/* Helper routines for C++ support in GDB. Copyright (C) 2002-2017 Free Software Foundation, Inc. Contributed by MontaVista Software. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "cp-support.h" #include "demangle.h" #include "gdbcmd.h" #include "dictionary.h" #include "objfiles.h" #include "frame.h" #include "symtab.h" #include "block.h" #include "complaints.h" #include "gdbtypes.h" #include "expression.h" #include "value.h" #include "cp-abi.h" #include "namespace.h" #include #include "gdb_setjmp.h" #include "safe-ctype.h" #define d_left(dc) (dc)->u.s_binary.left #define d_right(dc) (dc)->u.s_binary.right /* Functions related to demangled name parsing. */ static unsigned int cp_find_first_component_aux (const char *name, int permissive); static void demangled_name_complaint (const char *name); /* Functions/variables related to overload resolution. */ static int sym_return_val_size = -1; static int sym_return_val_index; static struct symbol **sym_return_val; static void overload_list_add_symbol (struct symbol *sym, const char *oload_name); static void make_symbol_overload_list_using (const char *func_name, const char *the_namespace); static void make_symbol_overload_list_qualified (const char *func_name); /* The list of "maint cplus" commands. */ struct cmd_list_element *maint_cplus_cmd_list = NULL; /* A list of typedefs which should not be substituted by replace_typedefs. */ static const char * const ignore_typedefs[] = { "std::istream", "std::iostream", "std::ostream", "std::string" }; static void replace_typedefs (struct demangle_parse_info *info, struct demangle_component *ret_comp, canonicalization_ftype *finder, void *data); /* A convenience function to copy STRING into OBSTACK, returning a pointer to the newly allocated string and saving the number of bytes saved in LEN. It does not copy the terminating '\0' byte! */ static char * copy_string_to_obstack (struct obstack *obstack, const char *string, long *len) { *len = strlen (string); return (char *) obstack_copy (obstack, string, *len); } /* Return 1 if STRING is clearly already in canonical form. This function is conservative; things which it does not recognize are assumed to be non-canonical, and the parser will sort them out afterwards. This speeds up the critical path for alphanumeric identifiers. */ static int cp_already_canonical (const char *string) { /* Identifier start character [a-zA-Z_]. */ if (!ISIDST (string[0])) return 0; /* These are the only two identifiers which canonicalize to other than themselves or an error: unsigned -> unsigned int and signed -> int. */ if (string[0] == 'u' && strcmp (&string[1], "nsigned") == 0) return 0; else if (string[0] == 's' && strcmp (&string[1], "igned") == 0) return 0; /* Identifier character [a-zA-Z0-9_]. */ while (ISIDNUM (string[1])) string++; if (string[1] == '\0') return 1; else return 0; } /* Inspect the given RET_COMP for its type. If it is a typedef, replace the node with the typedef's tree. Returns 1 if any typedef substitutions were made, 0 otherwise. */ static int inspect_type (struct demangle_parse_info *info, struct demangle_component *ret_comp, canonicalization_ftype *finder, void *data) { int i; char *name; struct symbol *sym; /* Copy the symbol's name from RET_COMP and look it up in the symbol table. */ name = (char *) alloca (ret_comp->u.s_name.len + 1); memcpy (name, ret_comp->u.s_name.s, ret_comp->u.s_name.len); name[ret_comp->u.s_name.len] = '\0'; /* Ignore any typedefs that should not be substituted. */ for (i = 0; i < ARRAY_SIZE (ignore_typedefs); ++i) { if (strcmp (name, ignore_typedefs[i]) == 0) return 0; } sym = NULL; TRY { sym = lookup_symbol (name, 0, VAR_DOMAIN, 0).symbol; } CATCH (except, RETURN_MASK_ALL) { return 0; } END_CATCH if (sym != NULL) { struct type *otype = SYMBOL_TYPE (sym); if (finder != NULL) { const char *new_name = (*finder) (otype, data); if (new_name != NULL) { ret_comp->u.s_name.s = new_name; ret_comp->u.s_name.len = strlen (new_name); return 1; } return 0; } /* If the type is a typedef or namespace alias, replace it. */ if (TYPE_CODE (otype) == TYPE_CODE_TYPEDEF || TYPE_CODE (otype) == TYPE_CODE_NAMESPACE) { long len; int is_anon; struct type *type; std::unique_ptr i; /* Get the real type of the typedef. */ type = check_typedef (otype); /* If the symbol is a namespace and its type name is no different than the name we looked up, this symbol is not a namespace alias and does not need to be substituted. */ if (TYPE_CODE (otype) == TYPE_CODE_NAMESPACE && strcmp (TYPE_NAME (type), name) == 0) return 0; is_anon = (TYPE_TAG_NAME (type) == NULL && (TYPE_CODE (type) == TYPE_CODE_ENUM || TYPE_CODE (type) == TYPE_CODE_STRUCT || TYPE_CODE (type) == TYPE_CODE_UNION)); if (is_anon) { struct type *last = otype; /* Find the last typedef for the type. */ while (TYPE_TARGET_TYPE (last) != NULL && (TYPE_CODE (TYPE_TARGET_TYPE (last)) == TYPE_CODE_TYPEDEF)) last = TYPE_TARGET_TYPE (last); /* If there is only one typedef for this anonymous type, do