_dnl__ -*- Texinfo -*- _dnl__ Copyright (c) 1990 1991 1992 Free Software Foundation, Inc. _dnl__ This file is part of the source for the GDB manual. _dnl__ M4 FRAGMENT $Id$ _dnl__ This text diverted to "Remote Debugging" section in general case; _dnl__ however, if we're doing a manual specifically for one of these, it _dnl__ belongs up front (in "Getting In and Out" chapter). _if__(_I960__) _if__(!_GENERIC__) @node i960-Nindy Remote, EB29K Remote, Mode Options, Starting _GDBN__ _fi__(!_GENERIC__) _if__(_GENERIC__) @node i960-Nindy Remote, EB29K Remote, Remote, Remote _fi__(_GENERIC__) @subsection _GDBN__ with a Remote i960 (Nindy) @cindex Nindy @cindex i960 @dfn{Nindy} is a ROM Monitor program for Intel 960 target systems. When _GDBN__ is configured to control a remote Intel 960 using Nindy, you can tell _GDBN__ how to connect to the 960 in several ways: @itemize @bullet @item Through command line options specifying serial port, version of the Nindy protocol, and communications speed; @item By responding to a prompt on startup; @item By using the @code{target} command at any point during your _GDBN__ session. @xref{Target Commands, ,Commands for Managing Targets}. @end itemize @menu * Nindy Startup:: Startup with Nindy * Nindy Options:: Options for Nindy * Nindy reset:: Nindy Reset Command @end menu @node Nindy Startup, Nindy Options, i960-Nindy Remote, i960-Nindy Remote @subsubsection Startup with Nindy If you simply start @code{_GDBN__} without using any command-line options, you are prompted for what serial port to use, @emph{before} you reach the ordinary _GDBN__ prompt: @example Attach /dev/ttyNN -- specify NN, or "quit" to quit: @end example @noindent Respond to the prompt with whatever suffix (after @samp{/dev/tty}) identifies the serial port you want to use. You can, if you choose, simply start up with no Nindy connection by responding to the prompt with an empty line. If you do this, and later wish to attach to Nindy, use @code{target} (@pxref{Target Commands, ,Commands for Managing Targets}). @node Nindy Options, Nindy reset, Nindy Startup, i960-Nindy Remote @subsubsection Options for Nindy These are the startup options for beginning your _GDBN__ session with a Nindy-960 board attached: @table @code @item -r @var{port} Specify the serial port name of a serial interface to be used to connect to the target system. This option is only available when _GDBN__ is configured for the Intel 960 target architecture. You may specify @var{port} as any of: a full pathname (e.g. @samp{-r /dev/ttya}), a device name in @file{/dev} (e.g. @samp{-r ttya}), or simply the unique suffix for a specific @code{tty} (e.g. @samp{-r a}). @item -O (An uppercase letter ``O'', not a zero.) Specify that _GDBN__ should use the ``old'' Nindy monitor protocol to connect to the target system. This option is only available when _GDBN__ is configured for the Intel 960 target architecture. @quotation @emph{Warning:} if you specify @samp{-O}, but are actually trying to connect to a target system that expects the newer protocol, the connection will fail, appearing to be a speed mismatch. _GDBN__ will repeatedly attempt to reconnect at several different line speeds. You can abort this process with an interrupt. @end quotation @item -brk Specify that _GDBN__ should first send a @code{BREAK} signal to the target system, in an attempt to reset it, before connecting to a Nindy target. @quotation @emph{Warning:} Many target systems do not have the hardware that this requires; it only works with a few boards. @end quotation @end table The standard @samp{-b} option controls the line speed used on the serial port. @c @group @node Nindy reset, , Nindy Options, i960-Nindy Remote @subsubsection Nindy Reset Command @table @code @item reset @kindex reset For a Nindy target, this command sends a ``break'' to the remote target system; this is only useful if the target has been equipped with a circuit to perform a hard reset (or some other interesting action) when a break is detected. @end table @c @end group _fi__(_I960__) _if__(_AMD29K__) _if__(!_GENERIC__) @node EB29K Remote, VxWorks Remote, i960-Nindy Remote, Starting _GDBN__ _fi__(!_GENERIC__) _if__(_GENERIC__) @node EB29K Remote, VxWorks Remote, i960-Nindy Remote, Remote _fi__(_GENERIC__) @subsection _GDBN__ with a Remote EB29K @cindex EB29K board @cindex running 29K programs To use _GDBN__ from a Unix system to run programs on AMD's EB29K board in a PC, you must first connect a serial cable between the PC and a serial port on the Unix system. In the following, we assume you've hooked the cable between the PC's @file{COM1} port and @file{/dev/ttya} on the Unix system. @menu * Comms (EB29K):: Communications Setup * _GDBP__-EB29K:: EB29K cross-debugging * Remote Log:: Remote Log @end menu @node Comms (EB29K), _GDBP__-EB29K, EB29K Remote, EB29K Remote @subsubsection Communications Setup The next step is to set up the PC's port, by doing something like the following in DOS on the PC: _0__@example C:\> MODE com1:9600,n,8,1,none _1__@end example @noindent This example---run on an MS DOS 4.0 system---sets the PC port to 9600 bps, no parity, eight data bits, one stop bit, and no ``retry'' action; you must match the communications