/* Convex stuff for GDB. Copyright (C) 1990, 1991 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "defs.h" #include "command.h" #include "symtab.h" #include "value.h" #include "frame.h" #include "inferior.h" #include "wait.h" #include #include #include "gdbcore.h" #include #include #include #include #include #include #include #include #include "gdb_stat.h" #include #include "gdbcmd.h" exec_file_command (filename, from_tty) char *filename; int from_tty; { int val; int n; struct stat st_exec; /* Eliminate all traces of old exec file. Mark text segment as empty. */ if (execfile) free (execfile); execfile = 0; data_start = 0; data_end = 0; text_start = 0; text_end = 0; exec_data_start = 0; exec_data_end = 0; if (execchan >= 0) close (execchan); execchan = -1; n_exec = 0; /* Now open and digest the file the user requested, if any. */ if (filename) { filename = tilde_expand (filename); make_cleanup (free, filename); execchan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0, &execfile); if (execchan < 0) perror_with_name (filename); if (myread (execchan, &filehdr, sizeof filehdr) < 0) perror_with_name (filename); if (! IS_SOFF_MAGIC (filehdr.h_magic)) error ("%s: not an executable file.", filename); if (myread (execchan, &opthdr, filehdr.h_opthdr) <= 0) perror_with_name (filename); /* Read through the section headers. For text, data, etc, record an entry in the exec file map. Record text_start and text_end. */ lseek (execchan, (long) filehdr.h_scnptr, 0); for (n = 0; n < filehdr.h_nscns; n++) { if (myread (execchan, &scnhdr, sizeof scnhdr) < 0) perror_with_name (filename); if ((scnhdr.s_flags & S_TYPMASK) >= S_TEXT && (scnhdr.s_flags & S_TYPMASK) <= S_COMON) { exec_map[n_exec].mem_addr = scnhdr.s_vaddr; exec_map[n_exec].mem_end = scnhdr.s_vaddr + scnhdr.s_size; exec_map[n_exec].file_addr = scnhdr.s_scnptr; exec_map[n_exec].type = scnhdr.s_flags & S_TYPMASK; n_exec++; if ((scnhdr.s_flags & S_TYPMASK) == S_TEXT) { text_start = scnhdr.s_vaddr; text_end = scnhdr.s_vaddr + scnhdr.s_size; } } } fstat (execchan, &st_exec); exec_mtime = st_exec.st_mtime; validate_files (); } else if (from_tty) printf_filtered ("No exec file now.\n"); /* Tell display code (if any) about the changed file name. */ if (exec_file_display_hook) (*exec_file_display_hook) (filename); } #if 0 /* Read data from SOFF exec or core file. Return 0 on success, EIO if address out of bounds. */ int xfer_core_file (memaddr, myaddr, len) CORE_ADDR memaddr; char *myaddr; int len; { register int i; register int n; register int val; int xferchan; char **xferfile; int fileptr; int returnval = 0; while (len > 0) { xferfile = 0; xferchan = 0; /* Determine which file the next bunch of addresses reside in, and where in the file. Set the file's read/write pointer to point at the proper place for the desired address and set xferfile and xferchan for the correct file. If desired address is nonexistent, leave them zero. i is set to the number of bytes that can be handled along with the next address. */ i = len; for (n = 0; n < n_core; n++) { if (memaddr >= core_map[n].mem_addr && memaddr < core_map[n].mem_end && (core_map[n].thread == -1 || core_map[n].thread == inferior_thread)) { i = min (len, core_map[n].mem_end - memaddr); fileptr = core_map[n].file_addr + memaddr - core_map[n].mem_addr; if (core_map[n].file_addr) { xferfile = &corefile; xferchan = corechan; } break; } else if (core_map[n].mem_addr >= memaddr && core_map[n].mem_addr < memaddr + i) i = core_map[n].mem_addr - memaddr; } if (!xferfile) for (n = 0; n < n_exec; n++) { if (memaddr >= exec_map[n].mem_addr && memaddr < exec_map[n].mem_end) { i = min (len, exec_map[n].mem_end - memaddr); fileptr = exec_map[n].file_addr + memaddr - exec_map[n].mem_addr; if (exec_map[n].file_addr) { xferfile = &execfile; xferchan = execchan; } break; } else if (exec_map[n].mem_addr >= memaddr && exec_map[n].mem_addr < memaddr + i) i = exec_map[n].mem_addr - memaddr; } /* Now we know which file to use. Set up its pointer and transfer the data. */ if (xferfile) { if (*xferfile == 0) if (xferfile == &execfile) error ("No program file to examine."); else error ("No core dump file or running program to examine."); val = lseek (xferchan, fileptr, 0); if (val < 0) perror_with_name (*xferfile); val = myread (xferchan, myaddr, i); if (val < 0) perror_with_name (*xferfile); } /* If this address is for nonexistent memory, read zeros if reading, or do nothing if writing. */ else { memset (myaddr, '\0', i); returnval = EIO; } memaddr += i; myaddr += i; len -= i; } return returnval; } #endif /* Here from info files command to print an address map. */ print_maps () { struct pmap ptrs[200]; int n; /* ID strings for core and executable file sections */ static char *idstr[] = { "0", "text", "data", "tdata", "bss", "tbss", "common", "ttext", "ctx", "tctx", "10", "11", "12", }; for (n = 0; n < n_core; n++) { core_map[n].which = 0; ptrs[n] = core_map[n]; } for (n = 0; n < n_exec; n++) { exec_map[n].which = 1; ptrs[n_core+n] = exec_map[n]; } qsort (ptrs, n_core + n_exec, sizeof *ptrs, ptr_cmp); for (n = 0; n < n_core + n_exec; n++) { struct pmap *p = &ptrs[n]; if (n > 0) { if (p->mem_addr < ptrs[n-1].mem_end) p->mem_addr = ptrs[n-1].mem_end; if (p->mem_addr >= p->mem_end) continue; } printf_filtered ("%08x .. %08x %-6s %s\n", p->mem_addr, p->mem_end, idstr[p->type], p->which ? execfile : corefile); } } /* Compare routine to put file sections in order. Sort into increasing order on address, and put core file sections before exec file sections if both files contain the same addresses. */ static ptr_cmp (a, b) struct pmap *a, *b; { if (a->mem_addr != b->mem_addr) return a->mem_addr - b->mem_addr; return a->which - b->which; } /* Trapped internal variables are used to handle special registers. A trapped i.v. calls a hook here every time it is dereferenced, to provide a new value for the variable, and it calls a hook here when a new value is assigned, to do something with the value. The vector registers are $vl, $vs, $vm, $vN, $VN (N in 0..7). The communication registers are $cN, $CN (N in 0..63). They not handled as regular registers because it's expensive to read them, and their size varies, and they have too many names. */ /* Return 1 if NAME is a trapped internal variable, else 0. */ int is_trapped_internalvar (name) char *name; { if ((name[0] == 'c' || name[0] == 'C') && name[1] >= '0' && name[1] <= '9' && (name[2] == '\0' || (name[2] >= '0' && name[2] <= '9' && name[3] == '\0' && name[1] != '0')) && atoi (&name[1]) < 64) return 1; if ((name[0] == 'v' || name[0] == 'V') && (((name[1] & -8) == '0' && name[2] == '\0') || STREQ (name, "vl") || STREQ (name, "vs") || STREQ (name, "vm"))) return 1; else return 0; } /* Return the value of trapped internal variable VAR */ value value_of_trapped_internalvar (var) struct internalvar *var; { char *name = var->name; value val; struct type *type; struct type *range_type; long len = *read_vector_register (VL_REGNUM); if (len <= 0 || len > 128) len = 128; if (STREQ (name, "vl")) { val = value_from_longest (builtin_type_int, (LONGEST) *read_vector_register_1 (VL_REGNUM)); } else if (STREQ (name, "vs")) { val = value_from_longest (builtin_type_int, (LONGEST) *read_vector_register_1 (VS_REGNUM)); } else if (STREQ (name, "vm")) { long vm[4]; long i, *p; memcpy (vm, read_vector_register_1 (VM_REGNUM), sizeof vm); range_type = create_range_type ((struct type *) NULL, builtin_type_int, 0, len - 1); type = create_array_type ((struct type *) NULL, builtin_type_int, range_type); val = allocate_value (type); p = (long *) VALUE_CONTENTS (val); for (i = 0; i < len; i++) *p++ = !! (vm[3 - (i >> 5)] & (1 << (i & 037))); } else if (name[0] == 'V') { range_type = create_range_type ((struct type *) NULL, builtin_type_int 0, len - 1); type = create_array_type ((struct type *) NULL, builtin_type_long_long, range_type); val = allocate_value (type); memcpy (VALUE_CONTENTS (val), read_vector_register_1 (name[1] - '0'), TYPE_LENGTH (type)); } else if (name[0] == 'v') { long *p1, *p2; range_type = create_range_type ((struct type *) NULL, builtin_type_int 0, len - 1); type = create_array_type ((struct type *) NULL, builtin_type_long, range_type); val = allocate_value (type); p1 = read_vector_register_1 (name[1] - '0'); p2 = (long *) VALUE_CONTENTS (val); while (--len >= 0) {p1++; *p2++ = *p1++;} } else if (name[0] == 'c') val = value_from_longest (builtin_type_int, read_comm_register (atoi (&name[1]))); else if (name[0] == 'C') val = value_from_longest (builtin_type_long_long, read_comm_register (atoi (&name[1]))); VALUE_LVAL (val) = lval_internalvar; VALUE_INTERNALVAR (val) = var; return val; } /* Handle a new value assigned to a trapped internal variable */ void set_trapped_internalvar (var, val, bitpos, bitsize, offset) struct internalvar *var; value val; int bitpos, bitsize, offset; { char *name = var->name; long long newval = value_as_long (val); if (STREQ (name, "vl")) write_vector_register (VL_REGNUM, 0, newval); else if (STREQ (name, "vs")) write_vector_register (VS_REGNUM, 0, newval); else if (name[0] == 'c' || name[0] == 'C') write_comm_register (atoi (&name[1]), newval); else if (STREQ (name, "vm")) error ("can't assign to $vm"); else { offset /= bitsize / 8; write_vector_register (name[1] - '0', offset, newval); } } /* Print an integer value when no format was specified. gdb normally prints these values in decimal, but the the leading 0x80000000 of pointers produces intolerable 10-digit negative numbers. If it looks like an address, print it in hex instead. */ decout (stream, type, val) FILE *stream; struct type *type; LONGEST val; { long lv = val; switch (output_radix) { case 0: if ((lv == val || (unsigned) lv == val) && ((lv & 0xf0000000) == 0x80000000 || ((lv & 0xf0000000) == 0xf0000000 && lv < STACK_END_ADDR))) { fprintf_filtered (stream, "%#x", lv); return; } case 10: fprintf_filtered (stream, TYPE_UNSIGNED (type) ? "%llu" : "%lld", val); return; case 8: if (TYPE_LENGTH (type) <= sizeof lv) fprintf_filtered (stream, "%#o", lv); else fprintf_filtered (stream, "%#llo", val); return; case 16: if (TYPE_LENGTH (type) <= sizeof lv) fprintf_filtered (stream, "%#x", lv); else fprintf_filtered (stream, "%#llx", val); return; } } /* Change the default output radix to 10 or 16, or set it to 0 (heuristic). This command is mostly obsolete now that the print command allows formats to apply to aggregates, but is still handy occasionally. */ static void set_base_command (arg) char *arg; { int new_radix; if (!arg) output_radix = 0; else { new_radix = atoi (arg); if (new_radix != 10 && new_radix != 16 && new_radix != 8) error ("base must be 8, 10 or 16, or null"); else output_radix = new_radix; } } /* Turn pipelining on or off in the inferior. */ static void set_pipelining_command (arg) char *arg; { if (!arg) { sequential = !sequential; printf_filtered ("%s\n", sequential ? "off" : "on"); } else if (STREQ (arg, "on")) sequential = 0; else if (STREQ (arg, "off")) sequential = 1; else error ("valid args are `on', to allow instructions to overlap, or\n\ `off', to prevent it and thereby pinpoint exceptions."); } /* Enable, disable, or force parallel execution in the inferior. */ static void set_parallel_command (arg) char *arg; { struct rlimit rl; int prevparallel = parallel; if (!strncmp (arg, "fixed", strlen (arg))) parallel = 2; else if (STREQ (arg, "on")) parallel = 1; else if (STREQ (arg, "off")) parallel = 0; else error ("valid args are `on', to allow multiple threads, or\n\ `fixed', to force multiple threads, or\n\ `off', to run with one thread only."); if ((prevparallel == 0) != (parallel == 0) && inferior_pid) printf_filtered ("will take effect at next run.\n"); getrlimit (RLIMIT_CONCUR, &rl); rl.rlim_cur = parallel ? rl.rlim_max : 1; setrlimit (RLIMIT_CONCUR, &rl); if (inferior_pid) set_fixed_scheduling (inferior_pid, parallel == 2); } /* Add a new name for an existing command. */ static void alias_command (arg) char *arg; { static char *aliaserr = "usage is `alias NEW OLD', no args allowed"; char *newname = arg; struct cmd_list_element *new, *old; if (!arg) error_no_arg ("newname oldname"); new = lookup_cmd (&arg, cmdlist, "", -1); if (new && !strncmp (newname, new->name, strlen (new->name))) { newname = new->name; if (!(*arg == '-' || (*arg >= 'a' && *arg <= 'z') || (*arg >= 'A' && *arg <= 'Z') || (*arg >= '0' && *arg <= '9'))) error (aliaserr); } else { arg = newname; while (*arg == '-' || (*arg >= 'a' && *arg <= 'z') || (*arg >= 'A' && *arg <= 'Z') || (*arg >= '0' && *arg <= '9')) arg++; if (*arg != ' ' && *arg != '\t') error (aliaserr); *arg = '\0'; arg++; } old = lookup_cmd (&arg, cmdlist, "", 0); if (*arg != '\0') error (aliaserr); if (new && !strncmp (newname, new->name, strlen (new->name))) { char *tem; if (new->class == (int) class_user || new->class == (int) class_alias) tem = "Redefine command \"%s\"? "; else tem = "Really redefine built-in command \"%s\"? "; if (!query (tem, new->name)) error ("Command \"%s\" not redefined.", new->name); } add_com (newname, class_alias, old->function, old->doc); } /* Print the current thread number, and any threads with signals in the queue. */ thread_info () { struct threadpid *p; if (have_inferior_p ()) { ps.pi_buffer = (char *) &comm_registers; ps.pi_nbytes = sizeof comm_registers; ps.pi_offset = 0; ps.pi_thread = inferior_thread; ioctl (inferior_fd, PIXRDCREGS, &ps); } /* FIXME: stop_signal is from target.h but stop_sigcode is a convex-specific thing. */ printf_filtered ("Current thread %d stopped with signal %d.%d (%s).\n", inferior_thread, stop_signal, stop_sigcode, subsig_name (stop_signal, stop_sigcode)); for (p = signal_stack; p->pid; p--) printf_filtered ("Thread %d stopped with signal %d.%d (%s).