/* Routines for name->symbol lookups in GDB. Copyright (C) 2003-2020 Free Software Foundation, Inc. Contributed by David Carlton and by Kealia, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include #include "gdb_obstack.h" #include "symtab.h" #include "buildsym.h" #include "dictionary.h" #include "safe-ctype.h" #include #include "language.h" /* This file implements dictionaries, which are tables that associate symbols to names. They are represented by an opaque type 'struct dictionary'. That type has various internal implementations, which you can choose between depending on what properties you need (e.g. fast lookup, order-preserving, expandable). Each dictionary starts with a 'virtual function table' that contains the functions that actually implement the various operations that dictionaries provide. (Note, however, that, for the sake of client code, we also provide some functions that can be implemented generically in terms of the functions in the vtable.) To add a new dictionary implementation , what you should do is: * Add a new element DICT_ to dict_type. * Create a new structure dictionary_. If your new implementation is a variant of an existing one, make sure that their structs have the same initial data members. Define accessor macros for your new data members. * Implement all the functions in dict_vector as static functions, whose name is the same as the corresponding member of dict_vector plus _. You don't have to do this for those members where you can reuse existing generic functions (e.g. add_symbol_nonexpandable, free_obstack) or in the case where your new implementation is a variant of an existing implementation and where the variant doesn't affect the member function in question. * Define a static const struct dict_vector dict__vector. * Define a function dict_create_ to create these gizmos. Add its declaration to dictionary.h. To add a new operation on all existing implementations, what you should do is: * Add a new member to struct dict_vector. * If there is useful generic behavior , define a static function _something_informative that implements that behavior. (E.g. add_symbol_nonexpandable, free_obstack.) * For every implementation that should have its own specific behavior for , define a static function _ implementing it. * Modify all existing dict_vector_'s to include the appropriate member. * Define a function dict_ that looks up in the dict_vector and calls the appropriate function. Add a declaration for dict_ to dictionary.h. */ /* An enum representing the various implementations of dictionaries. Used only for debugging. */ enum dict_type { /* Symbols are stored in a fixed-size hash table. */ DICT_HASHED, /* Symbols are stored in an expandable hash table. */ DICT_HASHED_EXPANDABLE, /* Symbols are stored in a fixed-size array. */ DICT_LINEAR, /* Symbols are stored in an expandable array. */ DICT_LINEAR_EXPANDABLE }; /* The virtual function table. */ struct dict_vector { /* The type of the dictionary. This is only here to make debugging a bit easier; it's not actually used. */ enum dict_type type; /* The function to free a dictionary. */ void (*free) (struct dictionary *dict); /* Add a symbol to a dictionary, if possible. */ void (*add_symbol) (struct dictionary *dict, struct symbol *sym); /* Iterator functions. */ struct symbol *(*iterator_first) (const struct dictionary *dict, struct dict_iterator *iterator); struct symbol *(*iterator_next) (struct dict_iterator *iterator); /* Functions to iterate over symbols with a given name. */ struct symbol *(*iter_match_first) (const struct dictionary *dict, const lookup_name_info &name, struct dict_iterator *iterator); struct symbol *(*iter_match_next) (const lookup_name_info &name, struct dict_iterator *iterator); /* A size function, for maint print symtabs. */ int (*size) (const struct dictionary *dict); }; /* Now comes the structs used to store the data for different implementations. If two implementations have data in common, put the common data at the top of their structs, ordered in the