not substitute it. */ if (type == otype) return 0; else /* Use the last typedef seen as the type for this anonymous type. */ type = last; } string_file buf; TRY { type_print (type, "", &buf, -1); } /* If type_print threw an exception, there is little point in continuing, so just bow out gracefully. */ CATCH (except, RETURN_MASK_ERROR) { return 0; } END_CATCH len = buf.size (); name = (char *) obstack_copy0 (&info->obstack, buf.c_str (), len); /* Turn the result into a new tree. Note that this tree will contain pointers into NAME, so NAME cannot be free'd until all typedef conversion is done and the final result is converted into a string. */ i = cp_demangled_name_to_comp (name, NULL); if (i != NULL) { /* Merge the two trees. */ cp_merge_demangle_parse_infos (info, ret_comp, i.get ()); /* Replace any newly introduced typedefs -- but not if the type is anonymous (that would lead to infinite looping). */ if (!is_anon) replace_typedefs (info, ret_comp, finder, data); } else { /* This shouldn't happen unless the type printer has output something that the name parser cannot grok. Nonetheless, an ounce of prevention... Canonicalize the name again, and store it in the current node (RET_COMP). */ std::string canon = cp_canonicalize_string_no_typedefs (name); if (!canon.empty ()) { /* Copy the canonicalization into the obstack. */ name = copy_string_to_obstack (&info->obstack, canon.c_str (), &len); } ret_comp->u.s_name.s = name; ret_comp->u.s_name.len = len; } return 1; } } return 0; } /* Replace any typedefs appearing in the qualified name (DEMANGLE_COMPONENT_QUAL_NAME) represented in RET_COMP for the name parse given in INFO. */ static void replace_typedefs_qualified_name (struct demangle_parse_info *info, struct demangle_component *ret_comp, canonicalization_ftype *finder, void *data) { string_file buf; struct demangle_component *comp = ret_comp; /* Walk each node of the qualified name, reconstructing the name of this element. With every node, check for any typedef substitutions. If a substitution has occurred, replace the qualified name node with a DEMANGLE_COMPONENT_NAME node representing the new, typedef- substituted name. */ while (comp->type == DEMANGLE_COMPONENT_QUAL_NAME) { if (d_left (comp)->type == DEMANGLE_COMPONENT_NAME) { struct demangle_component newobj; buf.write (d_left (comp)->u.s_name.s, d_left (comp)->u.s_name.len); newobj.type = DEMANGLE_COMPONENT_NAME; newobj.u.s_name.s = (char *) obstack_copy0 (&info->obstack, buf.c_str (), buf.size ()); newobj.u.s_name.len = buf.size (); if (inspect_type (info, &newobj, finder, data)) { char *s; long slen; /* A typedef was substituted in NEW. Convert it to a string and replace the top DEMANGLE_COMPONENT_QUAL_NAME node. */ buf.clear (); gdb::unique_xmalloc_ptr n = cp_comp_to_string (&newobj, 100); if (n == NULL) { /* If something went astray, abort typedef substitutions. */ return; } s = copy_string_to_obstack (&info->obstack, n.get (), &slen); d_left (ret_comp)->type = DEMANGLE_COMPONENT_NAME; d_left (ret_comp)->u.s_name.s = s; d_left (ret_comp)->u.s_name.len = slen; d_right (ret_comp) = d_right (comp); comp = ret_comp; continue; } } else { /* The current node is not a name, so simply replace any typedefs in it. Then print it to the stream to continue checking for more typedefs in the tree. */ replace_typedefs (info, d_left (comp), finder, data); gdb::unique_xmalloc_ptr name = cp_comp_to_string (d_left (comp), 100); if (name == NULL) { /* If something went astray, abort typedef substitutions. */ return; } buf.puts (name.get ()); } buf.write ("::", 2); comp = d_right (comp); } /* If the next component is DEMANGLE_COMPONENT_NAME, save the qualified name assembled above and append the name given by COMP. Then use this reassembled name to check for a typedef. */ if (comp->type == DEMANGLE_COMPONENT_NAME) { buf.write (comp->u.s_name.s, comp->u.s_name.len); /* Replace the top (DEMANGLE_COMPONENT_QUAL_NAME) node with a DEMANGLE_COMPONENT_NAME node containing the whole name. */ ret_comp->type = DEMANGLE_COMPONENT_NAME; ret_comp->u.s_name.s = (char *) obstack_copy0 (&info->obstack, buf.c_str (), buf.size ()); ret_comp->u.s_name.len = buf.size (); inspect_type (info, ret_comp, finder, data); } else replace_typedefs (info, comp, finder, data); } /* A function to check const and volatile qualifiers for argument types. "Parameter declarations that differ only in the presence or absence of `const' and/or `volatile' are equivalent." C++ Standard N3290, clause 13.1.3 #4. */ static void check_cv_qualifiers (struct demangle_component *ret_comp) { while (d_left (ret_comp) != NULL && (d_left (ret_comp)->type == DEMANGLE_COMPONENT_CONST || d_left (ret_comp)->type == DEMANGLE_COMPONENT_VOLATILE)) { d_left (ret_comp) = d_left (d_left (ret_comp)); } } /* Walk the parse tree given by RET_COMP, replacing any typedefs with their basic types. */ static void replace_typedefs (struct demangle_parse_info *info, struct demangle_component *ret_comp, canonicalization_ftype *finder, void *data) { if (ret_comp) { if (finder != NULL && (ret_comp->type == DEMANGLE_COMPONENT_NAME || ret_comp->type == DEMANGLE_COMPONENT_QUAL_NAME || ret_comp->type == DEMANGLE_COMPONENT_TEMPLATE || ret_comp->type == DEMANGLE_COMPONENT_BUILTIN_TYPE)) { gdb::unique_xmalloc_ptr local_name = cp_comp_to_string (ret_comp, 10); if (local_name != NULL) { struct symbol *sym = NULL; sym = NULL; TRY { sym = lookup_symbol (local_name.get (), 0, VAR_DOMAIN, 0).symbol; } CATCH (except, RETURN_MASK_ALL) { } END_CATCH if (sym != NULL) { struct type *otype = SYMBOL_TYPE (sym); const char *new_name = (*finder) (otype, data); if (new_name != NULL) { ret_comp->type = DEMANGLE_COMPONENT_NAME; ret_comp->u.s_name.s = new_name; ret_comp->u.s_name.len = strlen (new_name); return; } } } } switch (ret_comp->type) { case DEMANGLE_COMPONENT_ARGLIST: check_cv_qualifiers (ret_comp); /* Fall through */ case DEMANGLE_COMPONENT_FUNCTION_TYPE: case DEMANGLE_COMPONENT_TEMPLATE: case DEMANGLE_COMPONENT_TEMPLATE_ARGLIST: case DEMANGLE_COMPONENT_TYPED_NAME: replace_typedefs (info, d_left (ret_comp), finder, data); replace_typedefs (info, d_right (ret_comp), finder, data); break; case DEMANGLE_COMPONENT_NAME: inspect_type (info, ret_comp, finder, data); break; case DEMANGLE_COMPONENT_QUAL_NAME: replace_typedefs_qualified_name (info, ret_comp, finder, data); break; case DEMANGLE_COMPONENT_LOCAL_NAME: case DEMANGLE_COMPONENT_CTOR: case DEMANGLE_COMPONENT_ARRAY_TYPE: case DEMANGLE_COMPONENT_PTRMEM_TYPE: replace_typedefs (info, d_right (ret_comp), finder, data); break; case DEMANGLE_COMPONENT_CONST: case DEMANGLE_COMPONENT_RESTRICT: case DEMANGLE_COMPONENT_VOLATILE: case DEMANGLE_COMPONENT_VOLATILE_THIS: case DEMANGLE_COMPONENT_CONST_THIS: case DEMANGLE_COMPONENT_RESTRICT_THIS: case DEMANGLE_COMPONENT_POINTER: case DEMANGLE_COMPONENT_REFERENCE: case DEMANGLE_COMPONENT_RVALUE_REFERENCE: replace_typedefs (info, d_left (ret_comp), finder, data); break; default: break; } } } /* Parse STRING and convert it to canonical form, resolving any typedefs. If parsing fails, or if STRING is already canonical, return the empty string. Otherwise return the canonical form. If FINDER is not NULL, then type components are passed to FINDER to be looked up. DATA is passed verbatim to FINDER. */ std::string cp_canonicalize_string_full (const char *string, canonicalization_ftype *finder, void *data) { std::string ret; unsigned int estimated_len; std::unique_ptr info; estimated_len = strlen (string) * 2; info = cp_demangled_name_to_comp (string, NULL); if (info != NULL) { /* Replace all the typedefs in the tree. */ replace_typedefs (info.get (), info->tree, finder, data); /* Convert the tree back into a string. */ gdb::unique_xmalloc_ptr us = cp_comp_to_string (info->tree, estimated_len); gdb_assert (us); ret = us.get (); /* Finally, compare the original string with the computed name, returning NULL if they are the same. */ if (ret == string) return std::string (); } return ret; } /* Like cp_canonicalize_string_full, but always passes NULL for FINDER. */ std::string cp_canonicalize_string_no_typedefs (const char *string) { return cp_canonicalize_string_full (string, NULL, NULL); } /* Parse STRING and convert it to canonical form. If parsing fails, or if STRING is already canonical, return the empty string. Otherwise return the canonical form. */ std::string cp_canonicalize_string (const char *string) { std::unique_ptr info; unsigned int estimated_len; if (cp_already_canonical (string)) return std::string (); info = cp_demangled_name_to_comp (string, NULL); if (info == NULL) return std::string (); estimated_len = strlen (string) * 2; gdb::unique_xmalloc_ptr us (cp_comp_to_string (info->tree, estimated_len)); if (!us) { warning (_("internal error: string \"%s\" failed to be canonicalized"), string); return std::string (); } std::string ret (us.get ()); if (ret == string) return std::string (); return ret; } /* Convert a mangled name to a demangle_component tree. *MEMORY is set to the block of used memory that should be freed when finished with the tree. DEMANGLED_P is set to the char * that should be freed when finished with the tree, or NULL if none was needed. OPTIONS will be passed to the demangler. */ static std::unique_ptr mangled_name_to_comp (const char *mangled_name, int options, void **memory, char **demangled_p) { char *demangled_name; /* If it looks like a v3 mangled name, then try to go directly to trees. */ if (mangled_name[0] == '_' && mangled_name[1] == 'Z') { struct demangle_component *ret; ret = cplus_demangle_v3_components (mangled_name, options, memory); if (ret) { std::unique_ptr info (new demangle_parse_info); info->tree = ret; *demangled_p = NULL; return info; } } /* If it doesn't, or if that failed, then try to demangle the name. */ demangled_name = gdb_demangle (mangled_name, options); if (demangled_name == NULL) return NULL; /* If we could demangle the name, parse it to build the component tree. */ std::unique_ptr