\n", p->thread, p->signo, p->subsig, subsig_name (p->signo, p->subsig)); if (iscrlbit (comm_registers.crctl.lbits.cc, 64+13)) printf_filtered ("New thread start pc %#x\n", (long) (comm_registers.crreg.pcpsw >> 32)); } /* Return string describing a signal.subcode number */ static char * subsig_name (signo, subcode) int signo, subcode; { static char *subsig4[] = { "error exit", "privileged instruction", "unknown", "unknown", "undefined opcode", 0}; static char *subsig5[] = {0, "breakpoint", "single step", "fork trap", "exec trap", "pfork trap", "join trap", "idle trap", "last thread", "wfork trap", "process breakpoint", "trap instruction", 0}; static char *subsig8[] = {0, "int overflow", "int divide check", "float overflow", "float divide check", "float underflow", "reserved operand", "sqrt error", "exp error", "ln error", "sin error", "cos error", 0}; static char *subsig10[] = {0, "invalid inward ring address", "invalid outward ring call", "invalid inward ring return", "invalid syscall gate", "invalid rtn frame length", "invalid comm reg address", "invalid trap gate", 0}; static char *subsig11[] = {0, "read access denied", "write access denied", "execute access denied", "segment descriptor fault", "page table fault", "data reference fault", "i/o access denied", "levt pte invalid", 0}; static char **subsig_list[] = {0, 0, 0, 0, subsig4, subsig5, 0, 0, subsig8, 0, subsig10, subsig11, 0}; int i; char *p; if ((p = strsignal (signo)) == NULL) p = "unknown"; if (signo >= (sizeof subsig_list / sizeof *subsig_list) || !subsig_list[signo]) return p; for (i = 1; subsig_list[signo][i]; i++) if (i == subcode) return subsig_list[signo][subcode]; return p; } /* Print a compact display of thread status, essentially x/i $pc for all active threads. */ static void threadstat () { int t; for (t = 0; t < n_threads; t++) if (thread_state[t] == PI_TALIVE) { printf_filtered ("%d%c %08x%c %d.%d ", t, (t == inferior_thread ? '*' : ' '), thread_pc[t], (thread_is_in_kernel[t] ? '#' : ' '), thread_signal[t], thread_sigcode[t]); print_insn (thread_pc[t], stdout); printf_filtered ("\n"); } } /* Change the current thread to ARG. */ set_thread_command (arg) char *arg; { int thread; if (!arg) { threadstat (); return; } thread = parse_and_eval_address (arg); if (thread < 0 || thread > n_threads || thread_state[thread] != PI_TALIVE) error ("no such thread."); select_thread (thread); stop_pc = read_pc (); flush_cached_frames (); select_frame (get_current_frame (), 0); print_stack_frame (selected_frame, selected_frame_level, -1); } /* Here on CONT command; gdb's dispatch address is changed to come here. Set global variable ALL_CONTINUE to tell resume() that it should start up all threads, and that a thread switch will not blow gdb's mind. */ static void convex_cont_command (proc_count_exp, from_tty) char *proc_count_exp; int from_tty; { all_continue = 1; cont_command (proc_count_exp, from_tty); } /* Here on 1CONT command. Resume only the current thread. */ one_cont_command (proc_count_exp, from_tty) char *proc_count_exp; int from_tty; { cont_command (proc_count_exp, from_tty); } /* Print the contents and lock bits of all communication registers, or just register ARG if ARG is a communication register, or the 3-word resource structure in memory at address ARG. */ comm_registers_info (arg) char *arg; { int i, regnum; if (arg) { if (sscanf (arg, "$c%d", ®num) == 1) { ; } else if (sscanf (arg, "$C%d", ®num) == 1) { ; } else { regnum = parse_and_eval_address (arg); if (regnum > 0) regnum &= ~0x8000; } if (regnum >= 64) error ("%s: invalid register name.", arg); /* if we got a (user) address, examine the resource struct there */ if (regnum < 0) { static int buf[3]; read_memory (regnum, buf, sizeof buf); printf_filtered ("%08x %08x%08x%s\n", regnum, buf[1], buf[2], buf[0] & 0xff ? " locked" : ""); return; } } ps.pi_buffer = (char *) &comm_registers; ps.pi_nbytes = sizeof comm_registers; ps.pi_offset = 0; ps.pi_thread = inferior_thread; ioctl (inferior_fd, PIXRDCREGS, &ps); for (i = 0; i < 64; i++) if (!arg || i == regnum) printf_filtered ("%2d 0x8%03x %016llx%s\n", i, i, comm_registers.crreg.r4[i], (iscrlbit (comm_registers.crctl.lbits.cc, i) ? " locked" : "")); } /* Print the psw */ static void psw_info (arg) char *arg; { struct pswbit { int bit; int pos; char *text; }; static struct pswbit pswbit[] = { { 0x80000000, -1, "A carry" }, { 0x40000000, -1, "A integer overflow" }, { 0x20000000, -1, "A zero divide" }, { 0x10000000, -1, "Integer overflow enable" }, { 0x08000000, -1, "Trace" }, { 0x06000000, 25, "Frame length" }, { 0x01000000, -1, "Sequential" }, { 0x00800000, -1, "S carry" }, { 0x00400000, -1, "S integer overflow" }, { 0x00200000, -1, "S zero divide" }, { 0x00100000, -1, "Zero divide enable" }, { 0x00080000, -1, "Floating underflow" }, { 0x00040000, -1, "Floating overflow" }, { 0x00020000, -1, "Floating reserved operand" }, { 0x00010000, -1, "Floating zero divide" }, { 0x00008000, -1, "Floating error enable" }, { 0x00004000, -1, "Floating underflow enable" }, { 0x00002000, -1, "IEEE" }, { 0x00001000, -1, "Sequential stores" }, { 0x00000800, -1, "Intrinsic error" }, { 0x00000400, -1, "Intrinsic error enable" }, { 0x00000200, -1, "Trace thread creates" }, { 0x00000100, -1, "Thread init trap" }, { 0x000000e0, 5, "Reserved" }, { 0x0000001f, 0, "Intrinsic error code" }, {0, 0, 0}, }; long psw; struct pswbit *p; if (arg) psw = parse_and_eval_address (arg); else psw = read_register (PS_REGNUM); for (p = pswbit; p->bit; p++) { if (p->pos < 0) printf_filtered ("%08x %s %s\n", p->bit, (psw & p->bit) ? "yes" : "no ", p->text); else printf_filtered ("%08x %3d %s\n", p->bit, (psw & p->bit) >> p->pos, p->text); } } #include "symtab.h" /* reg (fmt_field, inst_field) -- the {first,second,third} operand of instruction as fmt_field = [ijk] gets the value of the field from the [ijk] position of the instruction */ #define reg(a,b) ((char (*)[3])(op[fmt->a]))[inst.f0.b] /* lit (fmt_field) -- field [ijk] is a literal (PSW, VL, eg) */ #define lit(i) op[fmt->i] /* aj[j] -- name for A register j */ #define aj ((char (*)[3])(op[A])) union inst { struct { unsigned : 7; unsigned i : 3; unsigned j : 3; unsigned k : 3; unsigned : 16; unsigned : 32; } f0; struct { unsigned : 8; unsigned indir : 1; unsigned len : 1; unsigned j : 3; unsigned k : 3; unsigned : 16; unsigned : 32; } f1; unsigned char byte[8]; unsigned short half[4]; char signed_byte[8]; short signed_half[4]; }; struct opform { int mask; /* opcode mask */ int shift; /* opcode align */ struct formstr *formstr[3]; /* ST, E0, E1 */ }; struct formstr { unsigned lop:8, rop:5; /* opcode */ unsigned fmt:5; /* inst format */ unsigned i:5, j:5, k:2; /* operand formats */ }; #include "opcode/convex.h" CONST unsigned char formdecode [] = { 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4,5,5,5,5,6,6,7,8, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, }; CONST struct opform opdecode[] = { 0x7e00, 9, format0, e0_format0, e1_format0, 0x3f00, 8, format1, e0_format1, e1_format1, 0x1fc0, 6, format2, e0_format2, e1_format2, 0x0fc0, 6, format3, e0_format3, e1_format3, 0x0700, 8, format4, e0_format4, e1_format4, 0x03c0, 6, format5, e0_format5, e1_format5, 0x01f8, 3, format6, e0_format6, e1_format6, 0x00f8, 3, format7, e0_format7, e1_format7, 0x0000, 0, formatx, formatx, formatx, 0x0f80, 