaluate_subexp_with_coercion (exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; return value_in (arg1, arg2); case MULTI_SUBSCRIPT: (*pos) += 2; nargs = longest_to_int (exp->elts[pc + 1].longconst); arg1 = evaluate_subexp_with_coercion (exp, pos, noside); while (nargs-- > 0) { arg2 = evaluate_subexp_with_coercion (exp, pos, noside); /* FIXME: EVAL_SKIP handling may not be correct. */ if (noside == EVAL_SKIP) { if (nargs > 0) { continue; } else { goto nosideret; } } /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */ if (noside == EVAL_AVOID_SIDE_EFFECTS) { /* If the user attempts to subscript something that has no target type (like a plain int variable for example), then report this as an error. */ type = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (arg1))); if (type != NULL) { arg1 = value_zero (type, VALUE_LVAL (arg1)); noside = EVAL_SKIP; continue; } else { error ("cannot subscript something of type `%s'", TYPE_NAME (VALUE_TYPE (arg1))); } } if (binop_user_defined_p (op, arg1, arg2)) { arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside); } else { arg1 = value_subscript (arg1, arg2); } } return (arg1); multi_f77_subscript: { int subscript_array[MAX_FORTRAN_DIMS + 1]; /* 1-based array of subscripts, max == 7 */ int array_size_array[MAX_FORTRAN_DIMS + 1]; int ndimensions = 1, i; struct type *tmp_type; int offset_item; /* The array offset where the item lives */ if (nargs > MAX_FORTRAN_DIMS) error ("Too many subscripts for F77 (%d Max)", MAX_FORTRAN_DIMS); tmp_type = check_typedef (VALUE_TYPE (arg1)); ndimensions = calc_f77_array_dims (type); if (nargs != ndimensions) error ("Wrong number of subscripts"); /* Now that we know we have a legal array subscript expression let us actually find out where this element exists in the array. */ offset_item = 0; for (i = 1; i <= nargs; i++) { /* Evaluate each subscript, It must be a legal integer in F77 */ arg2 = evaluate_subexp_with_coercion (exp, pos, noside); /* Fill in the subscript and array size arrays */ subscript_array[i] = value_as_long (arg2); retcode = f77_get_dynamic_upperbound (tmp_type, &upper); if (retcode == BOUND_FETCH_ERROR) error ("Cannot obtain dynamic upper bound"); retcode = f77_get_dynamic_lowerbound (tmp_type, &lower); if (retcode == BOUND_FETCH_ERROR) error ("Cannot obtain dynamic lower bound"); array_size_array[i] = upper - lower + 1; /* Zero-normalize subscripts so that offsetting will work. */ subscript_array[i] -= lower; /* If we are at the bottom of a multidimensional array type then keep a ptr to the last ARRAY type around for use when calling value_subscript() below. This is done because we pretend to value_subscript that we actually have a one-dimensional array of base element type that we apply a simple offset to. */ if (i < nargs) tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type)); } /* Now let us calculate the offset for this item */ offset_item = subscript_array[ndimensions]; for (i = ndimensions - 1; i >= 1; i--) offset_item = array_size_array[i] * offset_item + subscript_array[i]; /* Construct a value node with the value of the offset */ arg2 = value_from_longest (builtin_type_f_integer, offset_item); /* Let us now play a dirty trick: we will take arg1 which is a value node pointing to the topmost level of the multidimensional array-set and pretend that it is actually a array of the final element type, this will ensure that value_subscript() returns the correct type value */ VALUE_TYPE (arg1) = tmp_type; return value_ind (value_add (value_coerce_array (arg1), arg2)); } case BINOP_LOGICAL_AND: arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); if (noside == EVAL_SKIP) { arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); goto nosideret; } oldpos = *pos; arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); *pos = oldpos; if (binop_user_defined_p (op, arg1, arg2)) { arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); return value_x_binop (arg1, arg2, op, OP_NULL, noside); } else { tem = value_logical_not (arg1); arg2 = evaluate_subexp (NULL_TYPE, exp, pos, (tem ? EVAL_SKIP : noside)); return value_from_longest (LA_BOOL_TYPE, (LONGEST) (!tem && !value_logical_not (arg2))); } case BINOP_LOGICAL_OR: arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); if (noside == EVAL_SKIP) { arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); goto nosideret; } oldpos = *pos; arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); *pos = oldpos; if (binop_user_defined_p (op, arg1, arg2)) { arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); return value_x_binop (arg1, arg2, op, OP_NULL, noside); } else { tem = value_logical_not (arg1); arg2 = evaluate_subexp (NULL_TYPE, exp, pos, (!tem ? EVAL_SKIP : noside)); return value_from_longest (LA_BOOL_TYPE, (LONGEST) (!tem || !value_logical_not (arg2))); } case BINOP_EQUAL: arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (binop_user_defined_p (op, arg1, arg2)) { return value_x_binop (arg1, arg2, op, OP_NULL, noside); } else { tem = value_equal (arg1, arg2); return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem); } case BINOP_NOTEQUAL: arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (binop_user_defined_p (op, arg1, arg2)) { return value_x_binop (arg1, arg2, op, OP_NULL, noside); } else { tem = value_equal (arg1, arg2); return value_from_longest (LA_BOOL_TYPE, (LONGEST) ! tem); } case BINOP_LESS: arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (binop_user_defined_p (op, arg1, arg2)) { return value_x_binop (arg1, arg2, op, OP_NULL, noside); } else { tem = value_less (arg1, arg2); return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem); } case BINOP_GTR: arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (binop_user_defined_p (op, arg1, arg2)) { return value_x_binop (arg1, arg2, op, OP_NULL, noside); } else { tem = value_less (arg2, arg1); return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem); } case BINOP_GEQ: arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (binop_user_defined_p (op, arg1, arg2)) { return value_x_binop (arg1, arg2, op, OP_NULL, noside); } else { tem = value_less (arg2, arg1) || value_equal (arg1, arg2); return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem); } case BINOP_LEQ: arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (binop_user_defined_p (op, arg1, arg2)) { return value_x_binop (arg1, arg2, op, OP_NULL, noside); } else { tem = value_less (arg1, arg2) || value_equal (arg1, arg2); return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem); } case BINOP_REPEAT: arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; type = check_typedef (VALUE_TYPE (arg2)); if (TYPE_CODE (type) != TYPE_CODE_INT) error ("Non-integral right operand for \"@\" operator."); if (noside == EVAL_AVOID_SIDE_EFFECTS) { return allocate_repeat_value (VALUE_TYPE (arg1), longest_to_int (value_as_long (arg2))); } else return value_repeat (arg1, longest_to_int (value_as_long (arg2))); case BINOP_COMMA: evaluate_subexp (NULL_TYPE, exp, pos, noside); return evaluate_subexp (NULL_TYPE, exp, pos, noside); case UNOP_NEG: arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (unop_user_defined_p (op, arg1)) return value_x_unop (arg1, op, noside); else return value_neg (arg1); case UNOP_COMPLEMENT: /* C++: check for and handle destructor names. */ op = exp->elts[*pos].opcode; arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (unop_user_defined_p (UNOP_COMPLEMENT, arg1)) return value_x_unop (arg1, UNOP_COMPLEMENT, noside); else return value_complement (arg1); case UNOP_LOGICAL_NOT: arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (unop_user_defined_p (op, arg1)) return value_x_unop (arg1, op, noside); else return value_from_longest (LA_BOOL_TYPE, (LONGEST) value_logical_not (arg1)); case UNOP_IND: if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR) expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type)); arg1 = evaluate_subexp (expect_type, exp, pos, noside); if ((TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) && ((TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_METHOD) || (TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_MEMBER))) error ("Attempt to dereference pointer to member without an object"); if (noside == EVAL_SKIP) goto nosideret; if (unop_user_defined_p (op, arg1)) return value_x_unop (arg1, op, noside); else if (noside == EVAL_AVOID_SIDE_EFFECTS) { type = check_typedef (VALUE_TYPE (arg1)); if (TYPE_CODE (type) == TYPE_CODE_PTR || TYPE_CODE (type) == TYPE_CODE_REF /* In C you can dereference an array to get the 1st elt. */ || TYPE_CODE (type) == TYPE_CODE_ARRAY ) return value_zero (TYPE_TARGET_TYPE (type), lval_memory); else if (TYPE_CODE (type) == TYPE_CODE_INT) /* GDB allows dereferencing an int. */ return value_zero (builtin_type_int, lval_memory); else error ("Attempt to take contents of a non-pointer value."); } return