same way. */ struct dictionary_hashed { int nbuckets; struct symbol **buckets; }; struct dictionary_hashed_expandable { /* How many buckets we currently have. */ int nbuckets; struct symbol **buckets; /* How many syms we currently have; we need this so we will know when to add more buckets. */ int nsyms; }; struct dictionary_linear { int nsyms; struct symbol **syms; }; struct dictionary_linear_expandable { /* How many symbols we currently have. */ int nsyms; struct symbol **syms; /* How many symbols we can store before needing to reallocate. */ int capacity; }; /* And now, the star of our show. */ struct dictionary { const struct language_defn *language; const struct dict_vector *vector; union { struct dictionary_hashed hashed; struct dictionary_hashed_expandable hashed_expandable; struct dictionary_linear linear; struct dictionary_linear_expandable linear_expandable; } data; }; /* Accessor macros. */ #define DICT_VECTOR(d) (d)->vector #define DICT_LANGUAGE(d) (d)->language /* These can be used for DICT_HASHED_EXPANDABLE, too. */ #define DICT_HASHED_NBUCKETS(d) (d)->data.hashed.nbuckets #define DICT_HASHED_BUCKETS(d) (d)->data.hashed.buckets #define DICT_HASHED_BUCKET(d,i) DICT_HASHED_BUCKETS (d) [i] #define DICT_HASHED_EXPANDABLE_NSYMS(d) (d)->data.hashed_expandable.nsyms /* These can be used for DICT_LINEAR_EXPANDABLEs, too. */ #define DICT_LINEAR_NSYMS(d) (d)->data.linear.nsyms #define DICT_LINEAR_SYMS(d) (d)->data.linear.syms #define DICT_LINEAR_SYM(d,i) DICT_LINEAR_SYMS (d) [i] #define DICT_LINEAR_EXPANDABLE_CAPACITY(d) \ (d)->data.linear_expandable.capacity /* The initial size of a DICT_*_EXPANDABLE dictionary. */ #define DICT_EXPANDABLE_INITIAL_CAPACITY 10 /* This calculates the number of buckets we'll use in a hashtable, given the number of symbols that it will contain. */ #define DICT_HASHTABLE_SIZE(n) ((n)/5 + 1) /* Accessor macros for dict_iterators; they're here rather than dictionary.h because code elsewhere should treat dict_iterators as opaque. */ /* The dictionary that the iterator is associated to. */ #define DICT_ITERATOR_DICT(iter) (iter)->dict /* For linear dictionaries, the index of the last symbol returned; for hashed dictionaries, the bucket of the last symbol returned. */ #define DICT_ITERATOR_INDEX(iter) (iter)->index /* For hashed dictionaries, this points to the last symbol returned; otherwise, this is unused. */ #define DICT_ITERATOR_CURRENT(iter) (iter)->current /* Declarations of functions for vectors. */ /* Functions that might work across a range of dictionary types. */ static void add_symbol_nonexpandable (struct dictionary *dict, struct symbol *sym); static void free_obstack (struct dictionary *dict); /* Functions for DICT_HASHED and DICT_HASHED_EXPANDABLE dictionaries. */ static struct symbol *iterator_first_hashed (const struct dictionary *dict, struct dict_iterator *iterator); static struct symbol *iterator_next_hashed (struct dict_iterator *iterator); static struct symbol *iter_match_first_hashed (const struct dictionary *dict, const lookup_name_info &name, struct dict_iterator *iterator); static struct symbol *iter_match_next_hashed (const lookup_name_info &name, struct dict_iterator *iterator); /* Functions only for DICT_HASHED. */ static int size_hashed (const struct dictionary *dict); /* Functions only for DICT_HASHED_EXPANDABLE. */ static void free_hashed_expandable (struct dictionary *dict); static void add_symbol_hashed_expandable (struct dictionary *dict, struct symbol *sym); static int size_hashed_expandable (const struct dictionary *dict); /* Functions for DICT_LINEAR and DICT_LINEAR_EXPANDABLE dictionaries. */ static struct symbol *iterator_first_linear (const struct dictionary *dict, struct dict_iterator *iterator); static struct symbol *iterator_next_linear (struct dict_iterator *iterator); static struct symbol *iter_match_first_linear (const struct dictionary *dict, const lookup_name_info &name, struct dict_iterator *iterator); static struct symbol *iter_match_next_linear (const lookup_name_info &name, struct