7, formatx, formatx, formatx, 0x0f80, 7, formatx, formatx, formatx, }; /* Print the instruction at address MEMADDR in debugged memory, on STREAM. Returns length of the instruction, in bytes. */ int convex_print_insn (memaddr, stream) CORE_ADDR memaddr; FILE *stream; { union inst inst; struct formstr *fmt; register int format, op1, pfx; int l; read_memory (memaddr, &inst, sizeof inst); /* Remove and note prefix, if present */ pfx = inst.half[0]; if ((pfx & 0xfff0) == 0x7ef0) { pfx = ((pfx >> 3) & 1) + 1; *(long long *) &inst = *(long long *) &inst.half[1]; } else pfx = 0; /* Split opcode into format.op1 and look up in appropriate table */ format = formdecode[inst.byte[0]]; op1 = (inst.half[0] & opdecode[format].mask) >> opdecode[format].shift; if (format == 9) { if (pfx) fmt = formatx; else if (inst.f1.j == 0) fmt = &format1a[op1]; else if (inst.f1.j == 1) fmt = &format1b[op1]; else fmt = formatx; } else fmt = &opdecode[format].formstr[pfx][op1]; /* Print it */ if (fmt->fmt == xxx) { /* noninstruction */ fprintf (stream, "0x%04x", pfx ? pfx : inst.half[0]); return 2; } if (pfx) pfx = 2; fprintf (stream, "%s%s%s", lop[fmt->lop], rop[fmt->rop], &" "[strlen(lop[fmt->lop]) + strlen(rop[fmt->rop])]); switch (fmt->fmt) { case rrr: /* three register */ fprintf (stream, "%s,%s,%s", reg(i,i), reg(j,j), reg(k,k)); return pfx + 2; case rr: /* two register */ fprintf (stream, "%s,%s", reg(i,j), reg(j,k)); return pfx + 2; case rxr: /* two register, reversed i and j fields */ fprintf (stream, "%s,%s", reg(i,k), reg(j,j)); return pfx + 2; case r: /* one register */ fprintf (stream, "%s", reg(i,k)); return pfx + 2; case nops: /* no operands */ return pfx + 2; case nr: /* short immediate, one register */ fprintf (stream, "#%d,%s", inst.f0.j, reg(i,k)); return pfx + 2; case pcrel: /* pc relative */ print_address (memaddr + 2 * inst.signed_byte[1], stream); return pfx + 2; case lr: /* literal, one register */ fprintf (stream, "%s,%s", lit(i), reg(j,k)); return pfx + 2; case rxl: /* one register, literal */ fprintf (stream, "%s,%s", reg(i,k), lit(j)); return pfx + 2; case rlr: /* register, literal, register */ fprintf (stream, "%s,%s,%s", reg(i,j), lit(j), reg(k,k)); return pfx + 2; case rrl: /* register, register, literal */ fprintf (stream, "%s,%s,%s", reg(i,j), reg(j,k), lit(k)); return pfx + 2; case iml: /* immediate, literal */ if (inst.f1.len) { fprintf (stream, "#%#x,%s", (inst.signed_half[1] << 16) + inst.half[2], lit(i)); return pfx + 6; } else { fprintf (stream, "#%d,%s", inst.signed_half[1], lit(i)); return pfx + 4; } case imr: /* immediate, register */ if (inst.f1.len) { fprintf (stream, "#%#x,%s", (inst.signed_half[1] << 16) + inst.half[2], reg(i,k)); return pfx + 6; } else { fprintf (stream, "#%d,%s", inst.signed_half[1], reg(i,k)); return pfx + 4; } case a1r: /* memory, register */ l = print_effa (inst, stream); fprintf (stream, ",%s", reg(i,k)); return pfx + l; case a1l: /* memory, literal */ l = print_effa (inst, stream); fprintf (stream, ",%s", lit(i)); return pfx + l; case a2r: /* register, memory */ fprintf (stream, "%s,", reg(i,k)); return pfx + print_effa (inst, stream); case a2l: /* literal, memory */ fprintf (stream, "%s,", lit(i)); return pfx + print_effa (inst, stream); case a3: /* memory */ return pfx + print_effa (inst, stream); case a4: /* system call */ l = 29; goto a4a5; case a5: /* trap */ l = 27; a4a5: if (inst.f1.len) { unsigned int m = (inst.signed_half[1] << 16) + inst.half[2]; fprintf (stream, "#%d,#%d", m >> l, m & (-1 >> (32-l))); return