value_ind (arg1); case UNOP_ADDR: /* C++: check for and handle pointer to members. */ op = exp->elts[*pos].opcode; if (noside == EVAL_SKIP) { if (op == OP_SCOPE) { int temm = longest_to_int (exp->elts[pc + 3].longconst); (*pos) += 3 + BYTES_TO_EXP_ELEM (temm + 1); } else evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); goto nosideret; } else { struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside); /* If HP aCC object, use bias for pointers to members */ if (hp_som_som_object_present && (TYPE_CODE (VALUE_TYPE (retvalp)) == TYPE_CODE_PTR) && (TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (retvalp))) == TYPE_CODE_MEMBER)) { unsigned int *ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* forces evaluation */ *ptr |= 0x20000000; /* set 29th bit */ } return retvalp; } case UNOP_SIZEOF: if (noside == EVAL_SKIP) { evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); goto nosideret; } return evaluate_subexp_for_sizeof (exp, pos); case UNOP_CAST: (*pos) += 2; type = exp->elts[pc + 1].type; arg1 = evaluate_subexp (type, exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (type != VALUE_TYPE (arg1)) arg1 = value_cast (type, arg1); return arg1; case UNOP_MEMVAL: (*pos) += 2; arg1 = evaluate_subexp (expect_type, exp, pos, noside); if (noside == EVAL_SKIP) goto nosideret; if (noside == EVAL_AVOID_SIDE_EFFECTS) return value_zero (exp->elts[pc + 1].type, lval_memory); else return value_at_lazy (exp->elts[pc + 1].type, value_as_address (arg1), NULL); case UNOP_PREINCREMENT: arg1 = evaluate_subexp (expect_type, exp, pos, noside); if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) return arg1; else if (unop_user_defined_p (op, arg1)) { return value_x_unop (arg1, op, noside); } else { arg2 = value_add (arg1, value_from_longest (builtin_type_char, (LONGEST) 1)); return value_assign (arg1, arg2); } case UNOP_PREDECREMENT: arg1 = evaluate_subexp (expect_type, exp, pos, noside); if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) return arg1; else if (unop_user_defined_p (op, arg1)) { return value_x_unop (arg1, op, noside); } else { arg2 = value_sub (arg1, value_from_longest (builtin_type_char, (LONGEST) 1)); return value_assign (arg1, arg2); } case UNOP_POSTINCREMENT: arg1 = evaluate_subexp (expect_type, exp, pos, noside); if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) return arg1; else if (unop_user_defined_p (op, arg1)) { return value_x_unop (arg1, op, noside); } else { arg2 = value_add (arg1, value_from_longest (builtin_type_char, (LONGEST) 1)); value_assign (arg1, arg2); return arg1; } case UNOP_POSTDECREMENT: arg1 = evaluate_subexp (expect_type, exp, pos, noside); if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) return arg1; else if (unop_user_defined_p (op, arg1)) { return value_x_unop (arg1, op, noside); } else { arg2 = value_sub (arg1, value_from_longest (builtin_type_char, (LONGEST) 1)); value_assign (arg1, arg2); return arg1; } case OP_THIS: (*pos) += 1; return value_of_this (1); case OP_TYPE: error ("Attempt to use a type name as an expression"); default: /* Removing this case and compiling with gcc -Wall reveals that a lot of cases are hitting this case. Some of these should probably be removed from expression.h; others are legitimate expressions which are (apparently) not fully implemented. If there are any cases landing here which mean a user error, then they should be separate cases, with more descriptive error messages. */ error ("\ GDB does not (yet) know how to evaluate that kind of expression"); } nosideret: return value_from_longest (builtin_type_long, (LONGEST) 1); } /* Evaluate a subexpression of EXP, at index *POS, and return the address of that subexpression. Advance *POS over the subexpression. If the subexpression isn't an lvalue, get an error. NOSIDE may be EVAL_AVOID_SIDE_EFFECTS; then only the type of the result need be correct. */ static struct value * evaluate_subexp_for_address (register struct expression *exp, register int *pos, enum noside noside) { enum exp_opcode op; register int pc; struct symbol *var; pc = (*pos); op = exp->elts[pc].opcode; switch (op) { case UNOP_IND: (*pos)++; return evaluate_subexp (NULL_TYPE, exp, pos, noside); case UNOP_MEMVAL: (*pos) += 3; return value_cast (lookup_pointer_type (exp->elts[pc + 1].type), evaluate_subexp (NULL_TYPE, exp, pos, noside)); case OP_VAR_VALUE: var = exp->elts[pc + 2].symbol; /* C++: The "address" of a reference should yield the