info = cp_demangled_name_to_comp (demangled_name, NULL); if (info == NULL) { xfree (demangled_name); return NULL; } *demangled_p = demangled_name; return info; } /* Return the name of the class containing method PHYSNAME. */ char * cp_class_name_from_physname (const char *physname) { void *storage = NULL; char *demangled_name = NULL; gdb::unique_xmalloc_ptr ret; struct demangle_component *ret_comp, *prev_comp, *cur_comp; std::unique_ptr info; int done; info = mangled_name_to_comp (physname, DMGL_ANSI, &storage, &demangled_name); if (info == NULL) return NULL; done = 0; ret_comp = info->tree; /* First strip off any qualifiers, if we have a function or method. */ while (!done) switch (ret_comp->type) { case DEMANGLE_COMPONENT_CONST: case DEMANGLE_COMPONENT_RESTRICT: case DEMANGLE_COMPONENT_VOLATILE: case DEMANGLE_COMPONENT_CONST_THIS: case DEMANGLE_COMPONENT_RESTRICT_THIS: case DEMANGLE_COMPONENT_VOLATILE_THIS: case DEMANGLE_COMPONENT_VENDOR_TYPE_QUAL: ret_comp = d_left (ret_comp); break; default: done = 1; break; } /* If what we have now is a function, discard the argument list. */ if (ret_comp->type == DEMANGLE_COMPONENT_TYPED_NAME) ret_comp = d_left (ret_comp); /* If what we have now is a template, strip off the template arguments. The left subtree may be a qualified name. */ if (ret_comp->type == DEMANGLE_COMPONENT_TEMPLATE) ret_comp = d_left (ret_comp); /* What we have now should be a name, possibly qualified. Additional qualifiers could live in the left subtree or the right subtree. Find the last piece. */ done = 0; prev_comp = NULL; cur_comp = ret_comp; while (!done) switch (cur_comp->type) { case DEMANGLE_COMPONENT_QUAL_NAME: case DEMANGLE_COMPONENT_LOCAL_NAME: prev_comp = cur_comp; cur_comp = d_right (cur_comp); break; case DEMANGLE_COMPONENT_TEMPLATE: case DEMANGLE_COMPONENT_NAME: case DEMANGLE_COMPONENT_CTOR: case DEMANGLE_COMPONENT_DTOR: case DEMANGLE_COMPONENT_OPERATOR: case DEMANGLE_COMPONENT_EXTENDED_OPERATOR: done = 1; break; default: done = 1; cur_comp = NULL; break; } if (cur_comp != NULL && prev_comp != NULL) { /* We want to discard the rightmost child of PREV_COMP. */ *prev_comp = *d_left (prev_comp); /* The ten is completely arbitrary; we don't have a good estimate. */ ret = cp_comp_to_string (ret_comp, 10); } xfree (storage); xfree (demangled_name); return ret.release (); } /* Return the child of COMP which is the basename of a method, variable, et cetera. All scope qualifiers are discarded, but template arguments will be included. The component tree may be modified. */ static struct demangle_component * unqualified_name_from_comp (struct demangle_component *comp) { struct demangle_component *ret_comp = comp, *last_template; int done; done = 0; last_template = NULL; while (!done) switch (ret_comp->type) { case DEMANGLE_COMPONENT_QUAL_NAME: case DEMANGLE_COMPONENT_LOCAL_NAME: ret_comp = d_right (ret_comp); break; case DEMANGLE_COMPONENT_TYPED_NAME: ret_comp = d_left (ret_comp); break; case DEMANGLE_COMPONENT_TEMPLATE: gdb_assert (last_template == NULL); last_template = ret_comp; ret_comp = d_left (ret_comp); break; case DEMANGLE_COMPONENT_CONST: case DEMANGLE_COMPONENT_RESTRICT: case DEMANGLE_COMPONENT_VOLATILE: case DEMANGLE_COMPONENT_CONST_THIS: case DEMANGLE_COMPONENT_RESTRICT_THIS: case DEMANGLE_COMPONENT_VOLATILE_THIS: case DEMANGLE_COMPONENT_VENDOR_TYPE_QUAL: ret_comp = d_left (ret_comp); break; case DEMANGLE_COMPONENT_NAME: case DEMANGLE_COMPONENT_CTOR: case DEMANGLE_COMPONENT_DTOR: case DEMANGLE_COMPONENT_OPERATOR: case DEMANGLE_COMPONENT_EXTENDED_OPERATOR: done = 1; break; default: return NULL; break; } if (last_template) { d_left (last_template) = ret_comp; return last_template; } return ret_comp; } /* Return the name of the method whose linkage name is PHYSNAME. */ char * method_name_from_physname (const char *physname) { void *storage = NULL; char *demangled_name = NULL; gdb::unique_xmalloc_ptr ret; struct demangle_component *ret_comp; std::unique_ptr info; info = mangled_name_to_comp (physname, DMGL_ANSI, &storage, &demangled_name); if (info == NULL) return NULL; ret_comp = unqualified_name_from_comp (info->tree); if (ret_comp != NULL) /* The ten is completely arbitrary; we don't have a good estimate. */ ret = cp_comp_to_string (ret_comp, 10); xfree (storage); xfree (demangled_name); return ret.release (); } /* If FULL_NAME is the demangled name of a C++ function (including an arg list, possibly including namespace/class qualifications), return a new string containing only the function name (without the arg list/class qualifications). Otherwise, return NULL. The caller is responsible for freeing the memory in question. */ char * cp_func_name (const char *full_name) { gdb::unique_xmalloc_ptr ret; struct demangle_component *ret_comp; std::unique_ptr info; info = cp_demangled_name_to_comp (full_name, NULL); if (!info) return NULL; ret_comp = unqualified_name_from_comp (info->tree); if (ret_comp != NULL) ret = cp_comp_to_string (ret_comp, 10); return ret.release (); } /* DEMANGLED_NAME is the name of a function, including parameters and (optionally) a return type. Return the name of the function without parameters or return type, or NULL if we can not parse the name. */ gdb::unique_xmalloc_ptr cp_remove_params (const char *demangled_name) { bool done = false; struct demangle_component *ret_comp; std::unique_ptr info; gdb::unique_xmalloc_ptr ret; if (demangled_name == NULL) return NULL; info = cp_demangled_name_to_comp (demangled_name, NULL); if (info == NULL) return NULL; /* First strip off any qualifiers, if we have a function or method. */ ret_comp = info->tree; while (!done) switch (ret_comp->type) { case DEMANGLE_COMPONENT_CONST: case DEMANGLE_COMPONENT_RESTRICT: case DEMANGLE_COMPONENT_VOLATILE: case DEMANGLE_COMPONENT_CONST_THIS: case DEMANGLE_COMPONENT_RESTRICT_THIS: case DEMANGLE_COMPONENT_VOLATILE_THIS: case DEMANGLE_COMPONENT_VENDOR_TYPE_QUAL: ret_comp = d_left (ret_comp); break; default: done = true; break; } /* What we have now should be a function. Return its name. */ if (ret_comp->type == DEMANGLE_COMPONENT_TYPED_NAME) ret = cp_comp_to_string (d_left (ret_comp), 10); return ret; } /* Here are some random pieces of trivia to keep in mind while trying to take apart demangled names: - Names can contain function arguments or templates, so the process has to be, to some extent recursive: maybe keep track of your depth based on encountering <> and (). - Parentheses don't just have to happen at the end of a name: they can occur even if the name in question isn't a function, because a template argument might be a type that's a function. - Conversely, even if you're trying to deal with a function, its demangled name might not end with ')': it could be a const or volatile class method, in which case it ends with "const" or "volatile". - Parentheses are also used in anonymous namespaces: a variable 'foo' in an anonymous namespace gets demangled as "(anonymous namespace)::foo". - And operator names can contain parentheses or angle brackets. */ /* FIXME: carlton/2003-03-13: We have several functions here with overlapping functionality; can we combine them? Also, do they handle all the above considerations correctly? */ /* This returns the length of first component of NAME, which should be the demangled name of a C++ variable/function/method/etc. Specifically, it returns the index of the first colon forming the boundary of the first component: so, given 'A::foo' or 'A::B::foo' it returns the 1, and given 'foo', it returns 0. */ /* The character in NAME indexed by the return value is guaranteed to always be either ':' or '\0'. */ /* NOTE: carlton/2003-03-13: This function is currently only intended for internal use: it's probably not entirely safe when called on user-generated input, because some of the 'index += 2' lines in cp_find_first_component_aux might go past the end of malformed input. */ unsigned int cp_find_first_component (const char *name) { return cp_find_first_component_aux (name, 0); } /* Helper function for cp_find_first_component. Like that function, it returns the length of the first component of NAME, but to make the recursion easier, it also stops if it reaches an unexpected ')' or '>' if the value of PERMISSIVE is nonzero. */ static unsigned int cp_find_first_component_aux (const char *name, int permissive) { unsigned int index = 0; /* Operator names can show up in unexpected places. Since these can contain parentheses or angle brackets, they can screw up the recursion. But not every string 'operator' is part of an operater name: e.g. you could have a variable 'cooperator'. So this variable tells us whether or not we should treat the string 'operator' as starting an operator. */ int operator_possible = 1; for (;; ++index) { switch (name[index]) { case '<': /* Template; eat it up. The calls to cp_first_component should only return (I hope!) when they reach the '>' terminating the component or a '::' between two components. (Hence the '+ 2'.) */ index += 1; for (index += cp_find_first_component_aux (name + index, 1); name[index] != '>'; index += cp_find_first_component_aux (name + index, 1)) { if (name[index] != ':') { demangled_name_complaint (name); return strlen (name); } index += 2; } operator_possible = 1; break; case '(': /* Similar comment as to '<'. */ index += 1; for (index += cp_find_first_component_aux (name + index, 1); name[index] != ')'; index += cp_find_first_component_aux (name + index, 1)) { if (name[index] != ':') { demangled_name_complaint (name); return strlen (name); } index += 2; } operator_possible = 1; break; case '>': case ')': if (permissive) return index; else { demangled_name_complaint (name); return strlen (name); } case '\0': return index; case ':': /* ':' marks a component iff the next character is also a ':'. Otherwise it is probably malformed input. */ if (name[index + 1] == ':') return index; break; case 'o': /* Operator names can screw up the recursion. */ if (operator_possible && startswith (name + index, CP_OPERATOR_STR)) { index += CP_OPERATOR_LEN; while (ISSPACE(name[index])) ++index; switch (name[index]) { case '\0': return index; /* Skip over one less than the appropriate number of characters: the for loop will skip over the last one. */ case '<': if (name[index + 1] == '<') index += 1; else index += 0; break; case '>': case '-': if (name[index + 1] == '>') index += 1; else index += 0; break; case '(': index += 1; break; default: index += 0; break; } } operator_possible = 0; break; case ' ': case ',': case '.': case '&': case '*': /* NOTE: carlton/2003-04-18: I'm not sure what the precise set of relevant characters are here: it's necessary to include any character that can show up before 'operator' in a demangled name, and it's safe to include any character that can't be part of an identifier's name. */ operator_possible = 1; break; default: operator_possible = 0; break; } } } /* Complain about a demangled name that we don't know how to parse. NAME is the demangled name in question. */ static void demangled_name_complaint (const char *name) { complaint (&symfile_complaints, "unexpected demangled name '%s'", name); } /* If NAME is the fully-qualified name of a C++ function/variable/method/etc., this returns the length of its entire prefix: all of the namespaces and classes that make up its name. Given 'A::foo', it returns 1, given 'A::B::foo', it returns 4, given 'foo', it returns 0. */ unsigned int cp_entire_prefix_len (const char *name) { unsigned int current_len = cp_find_first_component (name); unsigned int previous_len = 0; while (name[current_len] != '\0') { gdb_assert (name[current_len] == ':'); previous_len = current_len; /* Skip the '::'. */ current_len += 2; current_len += cp_find_first_component (name + current_len); } return previous_len; } /* Overload resolution functions. */ /* Test to see if SYM is a symbol that we haven't seen corresponding to a function named OLOAD_NAME. If so, add it to the current completion list. */ static void overload_list_add_symbol (struct symbol *sym, const char *oload_name) { int newsize; int i; gdb::unique_xmalloc_ptr sym_name; /* If there is no type information, we can't do anything, so skip. */ if (SYMBOL_TYPE (sym) == NULL) return; /* skip any symbols that we've already considered. */ for (i = 0; i < sym_return_val_index; ++i) if (strcmp (SYMBOL_LINKAGE_NAME (sym), SYMBOL_LINKAGE_NAME (sym_return_val[i])) == 0) return; /* Get the demangled name without parameters */ sym_name = cp_remove_params (SYMBOL_NATURAL_NAME (sym)); if (!sym_name) return; /* skip symbols that cannot match */ if (strcmp (sym_name.get (), oload_name) != 0) return; /* We have a match for an overload instance, so add SYM to the current list of overload instances */ if (sym_return_val_index + 3 > sym_return_val_size) { newsize = (sym_return_val_size *= 2) * sizeof (struct symbol *); sym_return_val = (struct symbol **) xrealloc ((char *) sym_return_val, newsize); } sym_return_val[sym_return_val_index++] = sym; sym_return_val[sym_return_val_index] = NULL; } /* Return a null-terminated list of pointers to function symbols that are named FUNC_NAME and are visible within NAMESPACE. */ struct symbol ** make_symbol_overload_list (const char *func_name, const char *the_namespace) { struct cleanup *old_cleanups; const char *name; sym_return_val_size = 100; sym_return_val_index = 0; sym_return_val = XNEWVEC (struct symbol *, sym_return_val_size + 1); sym_return_val[0] = NULL; old_cleanups = make_cleanup (xfree, sym_return_val); make_symbol_overload_list_using (func_name, the_namespace); if (the_namespace[0] == '\0') name = func_name; else { char *concatenated_name = (char *) alloca (strlen (the_namespace) + 2 + strlen (func_name) + 1); strcpy (concatenated_name, the_namespace); strcat (concatenated_name, "::"); strcat (concatenated_name, func_name); name = concatenated_name; } make_symbol_overload_list_qualified (name); discard_cleanups (old_cleanups); return sym_return_val; } /* Add all symbols with a name matching NAME in BLOCK to the overload list. */ static void make_symbol_overload_list_block (const char *name, const struct block *block) { struct block_iterator iter; struct symbol *sym; ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym) overload_list_add_symbol (sym, name); } /* Adds the function FUNC_NAME from NAMESPACE to the overload set. */ static void make_symbol_overload_list_namespace (const char *func_name, const char *the_namespace) { const char *name; const struct block *block = NULL; if (the_namespace[0] == '\0') name = func_name; else { char *concatenated_name = (char *) alloca (strlen (the_namespace) + 2 + strlen (func_name) + 1); strcpy (concatenated_name, the_namespace); strcat (concatenated_name, "::"); strcat (concatenated_name, func_name); name = concatenated_name; } /* Look in the static block. */ block = block_static_block (get_selected_block (0)); if (block) make_symbol_overload_list_block (name, block); /* Look in the global