/* Target-dependent code for Mitsubishi D10V, for GDB. Copyright (C) 1996, 1997 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Contributed by Martin Hunt, hunt@cygnus.com */ #include "defs.h" #include "frame.h" #include "obstack.h" #include "symtab.h" #include "gdbtypes.h" #include "gdbcmd.h" #include "gdbcore.h" #include "gdb_string.h" #include "value.h" #include "inferior.h" #include "dis-asm.h" #include "symfile.h" #include "objfiles.h" #include "language.h" struct frame_extra_info { CORE_ADDR return_pc; int frameless; int size; }; /* these are the addresses the D10V-EVA board maps data */ /* and instruction memory to. */ #define DMEM_START 0x2000000 #define IMEM_START 0x1000000 #define STACK_START 0x0007ffe /* d10v register naming conventions */ #define ARG1_REGNUM R0_REGNUM #define ARGN_REGNUM 3 #define RET1_REGNUM R0_REGNUM /* Local functions */ extern void _initialize_d10v_tdep PARAMS ((void)); static void d10v_eva_prepare_to_trace PARAMS ((void)); static void d10v_eva_get_trace_data PARAMS ((void)); static int prologue_find_regs PARAMS ((unsigned short op, struct frame_info * fi, CORE_ADDR addr)); extern void d10v_frame_init_saved_regs PARAMS ((struct frame_info *)); static void do_d10v_pop_frame PARAMS ((struct frame_info * fi)); /* FIXME */ extern void remote_d10v_translate_xfer_address PARAMS ((CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR * rem_addr, int *rem_len)); int d10v_frame_chain_valid (chain, frame) CORE_ADDR chain; struct frame_info *frame; /* not used here */ { return ((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START); } /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE is the type (which is known to be struct, union or array). The d10v returns anything less than 8 bytes in size in registers. */ int d10v_use_struct_convention (gcc_p, type) int gcc_p; struct type *type; { return (TYPE_LENGTH (type) > 8); } unsigned char * d10v_breakpoint_from_pc (pcptr, lenptr) CORE_ADDR *pcptr; int *lenptr; { static unsigned char breakpoint[] = {0x2f, 0x90, 0x5e, 0x00}; *lenptr = sizeof (breakpoint); return breakpoint; } char * d10v_register_name (reg_nr) int reg_nr; { static char *register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c", "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15", "imap0", "imap1", "dmap", "a0", "a1" }; if (reg_nr < 0) return NULL; if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) return NULL; return register_names[reg_nr]; } /* Index within `registers' of the first byte of the space for register REG_NR. */ int d10v_register_byte (reg_nr) int reg_nr; { if (reg_nr > A0_REGNUM) return ((reg_nr - A0_REGNUM) * 8 + (A0_REGNUM * 2)); else return (reg_nr * 2); } /* Number of bytes of storage in the actual machine representation for register REG_NR. */ int d10v_register_raw_size (reg_nr) int reg_nr; { if (reg_nr >= A0_REGNUM) return 8; else return 2; } /* Number of bytes of storage in the program's representation for register N. */ int d10v_register_virtual_size (reg_nr) int reg_nr; { if (reg_nr >= A0_REGNUM) return 8; else if (reg_nr == PC_REGNUM || reg_nr == SP_REGNUM) return 4; else return 2; } /* Return the GDB type object for the "standard" data type of data in register N. */ struct type * d10v_register_virtual_type (reg_nr) int reg_nr; { if (reg_nr >= A0_REGNUM) return builtin_type_long_long; else if (reg_nr == PC_REGNUM || reg_nr == SP_REGNUM) return builtin_type_long; else return builtin_type_short; } /* convert $pc and $sp to/from virtual addresses */ int d10v_register_convertible (nr) int nr; { return ((nr) == PC_REGNUM || (nr) == SP_REGNUM); } void d10v_register_convert_to_virtual (regnum, type, from, to) int regnum; struct type *type; char *from; char *to; { ULONGEST x = extract_unsigned_integer (from, REGISTER_RAW_SIZE (regnum)); if (regnum == PC_REGNUM) x = (x << 2) | IMEM_START; else x |= DMEM_START; store_unsigned_integer (to, TYPE_LENGTH (type), x); } void d10v_register_convert_to_raw (type, regnum, from, to) struct type *type; int regnum; char *from; char *to; { ULONGEST x = extract_unsigned_integer (from, TYPE_LENGTH (type)); x &= 0x3ffff; if (regnum == PC_REGNUM) x >>= 2; store_unsigned_integer (to, 2, x); } CORE_ADDR d10v_make_daddr (x) CORE_ADDR x; { return ((x) | DMEM_START); } CORE_ADDR d10v_make_iaddr (x) CORE_ADDR x; { return (((x) << 2) | IMEM_START); } int d10v_daddr_p (x) CORE_ADDR x; { return (((x) & 0x3000000) == DMEM_START); } int d10v_iaddr_p (x) CORE_ADDR x; { return (((x) & 0x3000000) == IMEM_START); } CORE_ADDR d10v_convert_iaddr_to_raw (x) CORE_ADDR x; { return (((x) >> 2) & 0xffff); } CORE_ADDR d10v_convert_daddr_to_raw (x) CORE_ADDR x; { return ((x) & 0xffff); } /* Store the address of the place in which to copy the structure the subroutine will return. This is called from call_function. We store structs through a pointer passed in the first Argument register. */ void d10v_store_struct_return (addr, sp) CORE_ADDR addr; CORE_ADDR sp; { write_register (ARG1_REGNUM, (addr)); } /* Write into appropriate registers a function return value of type TYPE, given in virtual format. Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */ void d10v_store_return_value (type, valbuf) struct type *type; char *valbuf; { write_register_bytes (REGISTER_BYTE (RET1_REGNUM), valbuf, TYPE_LENGTH (type)); } /* Extract from an array REGBUF containing the (raw) register state the address in which a function should return its structure value, as a CORE_ADDR (or an expression that can be used as one). */ CORE_ADDR d10v_extract_struct_value_address (regbuf) char *regbuf; { return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM), REGISTER_RAW_SIZE (ARG1_REGNUM)) | DMEM_START); } CORE_ADDR d10v_frame_saved_pc (frame) struct frame_info *frame; { return ((frame)->extra_info->return_pc); } CORE_ADDR d10v_frame_args_address (fi) struct frame_info *fi; { return (fi)->frame; } CORE_ADDR d10v_frame_locals_address (fi) struct frame_info *fi; { return (fi)->frame; } /* Immediately after a function call, return the saved pc. We can't use frame->return_pc beause that is determined by reading R13 off the stack and that may not be written yet. */ CORE_ADDR d10v_saved_pc_after_call (frame) struct frame_info *frame; { return ((read_register (LR_REGNUM) << 2) | IMEM_START); } /* Discard from the stack the innermost frame, restoring all saved registers. */ void d10v_pop_frame () { generic_pop_current_frame (do_d10v_pop_frame); } static void do_d10v_pop_frame (fi) struct frame_info *fi; { CORE_ADDR fp; int regnum; char raw_buffer[8]; fp = FRAME_FP (fi); /* fill out fsr with the address of where each */ /* register was stored in the frame */ d10v_frame_init_saved_regs (fi); /* now update the current registers with the old values */ for (regnum = A0_REGNUM; regnum < A0_REGNUM + 2; regnum++) { if (fi->saved_regs[regnum]) { read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum)); write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum)); } } for (regnum = 0; regnum < SP_REGNUM; regnum++) { if (fi->saved_regs[regnum]) { write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum))); } } if (fi->saved_regs[PSW_REGNUM]) { write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM))); } write_register (PC_REGNUM, read_register (LR_REGNUM)); write_register (SP_REGNUM, fp + fi->extra_info->size); target_store_registers (-1); flush_cached_frames (); } static int check_prologue (op) unsigned short op; { /* st rn, @-sp */ if ((op & 0x7E1F) == 0x6C1F) return 1; /* st2w rn, @-sp */ if ((op & 0x7E3F) == 0x6E1F) return 1; /* subi sp, n */ if ((op & 0x7FE1) == 0x01E1) return 1; /* mv r11, sp */ if (op == 0x417E) return 1; /* nop */ if (op == 0x5E00) return 1; /* st rn, @sp */ if ((op & 0x7E1F) == 0x681E) return 1; /* st2w rn, @sp */ if ((op & 0x7E3F) == 0x3A1E) return 1; return 0; } CORE_ADDR d10v_skip_prologue (pc) CORE_ADDR pc; { unsigned long op; unsigned short op1, op2; CORE_ADDR func_addr, func_end; struct symtab_and_line sal; /* If we have line debugging information, then the end of the */ /* prologue should the first assembly instruction of the first source line */ if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) { sal = find_pc_line (func_addr, 0); if (sal.end && sal.end < func_end) return sal.end; } if (target_read_memory (pc, (char *) &op, 4)) return pc; /* Can't access it -- assume no prologue. */ while (1) { op = (unsigned long) read_memory_integer (pc, 4); if ((op & 0xC0000000) == 0xC0000000) { /* long instruction */ if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */ ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */ ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */ break; } else { /* short instructions */ if ((op & 0xC0000000) == 0x80000000) { op2 = (op & 0x3FFF8000) >> 15; op1 = op & 0x7FFF; } else { op1 = (op & 0x3FFF8000) >> 15; op2 = op & 0x7FFF; } if (check_prologue (op1)) { if (!check_prologue (op2)) { /* if the previous opcode was really part of the