dict_iterator *iterator); static int size_linear (const struct dictionary *dict); /* Functions only for DICT_LINEAR_EXPANDABLE. */ static void free_linear_expandable (struct dictionary *dict); static void add_symbol_linear_expandable (struct dictionary *dict, struct symbol *sym); /* Various vectors that we'll actually use. */ static const struct dict_vector dict_hashed_vector = { DICT_HASHED, /* type */ free_obstack, /* free */ add_symbol_nonexpandable, /* add_symbol */ iterator_first_hashed, /* iterator_first */ iterator_next_hashed, /* iterator_next */ iter_match_first_hashed, /* iter_name_first */ iter_match_next_hashed, /* iter_name_next */ size_hashed, /* size */ }; static const struct dict_vector dict_hashed_expandable_vector = { DICT_HASHED_EXPANDABLE, /* type */ free_hashed_expandable, /* free */ add_symbol_hashed_expandable, /* add_symbol */ iterator_first_hashed, /* iterator_first */ iterator_next_hashed, /* iterator_next */ iter_match_first_hashed, /* iter_name_first */ iter_match_next_hashed, /* iter_name_next */ size_hashed_expandable, /* size */ }; static const struct dict_vector dict_linear_vector = { DICT_LINEAR, /* type */ free_obstack, /* free */ add_symbol_nonexpandable, /* add_symbol */ iterator_first_linear, /* iterator_first */ iterator_next_linear, /* iterator_next */ iter_match_first_linear, /* iter_name_first */ iter_match_next_linear, /* iter_name_next */ size_linear, /* size */ }; static const struct dict_vector dict_linear_expandable_vector = { DICT_LINEAR_EXPANDABLE, /* type */ free_linear_expandable, /* free */ add_symbol_linear_expandable, /* add_symbol */ iterator_first_linear, /* iterator_first */ iterator_next_linear, /* iterator_next */ iter_match_first_linear, /* iter_name_first */ iter_match_next_linear, /* iter_name_next */ size_linear, /* size */ }; /* Declarations of helper functions (i.e. ones that don't go into vectors). */ static struct symbol *iterator_hashed_advance (struct dict_iterator *iter); static void insert_symbol_hashed (struct dictionary *dict, struct symbol *sym); static void expand_hashtable (struct dictionary *dict); /* The creation functions. */ /* Create a hashed dictionary of a given language. */ static struct dictionary * dict_create_hashed (struct obstack *obstack, enum language language, const std::vector &symbol_list) { /* Allocate the dictionary. */ struct dictionary *retval = XOBNEW (obstack, struct dictionary); DICT_VECTOR (retval) = &dict_hashed_vector; DICT_LANGUAGE (retval) = language_def (language); /* Allocate space for symbols. */ int nsyms = symbol_list.size (); int nbuckets = DICT_HASHTABLE_SIZE (nsyms); DICT_HASHED_NBUCKETS (retval) = nbuckets; struct symbol **buckets = XOBNEWVEC (obstack, struct symbol *, nbuckets); memset (buckets, 0, nbuckets * sizeof (struct symbol *)); DICT_HASHED_BUCKETS (retval) = buckets; /* Now fill the buckets. */ for (const auto &sym : symbol_list) insert_symbol_hashed (retval, sym); return retval; } /* Create an expandable hashed dictionary of a given language. */ static struct dictionary * dict_create_hashed_expandable (enum language language) { struct dictionary *retval = XNEW (struct dictionary); DICT_VECTOR (retval) = &dict_hashed_expandable_vector; DICT_LANGUAGE (retval) = language_def (language); DICT_HASHED_NBUCKETS (retval) = DICT_EXPANDABLE_INITIAL_CAPACITY; DICT_HASHED_BUCKETS (retval) = XCNEWVEC (struct symbol *, DICT_EXPANDABLE_INITIAL_CAPACITY); DICT_HASHED_EXPANDABLE_NSYMS (retval) = 0; return retval; } /* Create a linear dictionary of a given language. */ static struct dictionary * dict_create_linear (struct obstack *obstack, enum language language, const std::vector &symbol_list) { struct dictionary *retval = XOBNEW (obstack, struct dictionary); DICT_VECTOR (retval) = &dict_linear_vector; DICT_LANGUAGE (retval) = language_def (language); /* Allocate space for symbols. */ int nsyms = symbol_list.size (); DICT_LINEAR_NSYMS (retval) = nsyms; struct symbol **syms = XOBNEWVEC (obstack, struct symbol *, nsyms); DICT_LINEAR_SYMS (retval) = syms; /* Now fill