address * of the object pointed to. Let value_addr() deal with it. */ if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF) goto default_case; (*pos) += 4; if (noside == EVAL_AVOID_SIDE_EFFECTS) { struct type *type = lookup_pointer_type (SYMBOL_TYPE (var)); enum address_class sym_class = SYMBOL_CLASS (var); if (sym_class == LOC_CONST || sym_class == LOC_CONST_BYTES || sym_class == LOC_REGISTER || sym_class == LOC_REGPARM) error ("Attempt to take address of register or constant."); return value_zero (type, not_lval); } else return locate_var_value (var, block_innermost_frame (exp->elts[pc + 1].block)); default: default_case: if (noside == EVAL_AVOID_SIDE_EFFECTS) { struct value *x = evaluate_subexp (NULL_TYPE, exp, pos, noside); if (VALUE_LVAL (x) == lval_memory) return value_zero (lookup_pointer_type (VALUE_TYPE (x)), not_lval); else error ("Attempt to take address of non-lval"); } return value_addr (evaluate_subexp (NULL_TYPE, exp, pos, noside)); } } /* Evaluate like `evaluate_subexp' except coercing arrays to pointers. When used in contexts where arrays will be coerced anyway, this is equivalent to `evaluate_subexp' but much faster because it avoids actually fetching array contents (perhaps obsolete now that we have VALUE_LAZY). Note that we currently only do the coercion for C expressions, where arrays are zero based and the coercion is correct. For other languages, with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION to decide if coercion is appropriate. */ struct value * evaluate_subexp_with_coercion (register struct expression *exp, register int *pos, enum noside noside) { register enum exp_opcode op; register int pc; struct value *val; struct symbol *var; pc = (*pos); op = exp->elts[pc].opcode; switch (op) { case OP_VAR_VALUE: var = exp->elts[pc + 2].symbol; if (TYPE_CODE (check_typedef (SYMBOL_TYPE (var))) == TYPE_CODE_ARRAY && CAST_IS_CONVERSION) { (*pos) += 4; val = locate_var_value (var, block_innermost_frame (exp->elts[pc + 1].block)); return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (check_typedef (SYMBOL_TYPE (var)))), val); } /* FALLTHROUGH */ default: return evaluate_subexp (NULL_TYPE, exp, pos, noside); } } /* Evaluate a subexpression of EXP, at index *POS, and return a value for the size of that subexpression. Advance *POS over the subexpression. */ static struct value * evaluate_subexp_for_sizeof (register struct expression *exp, register int *pos) { enum exp_opcode op; register int pc; struct type *type; struct value *val; pc = (*pos); op = exp->elts[pc].opcode; switch (op) { /* This case is handled specially so that we avoid creating a value for the result type. If the result type is very big, it's desirable not to create a value unnecessarily. */ case UNOP_IND: (*pos)++; val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); type = check_typedef (VALUE_TYPE (val)); if (TYPE_CODE (type) != TYPE_CODE_PTR && TYPE_CODE (type) != TYPE_CODE_REF && TYPE_CODE (type) != TYPE_CODE_ARRAY) error ("Attempt to take contents of a non-pointer value."); type = check_typedef (TYPE_TARGET_TYPE (type)); return value_from_longest (builtin_type_int, (LONGEST) TYPE_LENGTH (type)); case UNOP_MEMVAL: (*pos) += 3; type = check_typedef (exp->elts[pc + 1].type); return value_from_longest (builtin_type_int, (LONGEST) TYPE_LENGTH (type)); case OP_VAR_VALUE: (*pos) += 4; type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); return value_from_longest (builtin_type_int, (LONGEST) TYPE_LENGTH (type)); default: val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); return value_from_longest (builtin_type_int, (LONGEST) TYPE_LENGTH (VALUE_TYPE (val))); } } /* Parse a type expression in the string [P..P+LENGTH). */ struct type * parse_and_eval_type (char *p, int length) { char *tmp = (char *) alloca (length + 4); struct expression *expr; tmp[0] = '('; memcpy (tmp + 1, p, length); tmp[length + 1] = ')'; tmp[length + 2] = '0'; tmp[length + 3] = '\0'; expr = parse_expression (tmp); if (expr->elts[0].opcode != UNOP_CAST) error ("Internal error in eval_type."); return expr->elts[1].type; } int calc_f77_array_dims (struct type *array_type) { int ndimen = 1; struct type *tmp_type; if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY)) error ("Can't get dimensions for a non-array type"); tmp_type = array_type; while ((tmp_type = TYPE_TARGET_TYPE (tmp_type))) { if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY) ++ndimen; } return ndimen; }