/* Load module for 'compile' command. Copyright (C) 2014-2022 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "compile-object-load.h" #include "compile-internal.h" #include "command.h" #include "objfiles.h" #include "gdbcore.h" #include "readline/tilde.h" #include "bfdlink.h" #include "gdbcmd.h" #include "regcache.h" #include "inferior.h" #include "gdbthread.h" #include "compile.h" #include "block.h" #include "arch-utils.h" #include /* Add inferior mmap memory range ADDR..ADDR+SIZE (exclusive) to the list. */ void munmap_list::add (CORE_ADDR addr, CORE_ADDR size) { struct munmap_item item = { addr, size }; items.push_back (item); } /* Destroy an munmap_list. */ munmap_list::~munmap_list () { for (auto &item : items) { try { gdbarch_infcall_munmap (target_gdbarch (), item.addr, item.size); } catch (const gdb_exception_error &ex) { /* There's not much the user can do, so just ignore this. */ } } } /* A data structure that is used to lay out sections of our objfile in inferior memory. */ struct setup_sections_data { explicit setup_sections_data (bfd *abfd) : m_bfd (abfd), m_last_section_first (abfd->sections) { } /* Place all ABFD sections next to each other obeying all constraints. */ void setup_one_section (asection *sect); /* List of inferior mmap ranges where setup_sections should add its next range. */ struct munmap_list munmap_list; private: /* The BFD. */ bfd *m_bfd; /* Size of all recent sections with matching LAST_PROT. */ CORE_ADDR m_last_size = 0; /* First section matching LAST_PROT. */ asection *m_last_section_first; /* Memory protection like the prot parameter of gdbarch_infcall_mmap. */ unsigned m_last_prot = -1; /* Maximum of alignments of all sections matching LAST_PROT. This value is always at least 1. This value is always a power of 2. */ CORE_ADDR m_last_max_alignment = -1; }; /* See setup_sections_data. */ void setup_sections_data::setup_one_section (asection *sect) { CORE_ADDR alignment; unsigned prot; if (sect != NULL) { /* It is required by later bfd_get_relocated_section_contents. */ if (sect->output_section == NULL) sect->output_section = sect; if ((bfd_section_flags (sect) & SEC_ALLOC) == 0) return; /* Make the memory always readable. */ prot = GDB_MMAP_PROT_READ; if ((bfd_section_flags (sect) & SEC_READONLY) == 0) prot |= GDB_MMAP_PROT_WRITE; if ((bfd_section_flags (sect) & SEC_CODE) != 0) prot |= GDB_MMAP_PROT_EXEC; if (compile_debug) gdb_printf (gdb_stdlog, "module \"%s\" section \"%s\" size %s prot %u\n", bfd_get_filename (m_bfd), bfd_section_name (sect), paddress (target_gdbarch (), bfd_section_size (sect)), prot); } else prot = -1; if (sect == NULL || (m_last_prot != prot && bfd_section_size (sect) != 0)) { CORE_ADDR addr; asection *sect_iter; if (m_last_size != 0) { addr = gdbarch_infcall_mmap (target_gdbarch (), m_last_size, m_last_prot); munmap_list.add (addr, m_last_size); if (compile_debug) gdb_printf (gdb_stdlog, "allocated %s bytes at %s prot %u\n", paddress (target_gdbarch (), m_last_size), paddress (target_gdbarch (), addr), m_last_prot); } else addr = 0; if ((addr & (m_last_max_alignment - 1)) != 0) error (_("Inferior compiled module address %s " "is not aligned to BFD required %s."), paddress (target_gdbarch (), addr), paddress (target_gdbarch (), m_last_max_alignment)); for (sect_iter = m_last_section_first; sect_iter != sect; sect_iter = sect_iter->next) if ((bfd_section_flags (sect_iter) & SEC_ALLOC) != 0) bfd_set_section_vma (sect_iter, addr + bfd_section_vma (sect_iter)); m_last_size = 0; m_last_section_first = sect; m_last_prot = prot; m_last_max_alignment = 1; } if (sect == NULL) return; alignment = ((CORE_ADDR) 1) << bfd_section_alignment (sect); m_last_max_alignment = std::max (m_last_max_alignment, alignment); m_last_size = (m_last_size + alignment - 1) & -alignment; bfd_set_section_vma (sect, m_last_size); m_last_size += bfd_section_size (sect); m_last_size = (m_last_size + alignment - 1) & -alignment; } /* Helper for link_callbacks callbacks vector. */ static void link_callbacks_multiple_definition (struct bfd_link_info *link_info, struct bfd_link_hash_entry *h, bfd *nbfd, asection *nsec, bfd_vma nval) { bfd *abfd = link_info->input_bfds; if (link_info->allow_multiple_definition) return; warning (_("Compiled module \"%s\": multiple symbol definitions: %s"), bfd_get_filename (abfd), h->root.string); } /* Helper for link_callbacks callbacks vector. */ static void link_callbacks_warning (struct bfd_link_info *link_info, const char *xwarning, const char *symbol, bfd *abfd, asection *section, bfd_vma address) { warning (_("Compiled module \"%s\" section \"%s\": warning: %s"), bfd_get_filename (abfd), bfd_section_name (section), xwarning); } /* Helper for link_callbacks callbacks vector. */ static void link_callbacks_undefined_symbol (struct bfd_link_info *link_info, const char *name, bfd *abfd, asection *section, bfd_vma address, bfd_boolean is_fatal) { warning (_("Cannot resolve relocation to \"%s\" " "from compiled module \"%s\" section \"%s\"."), name, bfd_get_filename (abfd), bfd_section_name (section)); } /* Helper for link_callbacks callbacks vector. */ static void link_callbacks_reloc_overflow (struct bfd_link_info *link_info, struct bfd_link_hash_entry *entry, const char *name, const char *reloc_name, bfd_vma addend, bfd *abfd, asection *section, bfd_vma address) { } /* Helper for link_callbacks callbacks vector. */ static void link_callbacks_reloc_dangerous (struct bfd_link_info *link_info, const char *message, bfd *abfd, asection *section, bfd_vma address) { warning (_("Compiled module \"%s\" section \"%s\": dangerous " "relocation: %s\n"), bfd_get_filename (abfd), bfd_section_name (section), message); } /* Helper for link_callbacks callbacks vector. */ static void link_callbacks_unattached_reloc (struct bfd_link_info *link_info, const char *name, bfd *abfd, asection *section, bfd_vma address) { warning (_("Compiled module \"%s\" section \"%s\": unattached " "relocation: %s\n"), bfd_get_filename (abfd), bfd_section_name (section), name); } /* Helper for link_callbacks callbacks vector. */ static void link_callbacks_einfo (const char *fmt, ...) ATTRIBUTE_PRINTF (1, 2); static void link_callbacks_einfo (const char *fmt, ...) { va_list ap; va_start (ap, fmt); std::string str = string_vprintf (fmt, ap); va_end (ap); warning (_("Compile module: warning: %s"), str.c_str ()); } /* Helper for bfd_get_relocated_section_contents. Only these symbols are set by bfd_simple_get_relocated_section_contents but bfd/ seems to use even the NULL ones without checking them first. */ static const struct bfd_link_callbacks link_callbacks = { NULL, /* add_archive_element */ link_callbacks_multiple_definition, /* multiple_definition */ NULL, /* multiple_common */ NULL, /* add_to_set */ NULL, /* constructor */ link_callbacks_warning, /* warning */ link_callbacks_undefined_symbol, /* undefined_symbol */ link_callbacks_reloc_overflow, /* reloc_overflow */ link_callbacks_reloc_dangerous, /* reloc_dangerous */ link_callbacks_unattached_reloc, /* unattached_reloc */ NULL, /* notice */ link_callbacks_einfo, /* einfo */ NULL, /* info */ NULL, /* minfo */ NULL, /* override_segment_assignment */ }; struct link_hash_table_cleanup_data { explicit link_hash_table_cleanup_data (bfd *abfd_) : abfd (abfd_), link_next (abfd->link.next) { } ~link_hash_table_cleanup_data () { if (abfd->is_linker_output) (*abfd->link.hash->hash_table_free) (abfd); abfd->link.next = link_next; } DISABLE_COPY_AND_ASSIGN (link_hash_table_cleanup_data); private: bfd *abfd; bfd *link_next; }; /* Relocate and store into inferior memory each section SECT of ABFD. */ static void copy_sections (bfd *abfd, asection *sect, void *data) { asymbol **symbol_table = (asymbol **) data; bfd_byte *sect_data_got; struct bfd_link_info link_info; struct bfd_link_order