/* Frame unwinder for frames with DWARF Call Frame Information. Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Contributed by Mark Kettenis. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "dwarf2expr.h" #include "dwarf2.h" #include "frame.h" #include "frame-base.h" #include "frame-unwind.h" #include "gdbcore.h" #include "gdbtypes.h" #include "symtab.h" #include "objfiles.h" #include "regcache.h" #include "value.h" #include "gdb_assert.h" #include "gdb_string.h" #include "complaints.h" #include "dwarf2-frame.h" struct comp_unit; /* Call Frame Information (CFI). */ /* Common Information Entry (CIE). */ struct dwarf2_cie { /* Computation Unit for this CIE. */ struct comp_unit *unit; /* Offset into the .debug_frame section where this CIE was found. Used to identify this CIE. */ ULONGEST cie_pointer; /* Constant that is factored out of all advance location instructions. */ ULONGEST code_alignment_factor; /* Constants that is factored out of all offset instructions. */ LONGEST data_alignment_factor; /* Return address column. */ ULONGEST return_address_register; /* Instruction sequence to initialize a register set. */ gdb_byte *initial_instructions; gdb_byte *end; /* Saved augmentation, in case it's needed later. */ char *augmentation; /* Encoding of addresses. */ gdb_byte encoding; /* Target address size in bytes. */ int addr_size; /* True if a 'z' augmentation existed. */ unsigned char saw_z_augmentation; /* True if an 'S' augmentation existed. */ unsigned char signal_frame; /* The version recorded in the CIE. */ unsigned char version; }; struct dwarf2_cie_table { int num_entries; struct dwarf2_cie **entries; }; /* Frame Description Entry (FDE). */ struct dwarf2_fde { /* CIE for this FDE. */ struct dwarf2_cie *cie; /* First location associated with this FDE. */ CORE_ADDR initial_location; /* Number of bytes of program instructions described by this FDE. */ CORE_ADDR address_range; /* Instruction sequence. */ gdb_byte *instructions; gdb_byte *end; /* True if this FDE is read from a .eh_frame instead of a .debug_frame section. */ unsigned char eh_frame_p; }; struct dwarf2_fde_table { int num_entries; struct dwarf2_fde **entries; }; /* A minimal decoding of DWARF2 compilation units. We only decode what's needed to get to the call frame information. */ struct comp_unit { /* Keep the bfd convenient. */ bfd *abfd; struct objfile *objfile; /* Pointer to the .debug_frame section loaded into memory. */ gdb_byte *dwarf_frame_buffer; /* Length of the loaded .debug_frame section. */ bfd_size_type dwarf_frame_size; /* Pointer to the .debug_frame section. */ asection *dwarf_frame_section; /* Base for DW_EH_PE_datarel encodings. */ bfd_vma dbase; /* Base for DW_EH_PE_textrel encodings. */ bfd_vma tbase; }; static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc); static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p); static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding, int ptr_len, gdb_byte *buf, unsigned int *bytes_read_ptr, CORE_ADDR func_base); /* Structure describing a frame state. */ struct dwarf2_frame_state { /* Each register save state can be described in terms of a CFA slot, another register, or a location expression. */ struct dwarf2_frame_state_reg_info { struct dwarf2_frame_state_reg *reg; int num_regs; LONGEST cfa_offset; ULONGEST cfa_reg; enum { CFA_UNSET, CFA_REG_OFFSET, CFA_EXP } cfa_how; gdb_byte *cfa_exp; /* Used to implement DW_CFA_remember_state. */ struct dwarf2_frame_state_reg_info *prev; } regs; /* The PC described by the current frame state. */ CORE_ADDR pc; /* Initial register set from the CIE. Used to implement DW_CFA_restore. */ struct dwarf2_frame_state_reg_info initial; /* The information we care about from the CIE. */ LONGEST data_align; ULONGEST code_align; ULONGEST retaddr_column; /* Flags for known producer quirks. */ /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa and DW_CFA_def_cfa_offset takes a factored offset. */ int armcc_cfa_offsets_sf; /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that the CFA is defined as REG - OFFSET rather than REG + OFFSET. */ int armcc_cfa_offsets_reversed; }; /* Store the length the expression for the CFA in the `cfa_reg' field, which is unused in that case. */ #define cfa_exp_len cfa_reg /* Assert that the register set RS is large enough to store gdbarch_num_regs columns. If necessary, enlarge the register set. */ static void dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs, int num_regs) { size_t size = sizeof (struct dwarf2_frame_state_reg); if (num_regs <= rs->num_regs) return; rs->reg = (struct dwarf2_frame_state_reg *) xrealloc (rs->reg, num_regs * size); /* Initialize newly allocated registers. */ memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size); rs->num_regs = num_regs; } /* Copy the register columns in register set RS into newly allocated memory and return a pointer to this newly created copy. */ static struct dwarf2_frame_state_reg * dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs) { size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg); struct dwarf2_frame_state_reg *reg; reg = (struct dwarf2_frame_state_reg *) xmalloc (size); memcpy (reg, rs->reg, size); return reg; } /* Release the memory allocated to register set RS. */ static void dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs) { if (rs) { dwarf2_frame_state_free_regs (rs->prev); xfree (rs->reg); xfree (rs); } } /* Release the memory allocated to the frame state FS. */ static void dwarf2_frame_state_free (void *p) { struct dwarf2_frame_state *fs = p; dwarf2_frame_state_free_regs (fs->initial.prev); dwarf2_frame_state_free_regs (fs->regs.prev); xfree (fs->initial.reg); xfree (fs->regs.reg); xfree (fs); } /* Helper functions for execute_stack_op. */ static CORE_ADDR read_reg (void *baton, int reg) { struct frame_info *this_frame = (struct frame_info *) baton; struct gdbarch *gdbarch = get_frame_arch (this_frame); int regnum; gdb_byte *buf; regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg); buf = alloca (register_size (gdbarch, regnum)); get_frame_register (this_frame, regnum, buf); /* Convert the register to an integer. This returns a LONGEST rather than a CORE_ADDR, but unpack_pointer does the same thing under the covers, and this makes more sense for non-pointer registers. Maybe read_reg and the associated interfaces should deal with "struct value" instead of CORE_ADDR. */ return unpack_long (register_type (gdbarch, regnum), buf); } static void read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len) { read_memory (addr, buf, len); } static void no_get_frame_base (void *baton, gdb_byte **start, size_t *length) { internal_error (__FILE__, __LINE__, _("Support for DW_OP_fbreg is unimplemented")); } /* Helper function for execute_stack_op. */ static CORE_ADDR no_get_frame_cfa (void *baton) { internal_error (__FILE__, __LINE__, _("Support for DW_OP_call_frame_cfa is unimplemented")); } static CORE_ADDR no_get_tls_address (void *baton, CORE_ADDR offset) { internal_error (__FILE__, __LINE__, _("Support for DW_OP_GNU_push_tls_address is unimplemented")); } /* Execute the required actions for both the DW_CFA_restore and DW_CFA_restore_extended instructions. */ static void dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num, struct dwarf2_frame_state *fs, int eh_frame_p) { ULONGEST reg; gdb_assert (fs->initial.reg); reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p); dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); /* Check if this register was explicitly initialized in the CIE initial instructions. If not, default the rule to UNSPECIFIED. */ if (reg < fs->initial.num_regs) fs->regs.reg[reg] = fs->initial.reg[reg]; else fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED; if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED) complaint (&symfile_complaints, _("\ incomplete CFI data; DW_CFA_restore unspecified\n\ register %s (#%d) at %s"), gdbarch_register_name (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)), gdbarch_dwarf2_reg_to_regnum (gdbarch, reg), paddress (gdbarch, fs->pc)); } static CORE_ADDR execute_stack_op (gdb_byte *exp, ULONGEST len, int addr_size, struct frame_info *this_frame, CORE_ADDR initial, int initial_in_stack_memory) { struct dwarf_expr_context *ctx; CORE_ADDR result; struct cleanup *old_chain; ctx = new_dwarf_expr_context (); old_chain = make_cleanup_free_dwarf_expr_context (ctx); ctx->gdbarch = get_frame_arch (this_frame); ctx->addr_size = addr_size; ctx->baton = this_frame; ctx->read_reg = read_reg; ctx->read_mem = read_mem; ctx->get_frame_base = no_get_frame_base; ctx->get_frame_cfa = no_get_frame_cfa; ctx->get_tls_address = no_get_tls_address; dwarf_expr_push (ctx, initial, initial_in_stack_memory); dwarf_expr_eval (ctx, exp, len); result = dwarf_expr_fetch (ctx, 0); if (ctx->location == DWARF_VALUE_REGISTER) result = read_reg (this_frame, result); else if (ctx->location != DWARF_VALUE_MEMORY) { /* This is actually invalid DWARF, but if we ever do run across it somehow, we might as well support it. So, instead, report it as unimplemented. */ error (_("Not implemented: computing unwound register using explicit value operator")); } do_cleanups (old_chain); return result; } static void execute_cfa_program (struct dwarf2_fde *fde, gdb_byte *insn_ptr, gdb_byte *insn_end, struct frame_info *this_frame, struct dwarf2_frame_state *fs) { int eh_frame_p = fde->eh_frame_p; CORE_ADDR pc = get_frame_pc (this_frame); int bytes_read; struct gdbarch *gdbarch = get_frame_arch (this_frame); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); while (insn_ptr < insn_end && fs->pc <= pc) { gdb_byte insn = *insn_ptr++; ULONGEST utmp, reg; LONGEST offset; if ((insn & 0xc0) == DW_CFA_advance_loc) fs->pc += (insn & 0x3f) * fs->code_align; else if ((insn & 0xc0) == DW_CFA_offset) { reg = insn & 0x3f; reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); offset = utmp * fs->data_align; dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; fs->regs.reg[reg].loc.offset = offset; } else if ((insn & 0xc0) == DW_CFA_restore) { reg = insn & 0x3f; dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p); } else { switch (insn) { case DW_CFA_set_loc: fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding, fde->cie->addr_size, insn_ptr, &bytes_read, fde->initial_location); /* Apply the objfile offset for relocatable objects. */ fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets, SECT_OFF_TEXT (fde->cie->unit->objfile)); insn_ptr += bytes_read; break; case DW_CFA_advance_loc1: utmp = extract_unsigned_integer (insn_ptr, 1, byte_order); fs->pc += utmp * fs->code_align; insn_ptr++; break; case DW_CFA_advance_loc2: utmp = extract_unsigned_integer (insn_ptr, 2, byte_order); fs->pc += utmp * fs->code_align; insn_ptr += 2; break; case DW_CFA_advance_loc4: utmp = extract_unsigned_integer (insn_ptr, 4, byte_order); fs->pc += utmp * fs->code_align; insn_ptr += 4; break; case DW_CFA_offset_extended: insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); offset = utmp * fs->data_align; dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; fs->regs.reg[reg].loc.offset = offset; break; case DW_CFA_restore_extended: insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p); break; case DW_CFA_undefined: insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED; break; case DW_CFA_same_value: insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE; break; case DW_CFA_register: insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p); dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG; fs->regs.reg[reg].loc.reg = utmp; break; case DW_CFA_remember_state: { struct dwarf2_frame_state_reg_info *new_rs; new_rs = XMALLOC (struct dwarf2_frame_state_reg_info); *new_rs = fs->regs; fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs); fs->regs.prev = new_rs; } break; case DW_CFA_restore_state: { struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev; if (old_rs == NULL) { complaint (&symfile_complaints, _("\ bad CFI data; mismatched DW_CFA_restore_state at %s"), paddress (gdbarch, fs->pc)); } else { xfree (fs->regs.reg); fs->regs = *old_rs; xfree (old_rs); } } break; case DW_CFA_def_cfa: insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg); insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); if (fs->armcc_cfa_offsets_sf) utmp *= fs->data_align; fs->regs.cfa_offset = utmp; fs->regs.cfa_how = CFA_REG_OFFSET; break; case DW_CFA_def_cfa_register: insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg); fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, fs->regs.cfa_reg, eh_frame_p); fs->regs.cfa_how = CFA_REG_OFFSET; break; case DW_CFA_def_cfa_offset: insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); if (fs->armcc_cfa_offsets_sf) utmp *= fs->data_align; fs->regs.cfa_offset = utmp; /* cfa_how deliberately not set. */ break; case DW_CFA_nop: break; case DW_CFA_def_cfa_expression: insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_exp_len); fs->regs.cfa_exp = insn_ptr; fs->regs.cfa_how = CFA_EXP; insn_ptr += fs->regs.cfa_exp_len; break; case DW_CFA_expression: insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); fs->regs.reg[reg].loc.exp = insn_ptr; fs->regs.reg[reg].exp_len = utmp; fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP; insn_ptr += utmp; break; case DW_CFA_offset_extended_sf: insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); offset *= fs->data_align; dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; fs->regs.reg[reg].loc.offset = offset; break; case DW_CFA_val_offset: insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); offset = utmp * fs->data_align; fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET; fs->regs.reg[reg].loc.offset = offset; break; case DW_CFA_val_offset_sf: insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); offset *= fs->data_align; fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET; fs->regs.reg[reg].loc.offset = offset; break; case DW_CFA_val_expression: insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); fs->regs.reg[reg].loc.exp = insn_ptr; fs->regs.reg[reg].exp_len = utmp; fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP; insn_ptr += utmp; break; case DW_CFA_def_cfa_sf: insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg); fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, fs->regs.cfa_reg, eh_frame_p); insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); fs->regs.cfa_offset = offset * fs->data_align; fs->regs.cfa_how = CFA_REG_OFFSET; break; case DW_CFA_def_cfa_offset_sf: insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); fs->regs.cfa_offset = offset * fs->data_align; /* cfa_how deliberately not set. */ break; case DW_CFA_GNU_window_save: /* This is SPARC-specific code, and contains hard-coded constants for the register numbering scheme used by GCC. Rather than having a architecture-specific operation that's only ever used by a single architecture, we provide the implementation here. Incidentally that's what GCC does too in its unwinder. */ { int size = register_size (gdbarch, 0); dwarf2_frame_state_alloc_regs (&fs->regs, 32); for (reg = 8; reg < 16; reg++) { fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG; fs->regs.reg[reg].loc.reg = reg + 16; } for (reg = 16; reg < 32; reg++) { fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; fs->regs.reg[reg].loc.offset = (reg - 16) * size; } } break; case DW_CFA_GNU_args_size: /* Ignored. */ insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); break; case DW_CFA_GNU_negative_offset_extended: insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset); offset *= fs->data_align; dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; fs->regs.reg[reg].loc.offset = -offset; break; default: internal_error (__FILE__, __LINE__, _("Unknown CFI encountered.")); } } } /* Don't allow remember/restore between CIE and FDE programs. */ dwarf2_frame_state_free_regs (fs->regs.prev); fs->regs.prev = NULL; } /* Architecture-specific operations. */ /* Per-architecture data key. */ static struct gdbarch_data *dwarf2_frame_data; struct dwarf2_frame_ops { /* Pre-initialize the register state REG for register REGNUM. */ void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *, struct frame_info *); /* Check whether the THIS_FRAME is a signal trampoline. */ int (*signal_frame_p) (struct gdbarch *, struct frame_info *); /* Convert .eh_frame register number to DWARF register number, or adjust .debug_frame register number. */ int (*adjust_regnum) (struct gdbarch *, int, int); }; /* Default architecture-specific register state initialization function. */ static void dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum, struct dwarf2_frame_state_reg *reg, struct frame_info *this_frame) { /* If we have a register that acts as a program counter, mark it as a destination for the return address. If we have a register that serves as the stack pointer, arrange for it to be filled with the call frame address (CFA). The other registers are marked as unspecified. We copy the return address to the program counter, since many parts in GDB assume that it is possible to get the return address by unwinding the program counter register. However, on ISA's with a dedicated return address register, the CFI usually only contains information to unwind that return address register. The reason we're treating the stack pointer special here is because in many cases GCC doesn't emit CFI for the stack pointer and implicitly assumes that it is equal to the CFA. This makes some sense since the DWARF specification (version 3, draft 8, p. 102) says that: "Typically, the CFA is defined to be the value of the stack pointer at the call site in the previous frame (which may be different from its value on entry to the current frame)." However, this isn't true for all platforms supported by GCC (e.g. IBM S/390 and zSeries). Those architectures should provide their own architecture-specific initialization function. */ if (regnum == gdbarch_pc_regnum (gdbarch)) reg->how = DWARF2_FRAME_REG_RA; else if (regnum == gdbarch_sp_regnum (gdbarch)) reg->how = DWARF2_FRAME_REG_CFA; } /* Return a default for the architecture-specific operations. */ static void * dwarf2_frame_init (struct obstack *obstack) { struct dwarf2_frame_ops *ops; ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops); ops->init_reg = dwarf2_frame_default_init_reg; return ops; } /* Set the architecture-specific register state initialization function for GDBARCH to INIT_REG. */ void dwarf2_frame_set_init_reg (struct gdbarch *gdbarch, void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *, struct frame_info *)) { struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); ops->init_reg = init_reg; } /* Pre-initialize the register state REG for register REGNUM. */ static void dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, struct dwarf2_frame_state_reg *reg, struct frame_info *this_frame) { struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); ops->init_reg (gdbarch, regnum, reg, this_frame); } /* Set the architecture-specific signal trampoline recognition function for GDBARCH to SIGNAL_FRAME_P. */ void dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch, int (*signal_frame_p) (struct gdbarch *, struct frame_info *)) { struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); ops->signal_frame_p = signal_frame_p; } /* Query the architecture-specific signal frame recognizer for THIS_FRAME. */ static int dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch, struct frame_info *this_frame) { struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); if (ops->signal_frame_p == NULL) return 0; return ops->signal_frame_p (gdbarch, this_frame); } /* Set the architecture-specific adjustment of .eh_frame and .debug_frame register numbers. */ void dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch, int (*adjust_regnum) (struct gdbarch *, int, int)) { struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); ops->adjust_regnum = adjust_regnum; } /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame register. */ static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p) { struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); if (ops->adjust_regnum == NULL) return regnum; return ops->adjust_regnum (gdbarch, regnum, eh_frame_p); } static void dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs, struct dwarf2_fde *fde) { static const char *arm_idents[] = { "ARM C Compiler, ADS", "Thumb C Compiler, ADS", "ARM C++ Compiler, ADS", "Thumb C++ Compiler, ADS", "ARM/Thumb C/C++ Compiler, RVCT" }; int i; struct symtab *s; s = find_pc_symtab (fs->pc); if (s == NULL || s->producer == NULL) return; for (i = 0; i < ARRAY_SIZE (arm_idents); i++) if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0) { if (fde->cie->version == 1) fs->armcc_cfa_offsets_sf = 1; if (fde->cie->version == 1) fs->armcc_cfa_offsets_reversed = 1; /* The reversed offset problem is present in some compilers using DWARF3, but it was eventually fixed. Check the ARM defined augmentations, which are in the format "armcc" followed by a list of one-character options. The "+" option means this problem is fixed (no quirk needed). If the armcc augmentation is missing, the quirk is needed. */ if (fde->cie->version == 3 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0 || strchr (fde->cie->augmentation + 5, '+') == NULL)) fs->armcc_cfa_offsets_reversed = 1; return; } } struct dwarf2_frame_cache { /* DWARF Call Frame Address. */ CORE_ADDR cfa; /* Set if the return address column was marked as undefined. */ int undefined_retaddr; /* Saved registers, indexed by GDB register number, not by DWARF register number. */ struct dwarf2_frame_state_reg *reg; /* Return address register. */ struct dwarf2_frame_state_reg retaddr_reg; /* Target address size in bytes. */ int addr_size; }; static struct dwarf2_frame_cache * dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache) { struct cleanup *old_chain; struct gdbarch *gdbarch = get_frame_arch (this_frame); const int num_regs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); struct dwarf2_frame_cache *cache; struct dwarf2_frame_state *fs; struct dwarf2_fde *fde; if (*this_cache) return *this_cache; /* Allocate a new cache. */ cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache); cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg); /* Allocate and initialize the frame state. */ fs = XMALLOC (struct dwarf2_frame_state); memset (fs, 0, sizeof (struct dwarf2_frame_state)); old_chain = make_cleanup (dwarf2_frame_state_free, fs); /* Unwind the PC. Note that if the next frame is never supposed to return (i.e. a call to abort), the compiler might optimize away the instruction at its return address. As a result the return address will point at some random instruction, and the CFI for that instruction is probably worthless to us. GCC's unwinder solves this problem by substracting 1 from the return address to get an address in the middle of a presumed call instruction (or the instruction in the associated delay slot). This should only be done for "normal" frames and not for resume-type frames (signal handlers, sentinel frames, dummy frames). The function get_frame_address_in_block does just this. It's not clear how reliable the method is though; there is the potential for the register state pre-call being different to that on return. */ fs->pc = get_frame_address_in_block (this_frame); /* Find the correct FDE. */ fde = dwarf2_frame_find_fde (&fs->pc); gdb_assert (fde != NULL); /* Extract any interesting information from the CIE. */ fs->data_align = fde->cie->data_alignment_factor; fs->code_align = fde->cie->code_alignment_factor; fs->retaddr_column = fde->cie->return_address_register; cache->addr_size = fde->cie->addr_size; /* Check for "quirks" - known bugs in producers. */ dwarf2_frame_find_quirks (fs, fde); /* First decode all the insns in the CIE. */ execute_cfa_program (fde, fde->cie->initial_instructions, fde->cie->end, this_frame, fs); /* Save the initialized register set. */ fs->initial = fs->regs; fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs); /* Then decode the insns in the FDE up to our target PC. */ execute_cfa_program (fde, fde->instructions, fde->end, this_frame, fs); /* Calculate the CFA. */ switch (fs->regs.cfa_how) { case CFA_REG_OFFSET: cache->cfa = read_reg (this_frame, fs->regs.cfa_reg); if (fs->armcc_cfa_offsets_reversed) cache->cfa -= fs->regs.cfa_offset; else cache->cfa += fs->regs.cfa_offset; break; case CFA_EXP: cache->cfa = execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len, cache->addr_size, this_frame, 0, 0); break; default: internal_error (__FILE__, __LINE__, _("Unknown CFA rule.")); } /* Initialize the register state. */ { int regnum; for (regnum = 0; regnum < num_regs; regnum++) dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame); } /* Go through the DWARF2 CFI generated table and save its register location information in the cache. Note that we don't skip the return address column; it's perfectly all right for it to correspond to a real register. If it doesn't correspond to a real register, or if we shouldn't treat it as such, gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside the range [0, gdbarch_num_regs). */ { int column; /* CFI speak for "register number". */ for (column = 0; column < fs->regs.num_regs; column++) { /* Use the GDB register number as the destination index. */ int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column); /* If there's no corresponding GDB register, ignore it. */ if (regnum < 0 || regnum >= num_regs) continue; /* NOTE: cagney/2003-09-05: CFI should specify the disposition of all debug info registers. If it doesn't, complain (but not too loudly). It turns out that GCC assumes that an unspecified register implies "same value" when CFI (draft 7) specifies nothing at all. Such a register could equally be interpreted as "undefined". Also note that this check isn't sufficient; it only checks that all registers in the range [0 .. max column] are specified, and won't detect problems when a debug info register falls outside of the table. We need a way of iterating through all the valid DWARF2 register numbers. */ if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED) { if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED) complaint (&symfile_complaints, _("\ incomplete CFI data; unspecified registers (e.g., %s) at %s"), gdbarch_register_name (gdbarch, regnum), paddress (gdbarch, fs->pc)); } else cache->reg[regnum] = fs->regs.reg[column]; } } /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */ { int regnum; for (regnum = 0; regnum < num_regs; regnum++) { if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET) { struct dwarf2_frame_state_reg *retaddr_reg = &fs->regs.reg[fs->retaddr_column]; /* It seems rather bizarre to specify an "empty" column as the return adress column. However, this is exactly what GCC does on some targets. It turns out that GCC assumes that the return address can be found in the register corresponding to the return address column. Incidentally, that's how we should treat a return address column specifying "same value" too. */ if (fs->retaddr_column < fs->regs.num_regs && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE) { if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA) cache->reg[regnum] = *retaddr_reg; else cache->retaddr_reg = *retaddr_reg; } else { if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA) { cache->reg[regnum].loc.reg = fs->retaddr_column; cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG; } else { cache->retaddr_reg.loc.reg = fs->retaddr_column; cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG; } } } } } if (fs->retaddr_column < fs->regs.num_regs && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED) cache->undefined_retaddr = 1; do_cleanups (old_chain); *this_cache = cache; return cache; } static void dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache, struct frame_id *this_id) { struct dwarf2_frame_cache *cache = dwarf2_frame_cache (this_frame, this_cache); if (cache->undefined_retaddr) return; (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame)); } static struct value * dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache, int regnum) { struct gdbarch *gdbarch = get_frame_arch (this_frame); struct dwarf2_frame_cache *cache = dwarf2_frame_cache (this_frame, this_cache); CORE_ADDR addr; int realnum; switch (cache->reg[regnum].how) { case DWARF2_FRAME_REG_UNDEFINED: /* If CFI explicitly specified that the value isn't defined, mark it as optimized away; the value isn't available. */ return frame_unwind_got_optimized (this_frame, regnum); case DWARF2_FRAME_REG_SAVED_OFFSET: addr = cache->cfa + cache->reg[regnum].loc.offset; return frame_unwind_got_memory (this_frame, regnum, addr); case DWARF2_FRAME_REG_SAVED_REG: realnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg); return frame_unwind_got_register (this_frame, regnum, realnum); case DWARF2_FRAME_REG_SAVED_EXP: addr = execute_stack_op (cache->reg[regnum].loc.exp, cache->reg[regnum].exp_len, cache->addr_size, this_frame, cache->cfa, 1); return frame_unwind_got_memory (this_frame, regnum, addr); case DWARF2_FRAME_REG_SAVED_VAL_OFFSET: addr = cache->cfa + cache->reg[regnum].loc.offset; return frame_unwind_got_constant (this_frame, regnum, addr); case DWARF2_FRAME_REG_SAVED_VAL_EXP: addr = execute_stack_op (cache->reg[regnum].loc.exp, cache->reg[regnum].exp_len, cache->addr_size, this_frame, cache->cfa, 1); return frame_unwind_got_constant (this_frame, regnum, addr); case DWARF2_FRAME_REG_UNSPECIFIED: /* GCC, in its infinite wisdom decided to not provide unwind information for registers that are "same value". Since DWARF2 (3 draft 7) doesn't define such behavior, said registers are actually undefined (which is different to CFI "undefined"). Code above issues a complaint about this. Here just fudge the books, assume GCC, and that the value is more inner on the stack. */ return frame_unwind_got_register (this_frame, regnum, regnum); case DWARF2_FRAME_REG_SAME_VALUE: return frame_unwind_got_register (this_frame, regnum, regnum); case DWARF2_FRAME_REG_CFA: return frame_unwind_got_address (this_frame, regnum, cache->cfa); case DWARF2_FRAME_REG_CFA_OFFSET: addr = cache->cfa + cache->reg[regnum].loc.offset; return frame_unwind_got_address (this_frame, regnum, addr); case DWARF2_FRAME_REG_RA_OFFSET: addr = cache->reg[regnum].loc.offset; regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->retaddr_reg.loc.reg); addr += get_frame_register_unsigned (this_frame, regnum); return frame_unwind_got_address (this_frame, regnum, addr); case DWARF2_FRAME_REG_FN: return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum); default: internal_error (__FILE__, __LINE__, _("Unknown register rule.")); } } static int dwarf2_frame_sniffer (const struct frame_unwind *self, struct frame_info *this_frame, void **this_cache) { /* Grab an address that is guarenteed to reside somewhere within the function. get_frame_pc(), with a no-return next function, can end up returning something past the end of this function's body. If the frame we're sniffing for is a signal frame whose start address is placed on the stack by the OS, its FDE must extend one byte before its start address or we could potentially select the FDE of the previous function. */ CORE_ADDR block_addr = get_frame_address_in_block (this_frame); struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr); if (!fde) return 0; /* On some targets, signal trampolines may have unwind information. We need to recognize them so that we set the frame type correctly. */ if (fde->cie->signal_frame || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame), this_frame)) return self->type == SIGTRAMP_FRAME; return self->type != SIGTRAMP_FRAME; } static const struct frame_unwind dwarf2_frame_unwind = { NORMAL_FRAME, dwarf2_frame_this_id, dwarf2_frame_prev_register, NULL, dwarf2_frame_sniffer }; static const struct frame_unwind dwarf2_signal_frame_unwind = { SIGTRAMP_FRAME, dwarf2_frame_this_id, dwarf2_frame_prev_register, NULL, dwarf2_frame_sniffer }; /* Append the DWARF-2 frame unwinders to GDBARCH's list. */ void dwarf2_append_unwinders (struct gdbarch *gdbarch) { frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind); frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind); } /* There is no explicitly defined relationship between the CFA and the location of frame's local variables and arguments/parameters. Therefore, frame base methods on this page should probably only be used as a last resort, just to avoid printing total garbage as a response to the "info frame" command. */ static CORE_ADDR dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache) { struct dwarf2_frame_cache *cache = dwarf2_frame_cache (this_frame, this_cache); return cache->cfa; } static const struct frame_base dwarf2_frame_base = { &dwarf2_frame_unwind, dwarf2_frame_base_address, dwarf2_frame_base_address, dwarf2_frame_base_address }; const struct frame_base * dwarf2_frame_base_sniffer (struct frame_info *this_frame) { CORE_ADDR block_addr = get_frame_address_in_block (this_frame); if (dwarf2_frame_find_fde (&block_addr)) return &dwarf2_frame_base; return NULL; } /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from the DWARF unwinder. This is used to implement DW_OP_call_frame_cfa. */ CORE_ADDR dwarf2_frame_cfa (struct frame_info *this_frame) { while (get_frame_type (this_frame) == INLINE_FRAME) this_frame = get_prev_frame (this_frame); /* This restriction could be lifted if other unwinders are known to compute the frame base in a way compatible with the DWARF unwinder. */ if (! frame_unwinder_is (this_frame, &dwarf2_frame_unwind)) error (_("can't compute CFA for this frame")); return get_frame_base (this_frame); } const struct objfile_data *dwarf2_frame_objfile_data; static unsigned int read_1_byte (bfd *abfd, gdb_byte *buf) { return bfd_get_8 (abfd, buf); } static unsigned int read_4_bytes (bfd *abfd, gdb_byte *buf) { return bfd_get_32 (abfd, buf); } static ULONGEST read_8_bytes (bfd *abfd, gdb_byte *buf) { return bfd_get_64 (abfd, buf); } static ULONGEST read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr) { ULONGEST result; unsigned int num_read; int shift; gdb_byte byte; result = 0; shift = 0; num_read = 0; do { byte = bfd_get_8 (abfd, (bfd_byte *) buf); buf++; num_read++; result |= ((byte & 0x7f) << shift); shift += 7; } while (byte & 0x80); *bytes_read_ptr = num_read; return result; } static LONGEST read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr) { LONGEST result; int shift; unsigned int num_read; gdb_byte byte; result = 0; shift = 0; num_read = 0; do { byte = bfd_get_8 (abfd, (bfd_byte *) buf); buf++; num_read++; result |= ((byte & 0x7f) << shift); shift += 7; } while (byte & 0x80); if (shift < 8 * sizeof (result) && (byte & 0x40)) result |= -(((LONGEST)1) << shift); *bytes_read_ptr = num_read; return result; } static ULONGEST read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr) { LONGEST result; result = bfd_get_32 (abfd, buf); if (result == 0xffffffff) { result = bfd_get_64 (abfd, buf + 4); *bytes_read_ptr = 12; } else *bytes_read_ptr = 4; return result; } /* Pointer encoding helper functions. */ /* GCC supports exception handling based on DWARF2 CFI. However, for technical reasons, it encodes addresses in its FDE's in a different way. Several "pointer encodings" are supported. The encoding that's used for a particular FDE is determined by the 'R' augmentation in the associated CIE. The argument of this augmentation is a single byte. The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether the address is signed or unsigned. Bits 4, 5 and 6 encode how the address should be interpreted (absolute, relative to the current position in the FDE, ...). Bit 7, indicates that the address should be dereferenced. */ static gdb_byte encoding_for_size (unsigned int size) { switch (size) { case 2: return DW_EH_PE_udata2; case 4: return DW_EH_PE_udata4; case 8: return DW_EH_PE_udata8; default: internal_error (__FILE__, __LINE__, _("Unsupported address size")); } } static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding, int ptr_len, gdb_byte *buf, unsigned int *bytes_read_ptr, CORE_ADDR func_base) { ptrdiff_t offset; CORE_ADDR base; /* GCC currently doesn't generate DW_EH_PE_indirect encodings for FDE's. */ if (encoding & DW_EH_PE_indirect) internal_error (__FILE__, __LINE__, _("Unsupported encoding: DW_EH_PE_indirect")); *bytes_read_ptr = 0; switch (encoding & 0x70) { case DW_EH_PE_absptr: base = 0; break; case DW_EH_PE_pcrel: base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section); base += (buf - unit->dwarf_frame_buffer); break; case DW_EH_PE_datarel: base = unit->dbase; break; case DW_EH_PE_textrel: base = unit->tbase; break; case DW_EH_PE_funcrel: base = func_base; break; case DW_EH_PE_aligned: base = 0; offset = buf - unit->dwarf_frame_buffer; if ((offset % ptr_len) != 0) { *bytes_read_ptr = ptr_len - (offset % ptr_len); buf += *bytes_read_ptr; } break; default: internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding")); } if ((encoding & 0x07) == 0x00) { encoding |= encoding_for_size (ptr_len); if (bfd_get_sign_extend_vma (unit->abfd)) encoding |= DW_EH_PE_signed; } switch (encoding & 0x0f) { case DW_EH_PE_uleb128: { ULONGEST value; gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7; *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf; return base + value; } case DW_EH_PE_udata2: *bytes_read_ptr += 2; return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf)); case DW_EH_PE_udata4: *bytes_read_ptr += 4; return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf)); case DW_EH_PE_udata8: *bytes_read_ptr += 8; return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf)); case DW_EH_PE_sleb128: { LONGEST value; gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7; *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf; return base + value; } case DW_EH_PE_sdata2: *bytes_read_ptr += 2; return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf)); case DW_EH_PE_sdata4: *bytes_read_ptr += 4; return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf)); case DW_EH_PE_sdata8: *bytes_read_ptr += 8; return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf)); default: internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding")); } } static int bsearch_cie_cmp (const void *key, const void *element) { ULONGEST cie_pointer = *(ULONGEST *) key; struct dwarf2_cie *cie = *(struct dwarf2_cie **) element; if (cie_pointer == cie->cie_pointer) return 0; return (cie_pointer < cie->cie_pointer) ? -1 : 1; } /* Find CIE with the given CIE_POINTER in CIE_TABLE. */ static struct dwarf2_cie * find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer) { struct dwarf2_cie **p_cie; /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to bsearch be non-NULL. */ if (cie_table->entries == NULL) { gdb_assert (cie_table->num_entries == 0); return NULL; } p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries, sizeof (cie_table->entries[0]), bsearch_cie_cmp); if (p_cie != NULL) return *p_cie; return NULL; } /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */ static void add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie) { const int n = cie_table->num_entries; gdb_assert (n < 1 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer); cie_table->entries = xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0])); cie_table->entries[n] = cie; cie_table->num_entries = n + 1; } static int bsearch_fde_cmp (const void *key, const void *element) { CORE_ADDR seek_pc = *(CORE_ADDR *) key; struct dwarf2_fde *fde = *(struct dwarf2_fde **) element; if (seek_pc < fde->initial_location) return -1; if (seek_pc < fde->initial_location + fde->address_range) return 0; return 1; } /* Find the FDE for *PC. Return a pointer to the FDE, and store the inital location associated with it into *PC. */ static struct dwarf2_fde * dwarf2_frame_find_fde (CORE_ADDR *pc) { struct objfile *objfile; ALL_OBJFILES (objfile) { struct dwarf2_fde_table *fde_table; struct dwarf2_fde **p_fde; CORE_ADDR offset; CORE_ADDR seek_pc; fde_table = objfile_data (objfile, dwarf2_frame_objfile_data); if (fde_table == NULL) continue; gdb_assert (objfile->section_offsets); offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); gdb_assert (fde_table->num_entries > 0); if (*pc < offset + fde_table->entries[0]->initial_location) continue; seek_pc = *pc - offset; p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries, sizeof (fde_table->entries[0]), bsearch_fde_cmp); if (p_fde != NULL) { *pc = (*p_fde)->initial_location + offset; return *p_fde; } } return NULL; } /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */ static void add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde) { if (fde->address_range == 0) /* Discard useless FDEs. */ return; fde_table->num_entries += 1; fde_table->entries = xrealloc (fde_table->entries, fde_table->num_entries * sizeof (fde_table->entries[0])); fde_table->entries[fde_table->num_entries - 1] = fde; } #ifdef CC_HAS_LONG_LONG #define DW64_CIE_ID 0xffffffffffffffffULL #else #define DW64_CIE_ID ~0 #endif static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p, struct dwarf2_cie_table *cie_table, struct dwarf2_fde_table *fde_table); /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise the next byte to be processed. */ static gdb_byte * decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p, struct dwarf2_cie_table *cie_table, struct dwarf2_fde_table *fde_table) { struct gdbarch *gdbarch = get_objfile_arch (unit->objfile); gdb_byte *buf, *end; LONGEST length; unsigned int bytes_read; int dwarf64_p; ULONGEST cie_id; ULONGEST cie_pointer; buf = start; length = read_initial_length (unit->abfd, buf, &bytes_read); buf += bytes_read; end = buf + length; /* Are we still within the section? */ if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size) return NULL; if (length == 0) return end; /* Distinguish between 32 and 64-bit encoded frame info. */ dwarf64_p = (bytes_read == 12); /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */ if (eh_frame_p) cie_id = 0; else if (dwarf64_p) cie_id = DW64_CIE_ID; else cie_id = DW_CIE_ID; if (dwarf64_p) { cie_pointer = read_8_bytes (unit->abfd, buf); buf += 8; } else { cie_pointer = read_4_bytes (unit->abfd, buf); buf += 4; } if (cie_pointer == cie_id) { /* This is a CIE. */ struct dwarf2_cie *cie; char *augmentation; unsigned int cie_version; /* Record the offset into the .debug_frame section of this CIE. */ cie_pointer = start - unit->dwarf_frame_buffer; /* Check whether we've already read it. */ if (find_cie (cie_table, cie_pointer)) return end; cie = (struct dwarf2_cie *) obstack_alloc (&unit->objfile->objfile_obstack, sizeof (struct dwarf2_cie)); cie->initial_instructions = NULL; cie->cie_pointer = cie_pointer; /* The encoding for FDE's in a normal .debug_frame section depends on the target address size. */ cie->encoding = DW_EH_PE_absptr; /* The target address size. For .eh_frame FDEs this is considered equal to the size of a target pointer. For .dwarf_frame FDEs, this is supposed to be the target address size from the associated CU header. FIXME: We do not have a good way to determine the latter. Always use the target pointer size for now. */ cie->addr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; /* We'll determine the final value later, but we need to initialize it conservatively. */ cie->signal_frame = 0; /* Check version number. */ cie_version = read_1_byte (unit->abfd, buf); if (cie_version != 1 && cie_version != 3) return NULL; cie->version = cie_version; buf += 1; /* Interpret the interesting bits of the augmentation. */ cie->augmentation = augmentation = (char *) buf; buf += (strlen (augmentation) + 1); /* Ignore armcc augmentations. We only use them for quirks, and that doesn't happen until later. */ if (strncmp (augmentation, "armcc", 5) == 0) augmentation += strlen (augmentation); /* The GCC 2.x "eh" augmentation has a pointer immediately following the augmentation string, so it must be handled first. */ if (augmentation[0] == 'e' && augmentation[1] == 'h') { /* Skip. */ buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; augmentation += 2; } cie->code_alignment_factor = read_unsigned_leb128 (unit->abfd, buf, &bytes_read); buf += bytes_read; cie->data_alignment_factor = read_signed_leb128 (unit->abfd, buf, &bytes_read); buf += bytes_read; if (cie_version == 1) { cie->return_address_register = read_1_byte (unit->abfd, buf); bytes_read = 1; } else cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf, &bytes_read); cie->return_address_register = dwarf2_frame_adjust_regnum (gdbarch, cie->return_address_register, eh_frame_p); buf += bytes_read; cie->saw_z_augmentation = (*augmentation == 'z'); if (cie->saw_z_augmentation) { ULONGEST length; length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read); buf += bytes_read; if (buf > end) return NULL; cie->initial_instructions = buf + length; augmentation++; } while (*augmentation) { /* "L" indicates a byte showing how the LSDA pointer is encoded. */ if (*augmentation == 'L') { /* Skip. */ buf++; augmentation++; } /* "R" indicates a byte indicating how FDE addresses are encoded. */ else if (*augmentation == 'R') { cie->encoding = *buf++; augmentation++; } /* "P" indicates a personality routine in the CIE augmentation. */ else if (*augmentation == 'P') { /* Skip. Avoid indirection since we throw away the result. */ gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect; read_encoded_value (unit, encoding, cie->addr_size, buf, &bytes_read, 0); buf += bytes_read; augmentation++; } /* "S" indicates a signal frame, such that the return address must not be decremented to locate the call frame info for the previous frame; it might even be the first instruction of a function, so decrementing it would take us to a different function. */ else if (*augmentation == 'S') { cie->signal_frame = 1; augmentation++; } /* Otherwise we have an unknown augmentation. Assume that either there is no augmentation data, or we saw a 'z' prefix. */ else { if (cie->initial_instructions) buf = cie->initial_instructions; break; } } cie->initial_instructions = buf; cie->end = end; cie->unit = unit; add_cie (cie_table, cie); } else { /* This is a FDE. */ struct dwarf2_fde *fde; /* In an .eh_frame section, the CIE pointer is the delta between the address within the FDE where the CIE pointer is stored and the address of the CIE. Convert it to an offset into the .eh_frame section. */ if (eh_frame_p) { cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer; cie_pointer -= (dwarf64_p ? 8 : 4); } /* In either case, validate the result is still within the section. */ if (cie_pointer >= unit->dwarf_frame_size) return NULL; fde = (struct dwarf2_fde *) obstack_alloc (&unit->objfile->objfile_obstack, sizeof (struct dwarf2_fde)); fde->cie = find_cie (cie_table, cie_pointer); if (fde->cie == NULL) { decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer, eh_frame_p, cie_table, fde_table); fde->cie = find_cie (cie_table, cie_pointer); } gdb_assert (fde->cie != NULL); fde->initial_location = read_encoded_value (unit, fde->cie->encoding, fde->cie->addr_size, buf, &bytes_read, 0); buf += bytes_read; fde->address_range = read_encoded_value (unit, fde->cie->encoding & 0x0f, fde->cie->addr_size, buf, &bytes_read, 0); buf += bytes_read; /* A 'z' augmentation in the CIE implies the presence of an augmentation field in the FDE as well. The only thing known to be in here at present is the LSDA entry for EH. So we can skip the whole thing. */ if (fde->cie->saw_z_augmentation) { ULONGEST length; length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read); buf += bytes_read + length; if (buf > end) return NULL; } fde->instructions = buf; fde->end = end; fde->eh_frame_p = eh_frame_p; add_fde (fde_table, fde); } return end; } /* Read a CIE or FDE in BUF and decode it. */ static gdb_byte * decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p, struct dwarf2_cie_table *cie_table, struct dwarf2_fde_table *fde_table) { enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE; gdb_byte *ret; const char *msg; ptrdiff_t start_offset; while (1) { ret = decode_frame_entry_1 (unit, start, eh_frame_p, cie_table, fde_table); if (ret != NULL) break; /* We have corrupt input data of some form. */ /* ??? Try, weakly, to work around compiler/assembler/linker bugs and mismatches wrt padding and alignment of debug sections. */ /* Note that there is no requirement in the standard for any alignment at all in the frame unwind sections. Testing for alignment before trying to interpret data would be incorrect. However, GCC traditionally