pfx + 6; } else { unsigned int m = inst.signed_half[1]; fprintf (stream, "#%d,#%d", m >> l, m & (-1 >> (32-l))); return pfx + 4; } } } /* print effective address @nnn(aj), return instruction length */ int print_effa (inst, stream) union inst inst; FILE *stream; { int n, l; if (inst.f1.len) { n = (inst.signed_half[1] << 16) + inst.half[2]; l = 6; } else { n = inst.signed_half[1]; l = 4; } if (inst.f1.indir) printf ("@"); if (!inst.f1.j) { print_address (n, stream); return l; } fprintf (stream, (n & 0xf0000000) == 0x80000000 ? "%#x(%s)" : "%d(%s)", n, aj[inst.f1.j]); return l; } void _initialize_convex_dep () { add_com ("alias", class_support, alias_command, "Add a new name for an existing command."); add_cmd ("base", class_vars, set_base_command, "Change the integer output radix to 8, 10 or 16\n\ or use just `set base' with no args to return to the ad-hoc default,\n\ which is 16 for integers that look like addresses, 10 otherwise.", &setlist); add_cmd ("pipeline", class_run, set_pipelining_command, "Enable or disable overlapped execution of instructions.\n\ With `set pipe off', exceptions are reported with\n\ $pc pointing at the instruction after the faulting one.\n\ The default is `set pipe on', which runs faster.", &setlist); add_cmd ("parallel", class_run, set_parallel_command, "Enable or disable multi-threaded execution of parallel code.\n\ `set parallel off' means run the program on a single CPU.\n\ `set parallel fixed' means run the program with all CPUs assigned to it.\n\ `set parallel on' means run the program on any CPUs that are available.", &setlist); add_com ("1cont", class_run, one_cont_command, "Continue the program, activating only the current thread.\n\ Args are the same as the `cont' command."); add_com ("thread", class_run, set_thread_command, "Change the current thread, the one under scrutiny and control.\n\ With no arg, show the active threads, the current one marked with *."); add_info ("threads", thread_info, "List status of active threads."); add_info ("comm-registers", comm_registers_info, "List communication registers and their contents.\n\ A communication register name as argument means describe only that register.\n\ An address as argument means describe the resource structure at that address.\n\ `Locked' means that the register has been sent to but not yet received from."); add_info ("psw", psw_info, "Display $ps, the processor status word, bit by bit.\n\ An argument means display that value's interpretation as a psw."); add_cmd ("convex", no_class, 0, "Convex-specific commands.\n\ 32-bit registers $pc $ps $sp $ap $fp $a1-5 $s0-7 $v0-7 $vl $vs $vm $c0-63\n\ 64-bit registers $S0-7 $V0-7 $C0-63\n\ \n\ info threads display info on stopped threads waiting to signal\n\ thread display list of active threads\n\ thread N select thread N (its registers, stack, memory, etc.)\n\ step, next, etc step selected thread only\n\ 1cont continue selected thread only\n\ cont continue all threads\n\ info comm-registers display contents of comm register(s) or a resource struct\n\ info psw display processor status word $ps\n\ set base N change integer radix used by `print' without a format\n\ set pipeline off exceptions are precise, $pc points after the faulting insn\n\ set pipeline on normal mode, $pc is somewhere ahead of faulting insn\n\ set parallel off program runs on a single CPU\n\ set parallel fixed all CPUs are assigned to the program\n\ set parallel on normal mode, parallel execution on random available CPUs\n\ ", &cmdlist); }