parameters when establishing the Unix end of the connection as well. @c FIXME: Who knows what this "no retry action" crud from the DOS manual may @c mean? It's optional; leave it out? ---pesch@cygnus.com, 25feb91 To give control of the PC to the Unix side of the serial line, type the following at the DOS console: _0__@example C:\> CTTY com1 _1__@end example @noindent (Later, if you wish to return control to the DOS console, you can use the command @code{CTTY con}---but you must send it over the device that had control, in our example over the @file{COM1} serial line). From the Unix host, use a communications program such as @code{tip} or @code{cu} to communicate with the PC; for example, @example cu -s 9600 -l /dev/ttya @end example @noindent The @code{cu} options shown specify, respectively, the linespeed and the serial port to use. If you use @code{tip} instead, your command line may look something like the following: @example tip -9600 /dev/ttya @end example @noindent Your system may define a different name where our example uses @file{/dev/ttya} as the argument to @code{tip}. The communications parameters, including which port to use, are associated with the @code{tip} argument in the ``remote'' descriptions file---normally the system table @file{/etc/remote}. @c FIXME: What if anything needs doing to match the "n,8,1,none" part of @c the DOS side's comms setup? cu can support -o (odd @c parity), -e (even parity)---apparently no settings for no parity or @c for character size. Taken from stty maybe...? John points out tip @c can set these as internal variables, eg ~s parity=none; man stty @c suggests that it *might* work to stty these options with stdin or @c stdout redirected... ---pesch@cygnus.com, 25feb91 @kindex EBMON Using the @code{tip} or @code{cu} connection, change the DOS working directory to the directory containing a copy of your 29K program, then start the PC program @code{EBMON} (an EB29K control program supplied with your board by AMD). You should see an initial display from @code{EBMON} similar to the one that follows, ending with the @code{EBMON} prompt @samp{#}--- _0__@example C:\> G: G:\> CD \usr\joe\work29k G:\USR\JOE\WORK29K> EBMON Am29000 PC Coprocessor Board Monitor, version 3.0-18 Copyright 1990 Advanced Micro Devices, Inc. Written by Gibbons and Associates, Inc. Enter '?' or 'H' for help PC Coprocessor Type = EB29K I/O Base = 0x208 Memory Base = 0xd0000 Data Memory Size = 2048KB Available I-RAM Range = 0x8000 to 0x1fffff Available D-RAM Range = 0x80002000 to 0x801fffff PageSize = 0x400 Register Stack Size = 0x800 Memory Stack Size = 0x1800 CPU PRL = 0x3 Am29027 Available = No Byte Write Available = Yes # ~. _1__@end example Then exit the @code{cu} or @code{tip} program (done in the example by typing @code{~.} at the @code{EBMON} prompt). @code{EBMON} will keep running, ready for _GDBN__ to take over. For this example, we've assumed what is probably the most convenient way to make sure the same 29K program is on both the PC and the Unix system: a PC/NFS connection that establishes ``drive @code{G:}'' on the PC as a file system on the Unix host. If you do not have PC/NFS or something similar connecting the two systems, you must arrange some other way---perhaps floppy-disk transfer---of getting the 29K program from the Unix system to the PC; _GDBN__ will @emph{not} download it over the serial line. @node _GDBP__-EB29K, Remote Log, Comms (EB29K), EB29K Remote @subsubsection EB29K cross-debugging Finally, @code{cd} to the directory containing an image of your 29K program on the Unix system, and start _GDBN__---specifying as argument the name of your 29K program: @example cd /usr/joe/work29k _GDBP__ myfoo @end example Now you can use the @code{target} command: @example target amd-eb /dev/ttya 9600 MYFOO @c FIXME: test above 'target amd-eb' as spelled, with caps! caps are meant to @c emphasize that this is the name as seen by DOS (since I think DOS is @c single-minded about case of letters). ---pesch@cygnus.com, 25feb91 @end example @noindent In this example, we've assumed your program is in a file called @file{myfoo}. Note that the filename given as the last argument to @code{target amd-eb} should be the name of the program as it appears to DOS. In our example this is simply @code{MYFOO}, but in general it can include a DOS path, and depending on your transfer mechanism may not resemble the name on the Unix side. At this point, you can set any breakpoints you wish; when you are ready to see your program run on the 29K board, use the _GDBN__ command @code{run}. To stop debugging the remote program, use the _GDBN__ @code{detach} command. To return control of the PC to its console, use @code{tip} or @code{cu} once again, after your _GDBN__ session has concluded, to attach to @code{EBMON}. You can then type the command @code{q} to shut down @code{EBMON}, returning control to the DOS command-line interpreter. Type @code{CTTY con} to return command input to the main DOS console, and type @kbd{~.