prologue */ /* and not just a NOP, then we want to break after both instructions */ if (op1 != 0x5E00) pc += 4; break; } } else break; } pc += 4; } return pc; } /* Given a GDB frame, determine the address of the calling function's frame. This will be used to create a new GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. */ CORE_ADDR d10v_frame_chain (fi) struct frame_info *fi; { d10v_frame_init_saved_regs (fi); if (fi->extra_info->return_pc == IMEM_START || inside_entry_file (fi->extra_info->return_pc)) return (CORE_ADDR) 0; if (!fi->saved_regs[FP_REGNUM]) { if (!fi->saved_regs[SP_REGNUM] || fi->saved_regs[SP_REGNUM] == STACK_START) return (CORE_ADDR) 0; return fi->saved_regs[SP_REGNUM]; } if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM], REGISTER_RAW_SIZE (FP_REGNUM))) return (CORE_ADDR) 0; return D10V_MAKE_DADDR (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM], REGISTER_RAW_SIZE (FP_REGNUM))); } static int next_addr, uses_frame; static int prologue_find_regs (op, fi, addr) unsigned short op; struct frame_info *fi; CORE_ADDR addr; { int n; /* st rn, @-sp */ if ((op & 0x7E1F) == 0x6C1F) { n = (op & 0x1E0) >> 5; next_addr -= 2; fi->saved_regs[n] = next_addr; return 1; } /* st2w rn, @-sp */ else if ((op & 0x7E3F) == 0x6E1F) { n = (op & 0x1E0) >> 5; next_addr -= 4; fi->saved_regs[n] = next_addr; fi->saved_regs[n + 1] = next_addr + 2; return 1; } /* subi sp, n */ if ((op & 0x7FE1) == 0x01E1) { n = (op & 0x1E) >> 1; if (n == 0) n = 16; next_addr -= n; return 1; } /* mv r11, sp */ if (op == 0x417E) { uses_frame = 1; return 1; } /* nop */ if (op == 0x5E00) return 1; /* st rn, @sp */ if ((op & 0x7E1F) == 0x681E) { n = (op & 0x1E0) >> 5; fi->saved_regs[n] = next_addr; return 1; } /* st2w rn, @sp */ if ((op & 0x7E3F) == 0x3A1E) { n = (op & 0x1E0) >> 5; fi->saved_regs[n] = next_addr; fi->saved_regs[n + 1] = next_addr + 2; return 1; } return 0; } /* Put here the code to store, into fi->saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. */ void d10v_frame_init_saved_regs (fi) struct frame_info *fi; { CORE_ADDR fp, pc; unsigned long op; unsigned short op1, op2; int i; fp = fi->frame; memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS); next_addr = 0; pc = get_pc_function_start (fi->pc); uses_frame = 0; while (1) { op = (unsigned long) read_memory_integer (pc, 4); if ((op & 0xC0000000) == 0xC0000000) { /* long instruction */ if ((op & 0x3FFF0000) == 0x01FF0000) { /* add3 sp,sp,n */ short n = op & 0xFFFF; next_addr += n; } else if ((op & 0x3F0F0000) == 0x340F0000) { /* st rn, @(offset,sp) */ short offset = op & 0xFFFF; short n = (op >> 20) & 0xF; fi->saved_regs[n] = next_addr + offset; } else if ((op & 0x3F1F0000) == 0x350F0000) { /* st2w rn, @(offset,sp) */ short offset = op & 0xFFFF; short n = (op >> 20) & 0xF; fi->saved_regs[n] = next_addr + offset; fi->saved_regs[n + 1] = next_addr + offset + 2; } else break; } else { /* short instructions */ if ((op & 0xC0000000) == 0x80000000) { op2 = (op & 0x3FFF8000) >> 15; op1 = op & 0x7FFF; } else { op1 = (op & 0x3FFF8000) >> 15; op2 = op & 0x7FFF; } if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc)) break; } pc += 4; } fi->extra_info->size = -next_addr; if (!(fp & 0xffff)) fp = D10V_MAKE_DADDR (read_register (SP_REGNUM)); for (i = 0; i < NUM_REGS - 1; i++) if (fi->saved_regs[i]) { fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]); } if (fi->saved_regs[LR_REGNUM]) { CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM)); fi->extra_info->return_pc = D10V_MAKE_IADDR (return_pc); } else { fi->extra_info->return_pc = D10V_MAKE_IADDR (read_register (LR_REGNUM)); } /* th SP is not normally (ever?) saved, but check anyway */ if (!fi->saved_regs[SP_REGNUM]) { /* if the FP was saved, that means the current FP is valid, */ /* otherwise, it isn't being used, so we use the SP instead */ if (uses_frame) fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size; else { fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size; fi->extra_info->frameless = 1; fi->saved_regs[FP_REGNUM] = 0; } } } void d10v_init_extra_frame_info (fromleaf, fi) int fromleaf; struct frame_info *fi; { fi->extra_info = (struct frame_extra_info *) frame_obstack_alloc (sizeof (struct frame_extra_info)); frame_saved_regs_zalloc (fi); fi->extra_info->frameless = 0; fi->extra_info->size = 0; fi->extra_info->return_pc = 0; /* The call dummy doesn't save any registers on the stack, so we can return now. */ if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) { return; } else { d10v_frame_init_saved_regs (fi); } } static void show_regs (args, from_tty) char *args; int from_tty; { int a; printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n", (long) read_register (PC_REGNUM), (long) D10V_MAKE_IADDR (read_register (PC_REGNUM)), (long) read_register (PSW_REGNUM), (long) read_register (24), (long) read_register (25), (long) read_register (23)); printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n", (long) read_register (0), (long) read_register (1), (long) read_register (2), (long) read_register (3), (long) read_register (4), (long) read_register (5), (long) read_register (6), (long) read_register (7)); printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n", (long) read_register (8), (long) read_register (9), (long) read_register (10), (long) read_register (11), (long) read_register (12), (long) read_register (13), (long) read_register (14), (long) read_register (15)); printf_filtered ("IMAP0 %04lx IMAP1 %04lx DMAP %04lx\n", (long) read_register (IMAP0_REGNUM), (long) read_register (IMAP1_REGNUM), (long) read_register (DMAP_REGNUM)); printf_filtered ("A0-A1"); for (a = A0_REGNUM; a <= A0_REGNUM + 1; a++) { char num[MAX_REGISTER_RAW_SIZE]; int i; printf_filtered (" "); read_register_gen (a, (char *) &num); for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++) { printf_filtered ("%02x", (num[i] & 0xff)); } } printf_filtered ("\n"); } CORE_ADDR d10v_read_pc (pid) int pid; { int save_pid; CORE_ADDR pc; CORE_ADDR retval; save_pid = inferior_pid; inferior_pid = pid; pc = (int) read_register (PC_REGNUM); inferior_pid = save_pid; retval = D10V_MAKE_IADDR (pc); return retval; } void d10v_write_pc (val, pid) CORE_ADDR val; int pid; { int save_pid; save_pid = inferior_pid; inferior_pid = pid; write_register (PC_REGNUM, D10V_CONVERT_IADDR_TO_RAW (val)); inferior_pid = save_pid; } CORE_ADDR d10v_read_sp () { return (D10V_MAKE_DADDR (read_register (SP_REGNUM))); } void d10v_write_sp (val) CORE_ADDR val; { write_register (SP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val)); } void d10v_write_fp (val) CORE_ADDR val; { write_register (FP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val)); } CORE_ADDR d10v_read_fp () { return (D10V_MAKE_DADDR (read_register (FP_REGNUM))); } /* Function: push_return_address (pc) Set up the return address for the inferior function call. Needed for targets where we don't actually execute a JSR/BSR instruction */ CORE_ADDR d10v_push_return_address (pc, sp) CORE_ADDR pc; CORE_ADDR sp; { write_register (LR_REGNUM, D10V_CONVERT_IADDR_TO_RAW (CALL_DUMMY_ADDRESS ())); return sp; } /* When arguments must be pushed onto the stack, they go on in reverse order. The below implements a FILO (stack) to do this. */ struct stack_item { int len; struct stack_item *prev; void *data; }; static struct stack_item *push_stack_item PARAMS ((struct stack_item * prev, void *contents, int len)); static struct stack_item * push_stack_item (prev, contents, len) struct stack_item *prev; void *contents; int len; { struct stack_item *si; si = xmalloc (sizeof (struct stack_item)); si->data = xmalloc (len); si->len = len; si->prev = prev; memcpy (si->data, contents, len); return si; } static struct stack_item *pop_stack_item PARAMS ((struct stack_item * si)); static struct stack_item * pop_stack_item (si) struct stack_item *si; { struct stack_item *dead = si; si = si->prev; free (dead->data); free (dead); return si; } CORE_ADDR d10v_push_arguments (nargs, args, sp, struct_return, struct_addr) int nargs; value_ptr *args; CORE_ADDR sp; int struct_return; CORE_ADDR struct_addr; { int i; int regnum = ARG1_REGNUM; struct stack_item *si = NULL; /* Fill in registers and arg lists */ for (i = 0; i < nargs; i++) { value_ptr arg = args[i]; struct type *type = check_typedef (VALUE_TYPE (arg)); char *contents = VALUE_CONTENTS (arg); int len = TYPE_LENGTH (type); /* printf ("push: type=%d len=%d\n", type->code, len); */ if (TYPE_CODE (type) == TYPE_CODE_PTR) { /* pointers require special handling - first convert and then store */ long val = extract_signed_integer (contents, len); len = 2; if (TYPE_TARGET_TYPE (type) && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)) { /* function pointer */ val = D10V_CONVERT_IADDR_TO_RAW (val); } else if (D10V_IADDR_P (val)) { /* also function pointer! */ val = D10V_CONVERT_DADDR_TO_RAW (val); } else { /* data pointer */ val &= 0xFFFF; } if (regnum <= ARGN_REGNUM) write_register (regnum++, val & 0xffff); else { char ptr[2]; /* arg will go onto stack */ store_address (ptr, 2, val & 0xffff); si = push_stack_item (si, ptr, 2); } } else { int aligned_regnum = (regnum + 1) & ~1; if (len <= 2 && regnum <= ARGN_REGNUM) /* fits in a single register, do not align */ { long val = extract_unsigned_integer (contents, len); write_register (regnum++, val); } else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2) /* value fits in remaining registers, store keeping left aligned */ { int b; regnum = aligned_regnum; for (b = 0; b < (len & ~1); b += 2) { long val = extract_unsigned_integer (&contents[b], 2); write_register (regnum++, val); } if (b < len) { long val = extract_unsigned_integer (&contents[b], 1); write_register (regnum++, (val << 8)); } } else { /* arg will go onto stack */ regnum = ARGN_REGNUM + 1; si = push_stack_item (si, contents, len); } } } while (si) { sp = (sp - si->len) & ~1; write_memory (sp, si->data, si->len); si = pop_stack_item (si); } return sp; } /* Given a return value in `regbuf' with a type `valtype', extract and copy its value into `valbuf'. */ void d10v_extract_return_value (type, regbuf, valbuf) struct type *type; char regbuf[REGISTER_BYTES]; char *valbuf; { int len; /* printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */ if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_TARGET_TYPE (type) && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)) { /* pointer to function */ int num; short snum; snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM)); store_address (valbuf, 4, D10V_MAKE_IADDR (snum)); } else if (TYPE_CODE (type) == TYPE_CODE_PTR) { /* pointer to data */ int num; short snum; snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM)); store_address (valbuf, 4, D10V_MAKE_DADDR (snum)); } else { len = TYPE_LENGTH (type); if (len == 1) { unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM)); store_unsigned_integer (valbuf, 1, c); } else if ((len & 1) == 0) memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len); else { /* For return values of odd size, the first byte is in the least significant part of the first register. The remaining bytes in remaining registers. Interestingly, when such values are passed in, the last byte is in the most significant byte of that same register - wierd. */ memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len); } } } /* Translate a GDB virtual ADDR/LEN into a format the remote target understands. Returns number of bytes that can be transfered starting at taddr, ZERO if no bytes can be transfered. */ void remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes, CORE_ADDR *targ_addr, int *targ_len) { CORE_ADDR phys; CORE_ADDR seg; CORE_ADDR off; char *from = "unknown"; char *to = "unknown"; /* GDB interprets addresses as: 0x00xxxxxx: Physical unified memory segment (Unified memory) 0x01xxxxxx: Physical instruction memory segment (On-chip insn memory) 0x02xxxxxx: Physical data memory segment (On-chip data memory) 0x10xxxxxx: Logical data address segment (DMAP translated memory) 0x11xxxxxx: Logical instruction address segment (IMAP translated memory) The remote d10v board interprets addresses as: 0x00xxxxxx: Physical unified memory segment (Unified memory) 0x01xxxxxx: Physical instruction memory segment (On-chip insn memory) 0x02xxxxxx: Physical data memory segment (On-chip data memory) Translate according to current IMAP/dmap registers */ enum { targ_unified = 0x00000000, targ_insn = 0x01000000, targ_data = 0x02000000, }; seg = (memaddr >> 24); off = (memaddr & 0xffffffL); switch (seg) { case 0x00: /* Physical unified memory */ from = "phys-unified"; phys = targ_unified | off; to = "unified"; break; case 0x01: /* Physical instruction memory */ from = "phys-insn"; phys = targ_insn | off; to = "chip-insn"; break; case 0x02: /* Physical data memory segment */ from = "phys-data"; phys = targ_data | off; to = "chip-data"; break; case 0x10: /* in logical data address segment */ { from = "logical-data"; if (off <= 0x7fffL) { /* On chip data */ phys = targ_data + off; if (off + nr_bytes > 0x7fffL) /* don't cross VM boundary */ nr_bytes = 0x7fffL - off + 1; to = "chip-data"; } else if (off <= 0xbfffL) { unsigned short dmap = read_register (DMAP_REGNUM); short map = dmap; if (map & 0x1000) { /* Instruction memory */ phys = targ_insn | ((map & 0xf) << 14) | (off & 0x3fff); to = "chip-insn"; } else { /* Unified memory */ phys = targ_unified | ((map & 0x3ff) << 14) | (off & 0x3fff); to = "unified"; } if (off + nr_bytes > 0xbfffL) /* don't cross VM boundary */ nr_bytes = (0xbfffL - off + 1); } else { /* Logical address out side of data segments, not supported */ *targ_len = 0; return; } break; } case 0x11: /* in logical instruction address segment */ { short map; unsigned short imap0 = read_register (IMAP0_REGNUM); unsigned short imap1 = read_register (IMAP1_REGNUM); from = "logical-insn"; if (off <= 0x1ffffL) { map = imap0; } else if (off <= 0x3ffffL) { map = imap1; } else { /* Logical address outside of IMAP[01] segment, not supported */ *targ_len = 0; return; } if ((off & 0x1ffff) + nr_bytes > 0x1ffffL) { /* don't cross VM boundary */ nr_bytes = 0x1ffffL - (off & 0x1ffffL) + 1; } if (map & 0x1000) /* Instruction memory */ { phys = targ_insn | off; to = "chip-insn"; } else { phys = ((map & 0x7fL) << 17) + (off & 0x1ffffL); if (phys > 0xffffffL) { /* Address outside of unified address segment */ *targ_len = 0; return; } phys |= targ_unified; to = "unified"; } break; } default: *targ_len = 0; return; } *targ_addr = phys; *targ_len = nr_bytes; } /* The following code implements access to, and display of, the D10V's instruction trace buffer. The buffer consists of 64K or more 4-byte words of data, of which each words includes an 8-bit count, an 8-bit segment number, and a 16-bit instruction address. In theory, the trace buffer is continuously capturing instruction data that the CPU presents on its "debug bus", but in practice, the ROMified GDB stub only enables tracing when it continues or steps the program, and stops tracing when the program stops; so it actually works for GDB to read the buffer counter out of memory and then read each trace word. The counter records where the tracing stops, but there is no record of where it started, so we remember the PC when we resumed and then search backwards in the trace buffer for a word that includes that address. This is not perfect, because you will miss trace data if the resumption PC is the target of a branch. (The value of the buffer counter is semi-random, any trace data from a previous program stop is gone.) */ /* The address of the last word recorded in the trace buffer. */ #define DBBC_ADDR (0xd80000) /* The base of the trace buffer, at least for the "Board_0". */ #define TRACE_BUFFER_BASE (0xf40000) static void trace_command PARAMS ((char *, int)); static void untrace_command PARAMS ((char *, int)); static void trace_info PARAMS ((char *, int)); static void tdisassemble_command PARAMS ((char *, int)); static void display_trace PARAMS ((int, int)); /* True when instruction traces are being collected. */ static int tracing; /* Remembered PC. */ static CORE_ADDR last_pc; /* True when trace output should be displayed whenever program stops. */ static int trace_display; /* True when trace listing should include source lines. */ static int default_trace_show_source = 1; struct trace_buffer { int size; short *counts; CORE_ADDR *addrs; } trace_data; static void trace_command (args, from_tty) char *args; int from_tty; { /* Clear the host-side trace buffer, allocating space if needed. */ trace_data.size = 0; if (trace_data.counts == NULL) trace_data.counts = (short *) xmalloc (65536 * sizeof (short)); if (trace_data.addrs == NULL) trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR)); tracing = 1; printf_filtered ("Tracing is now on.\n"); } static void untrace_command (args, from_tty) char *args; int from_tty; { tracing = 0; printf_filtered ("Tracing is now off.\n"); } static void trace_info (args, from_tty) char *args; int from_tty; { int i; if (trace_data.size) { printf_filtered ("%d entries in trace buffer:\n", trace_data.size); for (i = 0; i < trace_data.size; ++i) { printf_filtered ("%d: %d instruction%s at 0x%s\n", i, trace_data.counts[i], (trace_data.counts[i] == 1 ? "" : "s"), paddr_nz (trace_data.addrs[i])); } } else printf_filtered ("No entries in trace buffer.