block. */ block = block_global_block (block); if (block) make_symbol_overload_list_block (name, block); } /* Search the namespace of the given type and namespace of and public base types. */ static void make_symbol_overload_list_adl_namespace (struct type *type, const char *func_name) { char *the_namespace; const char *type_name; int i, prefix_len; while (TYPE_CODE (type) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type) || TYPE_CODE (type) == TYPE_CODE_ARRAY || TYPE_CODE (type) == TYPE_CODE_TYPEDEF) { if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) type = check_typedef(type); else type = TYPE_TARGET_TYPE (type); } type_name = TYPE_NAME (type); if (type_name == NULL) return; prefix_len = cp_entire_prefix_len (type_name); if (prefix_len != 0) { the_namespace = (char *) alloca (prefix_len + 1); strncpy (the_namespace, type_name, prefix_len); the_namespace[prefix_len] = '\0'; make_symbol_overload_list_namespace (func_name, the_namespace); } /* Check public base type */ if (TYPE_CODE (type) == TYPE_CODE_STRUCT) for (i = 0; i < TYPE_N_BASECLASSES (type); i++) { if (BASETYPE_VIA_PUBLIC (type, i)) make_symbol_overload_list_adl_namespace (TYPE_BASECLASS (type, i), func_name); } } /* Adds the overload list overload candidates for FUNC_NAME found through argument dependent lookup. */ struct symbol ** make_symbol_overload_list_adl (struct type **arg_types, int nargs, const char *func_name) { int i; gdb_assert (sym_return_val_size != -1); for (i = 1; i <= nargs; i++) make_symbol_overload_list_adl_namespace (arg_types[i - 1], func_name); return sym_return_val; } /* This applies the using directives to add namespaces to search in, and then searches for overloads in all of those namespaces. It adds the symbols found to sym_return_val. Arguments are as in make_symbol_overload_list. */ static void make_symbol_overload_list_using (const char *func_name, const char *the_namespace) { struct using_direct *current; const struct block *block; /* First, go through the using directives. If any of them apply, look in the appropriate namespaces for new functions to match on. */ for (block = get_selected_block (0); block != NULL; block = BLOCK_SUPERBLOCK (block)) for (current = block_using (block); current != NULL; current = current->next) { /* Prevent recursive calls. */ if (current->searched) continue; /* If this is a namespace alias or imported declaration ignore it. */ if (current->alias != NULL || current->declaration != NULL) continue; if (strcmp (the_namespace, current->import_dest) == 0) { /* Mark this import as searched so that the recursive call does not search it again. */ scoped_restore reset_directive_searched = make_scoped_restore (¤t->searched, 1); make_symbol_overload_list_using (func_name, current->import_src); } } /* Now, add names for this namespace. */ make_symbol_overload_list_namespace (func_name, the_namespace); } /* This does the bulk of the work of finding overloaded symbols. FUNC_NAME is the name of the overloaded function we're looking for (possibly including namespace info). */ static void make_symbol_overload_list_qualified (const char *func_name) { struct compunit_symtab *cust; struct objfile *objfile; const struct block *b, *surrounding_static_block = 0; /* Look through the partial symtabs for all symbols which begin by matching FUNC_NAME. Make sure we read that symbol table in. */ ALL_OBJFILES (objfile) { if (objfile->sf) objfile->sf->qf->expand_symtabs_for_function (objfile, func_name); } /* Search upwards from currently selected frame (so that we can complete on local vars. */ for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) make_symbol_overload_list_block (func_name, b); surrounding_static_block = block_static_block (get_selected_block (0)); /* Go through the symtabs and check the externs and statics for symbols which match. */ ALL_COMPUNITS (objfile, cust) { QUIT; b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), GLOBAL_BLOCK); make_symbol_overload_list_block (func_name, b); } ALL_COMPUNITS (objfile, cust) { QUIT; b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), STATIC_BLOCK); /* Don't do this block twice. */ if (b == surrounding_static_block) continue; make_symbol_overload_list_block (func_name, b); } } /* Lookup the rtti type for a class name. */ struct type * cp_lookup_rtti_type (const char *name, struct block *block) { struct symbol * rtti_sym; struct type * rtti_type; /* Use VAR_DOMAIN here as NAME may be a typedef. PR 18141, 18417. Classes "live" in both STRUCT_DOMAIN and VAR_DOMAIN. */ rtti_sym = lookup_symbol (name, block, VAR_DOMAIN, NULL).symbol; if (rtti_sym == NULL) { warning (_("RTTI symbol not found for class '%s'"), name); return NULL; } if (SYMBOL_CLASS (rtti_sym) != LOC_TYPEDEF) { warning (_("RTTI symbol for class '%s' is not a type"), name); return NULL; } rtti_type = check_typedef (SYMBOL_TYPE (rtti_sym)); switch (TYPE_CODE (rtti_type)) { case TYPE_CODE_STRUCT: break; case TYPE_CODE_NAMESPACE: /* chastain/2003-11-26: the symbol tables often contain fake symbols for namespaces with the same name as the struct. This warning is an indication of a bug in the lookup order or a bug in the way that the symbol tables are populated. */ warning (_("RTTI symbol for class '%s' is a namespace"), name); return NULL; default: warning (_("RTTI symbol for class '%s' has bad type"), name); return NULL; } return rtti_type; } #ifdef HAVE_WORKING_FORK /* If nonzero, attempt to catch crashes in the demangler and print useful debugging information. */ static int catch_demangler_crashes = 1; /* Stack context and environment for demangler crash recovery. */ static SIGJMP_BUF gdb_demangle_jmp_buf; /* If nonzero, attempt to dump core from the signal handler. */ static int gdb_demangle_attempt_core_dump = 1; /* Signal handler for gdb_demangle. */ static void gdb_demangle_signal_handler (int signo) { if (gdb_demangle_attempt_core_dump) { if (fork () == 0) dump_core (); gdb_demangle_attempt_core_dump = 0; } SIGLONGJMP (gdb_demangle_jmp_buf, signo); } #endif /* A wrapper for bfd_demangle. */ char * gdb_demangle (const char *name, int options) { char *result = NULL; int crash_signal = 0; #ifdef HAVE_WORKING_FORK #if defined (HAVE_SIGACTION) && defined (SA_RESTART) struct sigaction sa, old_sa; #else sighandler_t ofunc; #endif static int core_dump_allowed = -1; if (core_dump_allowed == -1) { core_dump_allowed = can_dump_core (LIMIT_CUR); if (!core_dump_allowed) gdb_demangle_attempt_core_dump = 0; } if (catch_demangler_crashes) { #if defined (HAVE_SIGACTION) && defined (SA_RESTART) sa.sa_handler = gdb_demangle_signal_handler; sigemptyset (&sa.sa_mask); #ifdef HAVE_SIGALTSTACK sa.sa_flags = SA_ONSTACK; #else sa.sa_flags = 0; #endif sigaction (SIGSEGV, &sa, &old_sa); #else ofunc = signal (SIGSEGV, gdb_demangle_signal_handler); #endif crash_signal = SIGSETJMP (gdb_demangle_jmp_buf); } #endif if (crash_signal == 0) result = bfd_demangle (NULL, name, options); #ifdef HAVE_WORKING_FORK if (catch_demangler_crashes) { #if defined (HAVE_SIGACTION) && defined (SA_RESTART) sigaction (SIGSEGV, &old_sa, NULL); #else signal (SIGSEGV, ofunc); #endif if (crash_signal != 0) { static int error_reported = 0; if (!error_reported) { std::string short_msg = string_printf (_("unable to demangle '%s' " "(demangler failed with signal %d)"), name, crash_signal); std::string long_msg = string_printf ("%s:%d: %s: %s", __FILE__, __LINE__, "demangler-warning", short_msg.c_str ()); target_terminal::scoped_restore_terminal_state term_state; target_terminal::ours_for_output (); begin_line (); if (core_dump_allowed) fprintf_unfiltered (gdb_stderr, _("%s\nAttempting to dump core.\n"), long_msg.c_str ()); else warn_cant_dump_core (long_msg.c_str ()); demangler_warning (__FILE__, __LINE__, "%s", short_msg.c_str ()); error_reported = 1; } result = NULL; } } #endif return result; } /* See cp-support.h. */ int gdb_sniff_from_mangled_name (const char *mangled, char **demangled) { *demangled = gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI); return *demangled != NULL; } /* Don't allow just "maintenance cplus". */ static void maint_cplus_command (const char *arg, int from_tty) { printf_unfiltered (_("\"maintenance cplus\" must be followed " "by the name of a command.\n")); help_list (maint_cplus_cmd_list, "maintenance cplus ", all_commands, gdb_stdout); } /* This is a front end for cp_find_first_component, for unit testing. Be careful when using it: see the NOTE above cp_find_first_component. */ static void first_component_command (const char *arg, int from_tty) { int len; char *prefix; if (!arg) return; len = cp_find_first_component (arg); prefix = (char *) alloca (len + 1); memcpy (prefix, arg, len); prefix[len] = '\0'; printf_unfiltered ("%s\n", prefix); } /* Implement "info vtbl". */ static void info_vtbl_command (const char *arg, int from_tty) { struct value *value; value = parse_and_eval (arg); cplus_print_vtable (value); } void _initialize_cp_support (void) { add_prefix_cmd ("cplus", class_maintenance, maint_cplus_command, _("C++ maintenance commands."), &maint_cplus_cmd_list, "maintenance cplus ", 0, &maintenancelist); add_alias_cmd ("cp", "cplus", class_maintenance, 1, &maintenancelist); add_cmd ("first_component", class_maintenance, first_component_command, _("Print the first class/namespace component of NAME."), &maint_cplus_cmd_list); add_info ("vtbl", info_vtbl_command, _("Show the virtual function table for a C++ object.\n\ Usage: info vtbl EXPRESSION\n\ Evaluate EXPRESSION and display the virtual function table for the\n\ resulting object.")); #ifdef HAVE_WORKING_FORK add_setshow_boolean_cmd ("catch-demangler-crashes", class_maintenance, &catch_demangler_crashes, _("\ Set whether to attempt to catch demangler crashes."), _("\ Show whether to attempt to catch demangler crashes."), _("\ If enabled GDB will attempt to catch demangler crashes and\n\ display the offending symbol."), NULL, NULL, &maintenance_set_cmdlist, &maintenance_show_cmdlist); #endif }