in the symbols. */ int idx = nsyms - 1; for (const auto &sym : symbol_list) syms[idx--] = sym; return retval; } /* Create an expandable linear dictionary of a given language. */ static struct dictionary * dict_create_linear_expandable (enum language language) { struct dictionary *retval = XNEW (struct dictionary); DICT_VECTOR (retval) = &dict_linear_expandable_vector; DICT_LANGUAGE (retval) = language_def (language); DICT_LINEAR_NSYMS (retval) = 0; DICT_LINEAR_EXPANDABLE_CAPACITY (retval) = DICT_EXPANDABLE_INITIAL_CAPACITY; DICT_LINEAR_SYMS (retval) = XNEWVEC (struct symbol *, DICT_LINEAR_EXPANDABLE_CAPACITY (retval)); return retval; } /* The functions providing the dictionary interface. */ /* Free the memory used by a dictionary that's not on an obstack. (If any.) */ static void dict_free (struct dictionary *dict) { (DICT_VECTOR (dict))->free (dict); } /* Add SYM to DICT. DICT had better be expandable. */ static void dict_add_symbol (struct dictionary *dict, struct symbol *sym) { (DICT_VECTOR (dict))->add_symbol (dict, sym); } /* Utility to add a list of symbols to a dictionary. DICT must be an expandable dictionary. */ static void dict_add_pending (struct dictionary *dict, const std::vector &symbol_list) { /* Preserve ordering by reversing the list. */ for (auto sym = symbol_list.rbegin (); sym != symbol_list.rend (); ++sym) dict_add_symbol (dict, *sym); } /* Initialize ITERATOR to point at the first symbol in DICT, and return that first symbol, or NULL if DICT is empty. */ static struct symbol * dict_iterator_first (const struct dictionary *dict, struct dict_iterator *iterator) { return (DICT_VECTOR (dict))->iterator_first (dict, iterator); } /* Advance ITERATOR, and return the next symbol, or NULL if there are no more symbols. */ static struct symbol * dict_iterator_next (struct dict_iterator *iterator) { return (DICT_VECTOR (DICT_ITERATOR_DICT (iterator))) ->iterator_next (iterator); } static struct symbol * dict_iter_match_first (const struct dictionary *dict, const lookup_name_info &name, struct dict_iterator *iterator) { return (DICT_VECTOR (dict))->iter_match_first (dict, name, iterator); } static struct symbol * dict_iter_match_next (const lookup_name_info &name, struct dict_iterator *iterator) { return (DICT_VECTOR (DICT_ITERATOR_DICT (iterator))) ->iter_match_next (name, iterator); } static int dict_size (const struct dictionary *dict) { return (DICT_VECTOR (dict))->size (dict); } /* Now come functions (well, one function, currently) that are implemented generically by means of the vtable. Typically, they're rarely used. */ /* The functions implementing the dictionary interface. */ /* Generic functions, where appropriate. */ static void free_obstack (struct dictionary *dict) { /* Do nothing! */ } static void add_symbol_nonexpandable (struct dictionary *dict, struct symbol *sym) { internal_error (__FILE__, __LINE__, _("dict_add_symbol: non-expandable dictionary")); } /* Functions for DICT_HASHED and DICT_HASHED_EXPANDABLE. */ static struct symbol * iterator_first_hashed (const struct dictionary *dict, struct dict_iterator *iterator) { DICT_ITERATOR_DICT (iterator) = dict; DICT_ITERATOR_INDEX (iterator) = -1; return iterator_hashed_advance (iterator); } static struct symbol * iterator_next_hashed (struct dict_iterator *iterator) { struct symbol *next; next = DICT_ITERATOR_CURRENT (iterator)->hash_next; if (next == NULL) return iterator_hashed_advance (iterator); else { DICT_ITERATOR_CURRENT (iterator) = next; return next; } } static struct symbol * iterator_hashed_advance (struct dict_iterator *iterator) { const struct dictionary *dict = DICT_ITERATOR_DICT (iterator); int nbuckets = DICT_HASHED_NBUCKETS (dict); int i; for (i = DICT_ITERATOR_INDEX (iterator) + 1; i < nbuckets; ++i) { struct symbol *sym = DICT_HASHED_BUCKET (dict, i); if (sym != NULL) { DICT_ITERATOR_INDEX (iterator) = i; DICT_ITERATOR_CURRENT (iterator) = sym; return sym; } } return NULL; } static struct symbol * iter_match_first_hashed (const struct dictionary *dict, const lookup_name_info &name, struct dict_iterator *iterator) { const language_defn *lang = DICT_LANGUAGE (dict); unsigned int hash_index = (name.search_name_hash (lang->la_language) % DICT_HASHED_NBUCKETS (dict)); symbol_name_matcher_ftype *matches_name = get_symbol_name_matcher (lang, name); struct symbol *sym; DICT_ITERATOR_DICT (iterator) = dict; /* Loop through the symbols in the given bucket, breaking when SYM first matches. If SYM never matches, it will be set to NULL; either way, we have the right return value. */ for (sym = DICT_HASHED_BUCKET (dict, hash_index); sym != NULL; sym = sym->hash_next) { /* Warning: the order of arguments to compare matters! */ if (matches_name (sym->search_name (), name, NULL)) break; } DICT_ITERATOR_CURRENT (iterator) = sym; return sym; } static struct symbol * iter_match_next_hashed (const lookup_name_info &name, struct dict_iterator *iterator) { const language_defn *lang = DICT_LANGUAGE (DICT_ITERATOR_DICT (iterator)); symbol_name_matcher_ftype *matches_name = get_symbol_name_matcher (lang, name); struct symbol *next; for (next = DICT_ITERATOR_CURRENT (iterator)->hash_next; next != NULL; next = next->hash_next) { if (matches_name (next->search_name (), name, NULL)) break; } DICT_ITERATOR_CURRENT (iterator) = next; return next; } /* Insert SYM into DICT. */ static void insert_symbol_hashed (struct dictionary *dict, struct symbol *sym) { unsigned int hash_index; unsigned int hash; struct symbol **buckets = DICT_HASHED_BUCKETS (dict); /* We don't want to insert a symbol into a dictionary of a different language. The two may not use the same hashing algorithm. */ gdb_assert (sym->language () == DICT_LANGUAGE (dict)->la_language); hash = search_name_hash (sym->language (), sym->search_name ()); hash_index = hash % DICT_HASHED_NBUCKETS (dict); sym->hash_next = buckets[hash_index]; buckets[hash_index] = sym; } static int size_hashed (const struct dictionary *dict) { return DICT_HASHED_NBUCKETS (dict); } /* Functions only for DICT_HASHED_EXPANDABLE. */ static void free_hashed_expandable (struct dictionary *dict) { xfree (DICT_HASHED_BUCKETS (dict)); xfree (dict); } static void add_symbol_hashed_expandable (struct dictionary *dict, struct symbol *sym) { int nsyms = ++DICT_HASHED_EXPANDABLE_NSYMS (dict); if (DICT_HASHTABLE_SIZE (nsyms) > DICT_HASHED_NBUCKETS (dict)) expand_hashtable (dict); insert_symbol_hashed (dict, sym); DICT_HASHED_EXPANDABLE_NSYMS (dict) = nsyms; } static int size_hashed_expandable (const struct dictionary *dict) { return DICT_HASHED_EXPANDABLE_NSYMS (dict); } static void expand_hashtable (struct dictionary *dict) { int old_nbuckets = DICT_HASHED_NBUCKETS (dict); struct symbol **old_buckets = DICT_HASHED_BUCKETS (dict); int new_nbuckets = 2 * old_nbuckets + 1; struct symbol **new_buckets = XCNEWVEC (struct symbol *, new_nbuckets); int i; DICT_HASHED_NBUCKETS (dict) = new_nbuckets; DICT_HASHED_BUCKETS (dict) = new_buckets; for (i = 0; i < old_nbuckets; ++i) { struct symbol *sym, *next_sym; sym = old_buckets[i]; if (sym != NULL) { for (next_sym = sym->hash_next; next_sym != NULL; next_sym = sym->hash_next) { insert_symbol_hashed (dict, sym); sym = next_sym; } insert_symbol_hashed (dict, sym); } } xfree (old_buckets); } /* See dictionary.h. */ unsigned int language_defn::search_name_hash (const char *string0) const { /* The Ada-encoded version of a name P1.P2...Pn has either the form P1__P2__...Pn or _ada_P1__P2__...Pn (where the Pi are lower-cased identifiers). The (which can be empty) encodes additional information about the denoted entity. This routine hashes such names to msymbol_hash_iw(Pn). It actually does this for a superset of both valid Pi and of , but in other cases it simply returns msymbol_hash_iw(STRING0). */ const char *string; unsigned int hash; string = string0; if (*string == '_') { if (startswith (string, "_ada_")) string += 5; else return msymbol_hash_iw (string0); } hash = 0; while (*string) { switch (*string) { case '$': case '.': case 'X': if (string0 == string) return msymbol_hash_iw (string0); else return