\n"); printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off")); } /* Print the instruction at address MEMADDR in debugged memory, on STREAM. Returns length of the instruction, in bytes. */ static int print_insn (memaddr, stream) CORE_ADDR memaddr; GDB_FILE *stream; { /* If there's no disassembler, something is very wrong. */ if (tm_print_insn == NULL) internal_error ("print_insn: no disassembler"); if (TARGET_BYTE_ORDER == BIG_ENDIAN) tm_print_insn_info.endian = BFD_ENDIAN_BIG; else tm_print_insn_info.endian = BFD_ENDIAN_LITTLE; return (*tm_print_insn) (memaddr, &tm_print_insn_info); } static void d10v_eva_prepare_to_trace () { if (!tracing) return; last_pc = read_register (PC_REGNUM); } /* Collect trace data from the target board and format it into a form more useful for display. */ static void d10v_eva_get_trace_data () { int count, i, j, oldsize; int trace_addr, trace_seg, trace_cnt, next_cnt; unsigned int last_trace, trace_word, next_word; unsigned int *tmpspace; if (!tracing) return; tmpspace = xmalloc (65536 * sizeof (unsigned int)); last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2; /* Collect buffer contents from the target, stopping when we reach the word recorded when execution resumed. */ count = 0; while (last_trace > 0) { QUIT; trace_word = read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4); trace_addr = trace_word & 0xffff; last_trace -= 4; /* Ignore an apparently nonsensical entry. */ if (trace_addr == 0xffd5) continue; tmpspace[count++] = trace_word; if (trace_addr == last_pc) break; if (count > 65535) break; } /* Move the data to the host-side trace buffer, adjusting counts to include the last instruction executed and transforming the address into something that GDB likes. */ for (i = 0; i < count; ++i) { trace_word = tmpspace[i]; next_word = ((i == 0) ? 0 : tmpspace[i - 1]); trace_addr = trace_word & 0xffff; next_cnt = (next_word >> 24) & 0xff; j = trace_data.size + count - i - 1; trace_data.addrs[j] = (trace_addr << 2) + 0x1000000; trace_data.counts[j] = next_cnt + 1; } oldsize = trace_data.size; trace_data.size += count; free (tmpspace); if (trace_display) display_trace (oldsize, trace_data.size); } static void tdisassemble_command (arg, from_tty) char *arg; int from_tty; { int i, count; CORE_ADDR low, high; char *space_index; if (!arg) { low = 0; high = trace_data.size; } else if (!(space_index = (char *) strchr (arg, ' '))) { low = parse_and_eval_address (arg); high = low + 5; } else { /* Two arguments. */ *space_index = '\0'; low = parse_and_eval_address (arg); high = parse_and_eval_address (space_index + 1); if (high < low) high = low; } printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high)); display_trace (low, high); printf_filtered ("End of trace dump.\n"); gdb_flush (gdb_stdout); } static void display_trace (low, high) int low, high; { int i, count, trace_show_source, first, suppress; CORE_ADDR next_address; trace_show_source = default_trace_show_source; if (!have_full_symbols () && !have_partial_symbols ()) { trace_show_source = 0; printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n"); printf_filtered ("Trace will not display any source.\n"); } first = 1; suppress = 0; for (i = low; i < high; ++i) { next_address = trace_data.addrs[i]; count = trace_data.counts[i]; while (count-- > 0) { QUIT; if (trace_show_source) { struct symtab_and_line sal, sal_prev; sal_prev = find_pc_line (next_address - 4, 0); sal = find_pc_line (next_address, 0); if (sal.symtab) { if (first || sal.line != sal_prev.line) print_source_lines (sal.symtab, sal.line, sal.line + 1, 0); suppress = 0; } else { if (!suppress) /* FIXME-32x64--assumes sal.pc fits in long. */ printf_filtered ("No source file for address %s.\n", local_hex_string ((unsigned long) sal.pc)); suppress = 1; } } first = 0; print_address (next_address, gdb_stdout); printf_filtered (":"); printf_filtered ("\t"); wrap_here (" "); next_address = next_address + print_insn (next_address, gdb_stdout); printf_filtered ("\n"); gdb_flush (gdb_stdout); } } } static gdbarch_init_ftype d10v_gdbarch_init; static struct gdbarch * d10v_gdbarch_init (info, arches) struct gdbarch_info info; struct gdbarch_list *arches; { static LONGEST d10v_call_dummy_words[] = {0}; struct gdbarch *gdbarch; int d10v_num_regs = 37; /* there is only one d10v architecture */ if (arches != NULL) return arches->gdbarch; gdbarch = gdbarch_alloc (&info, NULL); set_gdbarch_read_pc (gdbarch, d10v_read_pc); set_gdbarch_write_pc (gdbarch, d10v_write_pc); set_gdbarch_read_fp (gdbarch, d10v_read_fp); set_gdbarch_write_fp (gdbarch, d10v_write_fp); set_gdbarch_read_sp (gdbarch, d10v_read_sp); set_gdbarch_write_sp (gdbarch, d10v_write_sp); set_gdbarch_num_regs (gdbarch, d10v_num_regs); set_gdbarch_sp_regnum (gdbarch, 15); set_gdbarch_fp_regnum (gdbarch, 11); set_gdbarch_pc_regnum (gdbarch, 18); set_gdbarch_register_name (gdbarch, d10v_register_name); set_gdbarch_register_size (gdbarch, 2); set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16); set_gdbarch_register_byte (gdbarch, d10v_register_byte); set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size); set_gdbarch_max_register_raw_size (gdbarch, 8); set_gdbarch_register_virtual_size (gdbarch, d10v_register_virtual_size); set_gdbarch_max_register_virtual_size (gdbarch, 8); set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type); set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); set_gdbarch_use_generic_dummy_frames (gdbarch, 1); set_gdbarch_call_dummy_length (gdbarch, 0); set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); set_gdbarch_call_dummy_address (gdbarch, entry_point_address); set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); set_gdbarch_call_dummy_start_offset (gdbarch, 0); set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy); set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words); set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words)); set_gdbarch_call_dummy_p (gdbarch, 1); set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register); set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy); set_gdbarch_register_convertible (gdbarch, d10v_register_convertible); set_gdbarch_register_convert_to_virtual (gdbarch, d10v_register_convert_to_virtual); set_gdbarch_register_convert_to_raw (gdbarch, d10v_register_convert_to_raw); set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value); set_gdbarch_push_arguments (gdbarch, d10v_push_arguments); set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); set_gdbarch_push_return_address (gdbarch, d10v_push_return_address); set_gdbarch_d10v_make_daddr (gdbarch, d10v_make_daddr); set_gdbarch_d10v_make_iaddr (gdbarch, d10v_make_iaddr); set_gdbarch_d10v_daddr_p (gdbarch, d10v_daddr_p); set_gdbarch_d10v_iaddr_p (gdbarch, d10v_iaddr_p); set_gdbarch_d10v_convert_daddr_to_raw (gdbarch, d10v_convert_daddr_to_raw); set_gdbarch_d10v_convert_iaddr_to_raw (gdbarch, d10v_convert_iaddr_to_raw); set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return); set_gdbarch_store_return_value (gdbarch, d10v_store_return_value); set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address); set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention); set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs); set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info); set_gdbarch_pop_frame (gdbarch, d10v_pop_frame); set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue); set_gdbarch_inner_than (gdbarch, core_addr_lessthan); set_gdbarch_decr_pc_after_break (gdbarch, 4); set_gdbarch_function_start_offset (gdbarch, 0); set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc); set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address); set_gdbarch_frame_args_skip (gdbarch, 0); set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue); set_gdbarch_frame_chain (gdbarch, d10v_frame_chain); set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid); set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc); set_gdbarch_frame_args_address (gdbarch, d10v_frame_args_address); set_gdbarch_frame_locals_address (gdbarch, d10v_frame_locals_address); set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call); set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); return gdbarch; } extern void (*target_resume_hook) PARAMS ((void)); extern void (*target_wait_loop_hook) PARAMS ((void)); void _initialize_d10v_tdep () { register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init); tm_print_insn = print_insn_d10v; target_resume_hook = d10v_eva_prepare_to_trace; target_wait_loop_hook = d10v_eva_get_trace_data; add_com ("regs", class_vars, show_regs, "Print all registers"); add_com ("itrace", class_support, trace_command, "Enable tracing of instruction execution."); add_com ("iuntrace", class_support, untrace_command, "Disable tracing of instruction execution."); add_com ("itdisassemble", class_vars, tdisassemble_command, "Disassemble the trace buffer.\n\ Two optional arguments specify a range of trace buffer entries\n\ as reported by info trace (NOT addresses!)."); add_info ("itrace", trace_info, "Display info about the trace data buffer."); add_show_from_set (add_set_cmd ("itracedisplay", no_class, var_integer, (char *) &trace_display, "Set automatic display of trace.\n", &setlist), &showlist); add_show_from_set (add_set_cmd ("itracesource", no_class, var_integer, (char *) &default_trace_show_source, "Set display of source code with trace.\n", &setlist), &showlist); }