arranged for frame sections to be sized such that the FDE length and CIE fields happen to be aligned (in theory, for performance). This, unfortunately, was done with .align directives, which had the side effect of forcing the section to be aligned by the linker. This becomes a problem when you have some other producer that creates frame sections that are not as strictly aligned. That produces a hole in the frame info that gets filled by the linker with zeros. The GCC behaviour is arguably a bug, but it's effectively now part of the ABI, so we're now stuck with it, at least at the object file level. A smart linker may decide, in the process of compressing duplicate CIE information, that it can rewrite the entire output section without this extra padding. */ start_offset = start - unit->dwarf_frame_buffer; if (workaround < ALIGN4 && (start_offset & 3) != 0) { start += 4 - (start_offset & 3); workaround = ALIGN4; continue; } if (workaround < ALIGN8 && (start_offset & 7) != 0) { start += 8 - (start_offset & 7); workaround = ALIGN8; continue; } /* Nothing left to try. Arrange to return as if we've consumed the entire input section. Hopefully we'll get valid info from the other of .debug_frame/.eh_frame. */ workaround = FAIL; ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size; break; } switch (workaround) { case NONE: break; case ALIGN4: complaint (&symfile_complaints, _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"), unit->dwarf_frame_section->owner->filename, unit->dwarf_frame_section->name); break; case ALIGN8: complaint (&symfile_complaints, _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"), unit->dwarf_frame_section->owner->filename, unit->dwarf_frame_section->name); break; default: complaint (&symfile_complaints, _("Corrupt data in %s:%s"), unit->dwarf_frame_section->owner->filename, unit->dwarf_frame_section->name); break; } return ret; } /* Imported from dwarf2read.c. */ extern void dwarf2_get_section_info (struct objfile *, const char *, asection **, gdb_byte **, bfd_size_type *); static int qsort_fde_cmp (const void *a, const void *b) { struct dwarf2_fde *aa = *(struct dwarf2_fde **)a; struct dwarf2_fde *bb = *(struct dwarf2_fde **)b; if (aa->initial_location == bb->initial_location) { if (aa->address_range != bb->address_range && aa->eh_frame_p == 0 && bb->eh_frame_p == 0) /* Linker bug, e.g. gold/10400. Work around it by keeping stable sort order. */ return (a < b) ? -1 : 1; else /* Put eh_frame entries after debug_frame ones. */ return aa->eh_frame_p - bb->eh_frame_p; } return (aa->initial_location < bb->initial_location) ? -1 : 1; } void dwarf2_build_frame_info (struct objfile *objfile) { struct comp_unit *unit; gdb_byte *frame_ptr; struct dwarf2_cie_table cie_table; struct dwarf2_fde_table fde_table; cie_table.num_entries = 0; cie_table.entries = NULL; fde_table.num_entries = 0; fde_table.entries = NULL; /* Build a minimal decoding of the DWARF2 compilation unit. */ unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack, sizeof (struct comp_unit)); unit->abfd = objfile->obfd; unit->objfile = objfile; unit->dbase = 0; unit->tbase = 0; dwarf2_get_section_info (objfile, ".eh_frame", &unit->dwarf_frame_section, &unit->dwarf_frame_buffer, &unit->dwarf_frame_size); if (unit->dwarf_frame_size) { asection *got, *txt; /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base that is used for the i386/amd64 target, which currently is the only target in GCC that supports/uses the DW_EH_PE_datarel encoding. */ got = bfd_get_section_by_name (unit->abfd, ".got"); if (got) unit->dbase = got->vma; /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64 so far. */ txt = bfd_get_section_by_name (unit->abfd, ".text"); if (txt) unit->tbase = txt->vma; frame_ptr = unit->dwarf_frame_buffer; while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size) frame_ptr = decode_frame_entry (unit, frame_ptr, 1, &cie_table, &fde_table); if (cie_table.num_entries != 0) { /* Reinit cie_table: debug_frame has different CIEs. */ xfree (cie_table.entries); cie_table.num_entries = 0; cie_table.entries = NULL; } } dwarf2_get_section_info (objfile, ".debug_frame", &unit->dwarf_frame_section, &unit->dwarf_frame_buffer, &unit->dwarf_frame_size); if (unit->dwarf_frame_size) { frame_ptr = unit->dwarf_frame_buffer; while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size) frame_ptr = decode_frame_entry (unit, frame_ptr, 0, &cie_table, &fde_table); } /* Discard the cie_table, it is no longer needed. */ if (cie_table.num_entries != 0) { xfree (cie_table.entries); cie_table.entries = NULL; /* Paranoia. */ cie_table.num_entries = 0; /* Paranoia. */ } if (fde_table.num_entries != 0) { struct dwarf2_fde_table *fde_table2; struct dwarf2_fde *fde_prev = NULL; struct dwarf2_fde *first_non_zero_fde = NULL; int i; /* Prepare FDE table for lookups. */ qsort (fde_table.entries, fde_table.num_entries, sizeof (fde_table.entries[0]), qsort_fde_cmp); /* Copy fde_table to obstack: it is needed at runtime. */ fde_table2 = (struct dwarf2_fde_table *) obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2)); fde_table2->num_entries = 0; /* Check for leftovers from --gc-sections. The GNU linker sets the relevant symbols to zero, but doesn't zero the FDE *end* ranges because there's no relocation there. It's (offset, length), not (start, end). On targets where address zero is just another valid address this can be a problem, since the FDEs appear to be non-empty in the output --- we could pick out the wrong FDE. To work around this, when overlaps are detected, we prefer FDEs that do not start at zero. Start by finding the first FDE with non-zero start. Below we'll discard all FDEs that start at zero and overlap this one. */ for (i = 0; i < fde_table.num_entries; i++) { struct dwarf2_fde *fde = fde_table.entries[i]; if (fde->initial_location != 0) { first_non_zero_fde = fde; break; } } /* Since we'll be doing bsearch, squeeze out identical (except for eh_frame_p) fde entries so bsearch result is predictable. Also discard leftovers from --gc-sections. */ for (i = 0; i < fde_table.num_entries; i++) { struct dwarf2_fde *fde = fde_table.entries[i]; if (fde->initial_location == 0 && first_non_zero_fde != NULL && (first_non_zero_fde->initial_location < fde->initial_location + fde->address_range)) continue; if (fde_prev != NULL && fde_prev->initial_location == fde->initial_location) continue; obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i], sizeof (fde_table.entries[0])); ++fde_table2->num_entries; fde_prev = fde; } fde_table2->entries = obstack_finish (&objfile->objfile_obstack); set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2); /* Discard the original fde_table. */ xfree (fde_table.entries); } } /* Provide a prototype to silence -Wmissing-prototypes. */ void _initialize_dwarf2_frame (void); void _initialize_dwarf2_frame (void) { dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init); dwarf2_frame_objfile_data = register_objfile_data (); }