} to leave @code{tip} or @code{cu}. @node Remote Log, , _GDBP__-EB29K, EB29K Remote @subsubsection Remote Log @kindex eb.log @cindex log file for EB29K The @code{target amd-eb} command creates a file @file{eb.log} in the current working directory, to help debug problems with the connection. @file{eb.log} records all the output from @code{EBMON}, including echoes of the commands sent to it. Running @samp{tail -f} on this file in another window often helps to understand trouble with @code{EBMON}, or unexpected events on the PC side of the connection. _fi__(_AMD29K__) _if__(_VXWORKS__) _if__(!_GENERIC__) @node VxWorks Remote, , EB29K Remote, Starting _GDBN__ _fi__(!_GENERIC__) _if__(_GENERIC__) @node VxWorks Remote, , EB29K Remote, Remote _fi__(_GENERIC__) @subsection _GDBN__ and VxWorks @cindex VxWorks _GDBN__ enables developers to spawn and debug tasks running on networked VxWorks targets from a Unix host. Already-running tasks spawned from the VxWorks shell can also be debugged. _GDBN__ uses code that runs on both the UNIX host and on the VxWorks target. The program @code{_GDBP__} is installed and executed on the UNIX host. The remote debugging interface (RDB) routines are installed and executed on the VxWorks target. These routines are included in the VxWorks library @file{rdb.a} and are incorporated into the system image when source-level debugging is enabled in the VxWorks configuration. @kindex INCLUDE_RDB If you wish, you can define @code{INCLUDE_RDB} in the VxWorks configuration file @file{configAll.h} to include the RDB interface routines and spawn the source debugging task @code{tRdbTask} when VxWorks is booted. For more information on configuring and remaking _if__(_FSF__) VxWorks, see the manufacturer's manual. _fi__(_FSF__) _if__(!_FSF__) VxWorks, see the @cite{VxWorks Programmer's Guide}. _fi__(!_FSF__) Once you have included the RDB interface in your VxWorks system image and set your Unix execution search path to find _GDBN__, you are ready to run _GDBN__. From your UNIX host, type: @smallexample % _GDBP__ @end smallexample _GDBN__ will come up showing the prompt: @smallexample (_GDBP__) @end smallexample @menu * VxWorks connection:: Connecting to VxWorks * VxWorks download:: VxWorks Download * VxWorks attach:: Running Tasks @end menu @node VxWorks connection, VxWorks download, VxWorks Remote, VxWorks Remote @subsubsection Connecting to VxWorks The _GDBN__ command @code{target} lets you connect to a VxWorks target on the network. To connect to a target whose host name is ``@code{tt}'', type: @smallexample (_GDBP__) target vxworks tt @end smallexample _GDBN__ will display a message similar to the following: @smallexample Attaching remote machine across net... Success! @end smallexample _GDBN__ will then attempt to read the symbol tables of any object modules loaded into the VxWorks target since it was last booted. _GDBN__ locates these files by searching the directories listed in the command search path (@pxref{Environment, ,Your Program's Environment}); if it fails to find an object file, it will display a message such as: @smallexample prog.o: No such file or directory. @end smallexample This will cause the @code{target} command to abort. When this happens, you should add the appropriate directory to the search path, with the _GDBN__ command @code{path}, and execute the @code{target} command again. @node VxWorks download, VxWorks attach, VxWorks connection, VxWorks Remote @subsubsection VxWorks Download @cindex download to VxWorks If you have connected to the VxWorks target and you want to debug an object that has not yet been loaded, you can use the _GDBN__ @code{load} command to download a file from UNIX to VxWorks incrementally. The object file given as an argument to the @code{load} command is actually opened twice: first by the VxWorks target in order to download the code, then by _GDBN__ in order to read the symbol table. This can lead to problems if the current working directories on the two systems differ. It is simplest to set the working directory on both systems to the directory in which the object file resides, and then to reference the file by its name, without any path. Thus, to load a program @file{prog.o}, residing in @file{wherever/vw/demo/rdb}, on VxWorks type: @smallexample -> cd "wherever/vw/demo/rdb" @end smallexample On _GDBN__ type: @smallexample (_GDBP__) cd wherever/vw/demo/rdb (_GDBP__) load prog.o @end smallexample _GDBN__ will display a response similar to the following: @smallexample Reading symbol data from wherever/vw/demo/rdb/prog.o... done. @end smallexample You can also use the @code{load} command to reload an object module after editing and recompiling the corresponding source file. Note that this will cause _GDBN__ to delete all currently-defined breakpoints, auto-displays, and convenience variables, and to clear the value history. (This is necessary in order to preserve the integrity of debugger data structures that reference the target system's symbol table.) @node VxWorks attach, , VxWorks download, VxWorks Remote @subsubsection Running Tasks @cindex running VxWorks tasks You can also attach to an existing task using the @code{attach} command as follows: @smallexample (_GDBP__) attach @var{task} @end smallexample @noindent where @var{task} is the VxWorks hexadecimal task ID. The task can be running or suspended when you attach to it. If running, it will be suspended at the time of attachment. _fi__(_VXWORKS__)