hash; case ' ': case '(': return msymbol_hash_iw (string0); case '_': if (string[1] == '_' && string != string0) { int c = string[2]; if ((c < 'a' || c > 'z') && c != 'O') return hash; hash = 0; string += 2; continue; } break; case 'T': /* Ignore "TKB" suffixes. These are used by Ada for subprograms implementing a task body. For instance for a task T inside package Pck, the name of the subprogram implementing T's body is `pck__tTKB'. We need to ignore the "TKB" suffix because searches for this task body subprogram are going to be performed using `pck__t' (the encoded version of the natural name `pck.t'). */ if (strcmp (string, "TKB") == 0) return hash; break; } hash = SYMBOL_HASH_NEXT (hash, *string); string += 1; } return hash; } /* Functions for DICT_LINEAR and DICT_LINEAR_EXPANDABLE. */ static struct symbol * iterator_first_linear (const struct dictionary *dict, struct dict_iterator *iterator) { DICT_ITERATOR_DICT (iterator) = dict; DICT_ITERATOR_INDEX (iterator) = 0; return DICT_LINEAR_NSYMS (dict) ? DICT_LINEAR_SYM (dict, 0) : NULL; } static struct symbol * iterator_next_linear (struct dict_iterator *iterator) { const struct dictionary *dict = DICT_ITERATOR_DICT (iterator); if (++DICT_ITERATOR_INDEX (iterator) >= DICT_LINEAR_NSYMS (dict)) return NULL; else return DICT_LINEAR_SYM (dict, DICT_ITERATOR_INDEX (iterator)); } static struct symbol * iter_match_first_linear (const struct dictionary *dict, const lookup_name_info &name, struct dict_iterator *iterator) { DICT_ITERATOR_DICT (iterator) = dict; DICT_ITERATOR_INDEX (iterator) = -1; return iter_match_next_linear (name, iterator); } static struct symbol * iter_match_next_linear (const lookup_name_info &name, struct dict_iterator *iterator) { const struct dictionary *dict = DICT_ITERATOR_DICT (iterator); const language_defn *lang = DICT_LANGUAGE (dict); symbol_name_matcher_ftype *matches_name = get_symbol_name_matcher (lang, name); int i, nsyms = DICT_LINEAR_NSYMS (dict); struct symbol *sym, *retval = NULL; for (i = DICT_ITERATOR_INDEX (iterator) + 1; i < nsyms; ++i) { sym = DICT_LINEAR_SYM (dict, i); if (matches_name (sym->search_name (), name, NULL)) { retval = sym; break; } } DICT_ITERATOR_INDEX (iterator) = i; return retval; } static int size_linear (const struct dictionary *dict) { return DICT_LINEAR_NSYMS (dict); } /* Functions only for DICT_LINEAR_EXPANDABLE. */ static void free_linear_expandable (struct dictionary *dict) { xfree (DICT_LINEAR_SYMS (dict)); xfree (dict); } static void add_symbol_linear_expandable (struct dictionary *dict, struct symbol *sym) { int nsyms = ++DICT_LINEAR_NSYMS (dict); /* Do we have enough room? If not, grow it. */ if (nsyms > DICT_LINEAR_EXPANDABLE_CAPACITY (dict)) { DICT_LINEAR_EXPANDABLE_CAPACITY (dict) *= 2; DICT_LINEAR_SYMS (dict) = XRESIZEVEC (struct symbol *, DICT_LINEAR_SYMS (dict), DICT_LINEAR_EXPANDABLE_CAPACITY (dict)); } DICT_LINEAR_SYM (dict, nsyms - 1) = sym; } /* Multi-language dictionary support. */ /* The structure describing a multi-language dictionary. */ struct multidictionary { /* An array of dictionaries, one per language. All dictionaries must be of the same type. This should be free'd for expandable dictionary types. */ struct dictionary **dictionaries; /* The number of language dictionaries currently allocated. Only used for expandable dictionaries. */ unsigned short n_allocated_dictionaries; }; /* A hasher for enum language. Injecting this into std is a convenience when using unordered_map with C++11. */ namespace std { template<> struct hash { typedef enum language argument_type; typedef std::size_t result_type; result_type operator() (const argument_type &l) const noexcept { return static_cast (l); } }; } /* namespace std */ /* A helper function to collate symbols on the pending list by language. */ static std::unordered_map> collate_pending_symbols_by_language (const struct pending *symbol_list) { std::unordered_map> nsyms; for (const pending *list_counter = symbol_list; list_counter != nullptr; list_counter = list_counter->next) { for (int i = list_counter->nsyms - 1; i >= 0; --i) { enum language language = list_counter->symbol[i]->language (); nsyms[language].push_back (list_counter->symbol[i]); } } return nsyms; } /* See dictionary.h. */ struct multidictionary * mdict_create_hashed (struct obstack *obstack, const struct pending *symbol_list) { struct multidictionary *retval = XOBNEW (obstack, struct multidictionary); std::unordered_map> nsyms = collate_pending_symbols_by_language (symbol_list); /* Loop over all languages and create/populate dictionaries. */ retval->dictionaries = XOBNEWVEC (obstack, struct dictionary *, nsyms.size ()); retval->n_allocated_dictionaries = nsyms.size (); int idx = 0; for (const auto &pair : nsyms) { enum language language = pair.first; std::vector symlist = pair.second; retval->dictionaries[idx++] = dict_create_hashed (obstack, language, symlist); } return retval; } /* See dictionary.h. */ struct multidictionary * mdict_create_hashed_expandable (enum language language) { struct multidictionary *retval = XNEW (struct multidictionary); /* We have no symbol list to populate, but we create an empty dictionary of the requested language to populate later. */ retval->n_allocated_dictionaries = 1; retval->dictionaries = XNEW (struct dictionary *); retval->dictionaries[0] = dict_create_hashed_expandable (language); return retval; } /* See dictionary.h. */ struct multidictionary * mdict_create_linear (struct obstack *obstack, const struct pending *symbol_list) { struct multidictionary *retval = XOBNEW (obstack, struct multidictionary); std::unordered_map> nsyms = collate_pending_symbols_by_language (symbol_list); /* Loop over all languages and create/populate dictionaries. */ retval->dictionaries = XOBNEWVEC (obstack, struct dictionary *, nsyms.size ()); retval->n_allocated_dictionaries = nsyms.size (); int idx = 0; for (const auto &pair : nsyms) { enum language language = pair.first; std::vector symlist = pair.second; retval->dictionaries[idx++] = dict_create_linear (obstack, language, symlist); } return retval; } /* See dictionary.h. */ struct multidictionary * mdict_create_linear_expandable (enum language language) { struct multidictionary *retval = XNEW (struct multidictionary); /* We have no symbol list to populate, but we create an empty dictionary to populate later. */ retval->n_allocated_dictionaries = 1; retval->dictionaries = XNEW (struct dictionary *); retval->dictionaries[0] = dict_create_linear_expandable (language); return retval; } /* See dictionary.h. */ void mdict_free (struct multidictionary *mdict) { /* Grab the type of dictionary being used. */ enum dict_type type = mdict->dictionaries[0]->vector->type; /* Loop over all dictionaries and free them. */ for (unsigned short idx = 0; idx < mdict->n_allocated_dictionaries; ++idx) dict_free (mdict->dictionaries[idx]); /* Free the dictionary list, if needed. */ switch (type) { case DICT_HASHED: case DICT_LINEAR: /* Memory was allocated on an obstack when created. */ break; case DICT_HASHED_EXPANDABLE: case DICT_LINEAR_EXPANDABLE: xfree (mdict->dictionaries); break; } } /* Helper function to find the dictionary associated with LANGUAGE or NULL if there is no dictionary of that language. */ static struct dictionary * find_language_dictionary (const struct multidictionary *mdict, enum language language) { for (unsigned short idx = 0; idx < mdict->n_allocated_dictionaries; ++idx) { if (DICT_LANGUAGE (mdict->dictionaries[idx])->la_language == language) return mdict->dictionaries[idx]; } return nullptr; } /* Create a new language dictionary for LANGUAGE and add it to the multidictionary MDICT's list of dictionaries. If MDICT is not based on expandable dictionaries, this function throws an internal error. */ static struct dictionary * create_new_language_dictionary (struct multidictionary *mdict, enum language language) { struct dictionary *retval = nullptr; /* We use the first dictionary entry to decide what create function to call. Not optimal but sufficient. */ gdb_assert (mdict->dictionaries[0] != nullptr); switch (mdict->dictionaries[0]->vector->type) { case DICT_HASHED: case DICT_LINEAR: internal_error (__FILE__, __LINE__, _("create_new_language_dictionary: attempted to expand " "non-expandable multidictionary")); case DICT_HASHED_EXPANDABLE: retval = dict_create_hashed_expandable (language); break; case DICT_LINEAR_EXPANDABLE: retval = dict_create_linear_expandable (language); break; } /* Grow the dictionary vector and save the new dictionary. */ mdict->dictionaries = (struct dictionary **) xrealloc (mdict->dictionaries, (++mdict->n_allocated_dictionaries * sizeof (struct dictionary *))); mdict->dictionaries[mdict->n_allocated_dictionaries - 1] = retval; return retval; } /* See dictionary.h. */ void mdict_add_symbol (struct multidictionary *mdict, struct symbol *sym) { struct dictionary *dict = find_language_dictionary (mdict, sym->language ()); if (dict == nullptr) { /* SYM is of a new language that we haven't previously seen. Create a new dictionary for it. */ dict = create_new_language_dictionary (mdict, sym->language ()); } dict_add_symbol (dict, sym); } /* See dictionary.h. */ void mdict_add_pending (struct multidictionary *mdict, const struct pending *symbol_list) { std::unordered_map> nsyms = collate_pending_symbols_by_language (symbol_list); for (const auto &pair : nsyms) { enum language language = pair.first; std::vector symlist = pair.second; struct dictionary *dict = find_language_dictionary (mdict, language); if (dict == nullptr) { /* The language was not previously seen. Create a new dictionary for it. */ dict = create_new_language_dictionary (mdict, language); } dict_add_pending (dict, symlist); } } /* See dictionary.h. */ struct symbol * mdict_iterator_first (const multidictionary *mdict, struct mdict_iterator *miterator) { miterator->mdict = mdict; miterator->current_idx = 0; for (unsigned short idx = miterator->current_idx; idx < mdict->n_allocated_dictionaries; ++idx) { struct symbol *result = dict_iterator_first (mdict->dictionaries[idx], &miterator->iterator); if (result != nullptr) { miterator->current_idx = idx; return result; } } return nullptr; } /* See dictionary.h. */ struct symbol * mdict_iterator_next (struct mdict_iterator *miterator) { struct symbol *result = dict_iterator_next (&miterator->iterator); if (result != nullptr) return result; /* The current dictionary had no matches -- move to the next dictionary, if any. */ for (unsigned short idx = ++miterator->current_idx; idx < miterator->mdict->n_allocated_dictionaries; ++idx) { result = dict_iterator_first (miterator->mdict->dictionaries[idx], &miterator->iterator); if (result != nullptr) { miterator->current_idx = idx; return result; } } return nullptr; } /* See dictionary.h. */ struct symbol * mdict_iter_match_first (const struct multidictionary *mdict, const lookup_name_info &name, struct mdict_iterator *miterator) { miterator->mdict = mdict; miterator->current_idx = 0; for (unsigned short idx = miterator->current_idx; idx < mdict->n_allocated_dictionaries; ++idx) { struct symbol *result = dict_iter_match_first (mdict->dictionaries[idx], name, &miterator->iterator); if (result != nullptr) return result; } return nullptr; } /* See dictionary.h. */ struct symbol * mdict_iter_match_next (const lookup_name_info &name, struct mdict_iterator *miterator) { /* Search the current dictionary. */ struct symbol *result = dict_iter_match_next (name, &miterator->iterator); if (result != nullptr) return result; /* The current dictionary had no matches -- move to the next dictionary, if any. */ for (unsigned short idx = ++miterator->current_idx; idx < miterator->mdict->n_allocated_dictionaries; ++idx) { result = dict_iter_match_first (miterator->mdict->dictionaries[idx], name, &miterator->iterator); if (result != nullptr) { miterator->current_idx = idx; return result; } } return nullptr; } /* See dictionary.h. */ int mdict_size (const struct multidictionary *mdict) { int size = 0; for (unsigned short idx = 0; idx < mdict->n_allocated_dictionaries; ++idx) size += dict_size (mdict->dictionaries[idx]); return size; }