link_order; CORE_ADDR inferior_addr; if ((bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)) != (SEC_ALLOC | SEC_LOAD)) return; if (bfd_section_size (sect) == 0) return; /* Mostly a copy of bfd_simple_get_relocated_section_contents which GDB cannot use as it does not report relocations to undefined symbols. */ memset (&link_info, 0, sizeof (link_info)); link_info.output_bfd = abfd; link_info.input_bfds = abfd; link_info.input_bfds_tail = &abfd->link.next; struct link_hash_table_cleanup_data cleanup_data (abfd); abfd->link.next = NULL; link_info.hash = bfd_link_hash_table_create (abfd); link_info.callbacks = &link_callbacks; memset (&link_order, 0, sizeof (link_order)); link_order.next = NULL; link_order.type = bfd_indirect_link_order; link_order.offset = 0; link_order.size = bfd_section_size (sect); link_order.u.indirect.section = sect; gdb::unique_xmalloc_ptr sect_data ((bfd_byte *) xmalloc (bfd_section_size (sect))); sect_data_got = bfd_get_relocated_section_contents (abfd, &link_info, &link_order, sect_data.get (), FALSE, symbol_table); if (sect_data_got == NULL) error (_("Cannot map compiled module \"%s\" section \"%s\": %s"), bfd_get_filename (abfd), bfd_section_name (sect), bfd_errmsg (bfd_get_error ())); gdb_assert (sect_data_got == sect_data.get ()); inferior_addr = bfd_section_vma (sect); if (0 != target_write_memory (inferior_addr, sect_data.get (), bfd_section_size (sect))) error (_("Cannot write compiled module \"%s\" section \"%s\" " "to inferior memory range %s-%s."), bfd_get_filename (abfd), bfd_section_name (sect), paddress (target_gdbarch (), inferior_addr), paddress (target_gdbarch (), inferior_addr + bfd_section_size (sect))); } /* Fetch the type of COMPILE_I_EXPR_PTR_TYPE and COMPILE_I_EXPR_VAL symbols in OBJFILE so we can calculate how much memory to allocate for the out parameter. This avoids needing a malloc in the generated code. Throw an error if anything fails. GDB first tries to compile the code with COMPILE_I_PRINT_ADDRESS_SCOPE. If it finds user tries to print an array type this function returns NULL. Caller will then regenerate the code with COMPILE_I_PRINT_VALUE_SCOPE, recompiles it again and finally runs it. This is because __auto_type array-to-pointer type conversion of COMPILE_I_EXPR_VAL which gets detected by COMPILE_I_EXPR_PTR_TYPE preserving the array type. */ static struct type * get_out_value_type (struct symbol *func_sym, struct objfile *objfile, enum compile_i_scope_types scope) { struct symbol *gdb_ptr_type_sym; /* Initialize it just to avoid a GCC false warning. */ struct symbol *gdb_val_sym = NULL; struct type *gdb_ptr_type, *gdb_type_from_ptr, *gdb_type, *retval; /* Initialize it just to avoid a GCC false warning. */ const struct block *block = NULL; const struct blockvector *bv; int nblocks = 0; int block_loop = 0; lookup_name_info func_matcher (GCC_FE_WRAPPER_FUNCTION, symbol_name_match_type::SEARCH_NAME); bv = func_sym->symtab ()->compunit ()->blockvector (); nblocks = bv->num_blocks (); gdb_ptr_type_sym = NULL; for (block_loop = 0; block_loop < nblocks; block_loop++) { struct symbol *function = NULL; const struct block *function_block; block = bv->block (block_loop); if (block->function () != NULL) continue; gdb_val_sym = block_lookup_symbol (block, COMPILE_I_EXPR_VAL, symbol_name_match_type::SEARCH_NAME, VAR_DOMAIN); if (gdb_val_sym == NULL) continue; function_block = block; while (function_block != bv->static_block () && function_block != bv->global_block ()) { function_block = function_block->superblock (); function = function_block->function (); if (function != NULL) break; } if (function != NULL && function_block->superblock () == bv->static_block () && symbol_matches_search_name (function, func_matcher)) break; } if (block_loop == nblocks) error (_("No \"%s\" symbol found"), COMPILE_I_EXPR_VAL); gdb_type = gdb_val_sym->type (); gdb_type = check_typedef (gdb_type); gdb_ptr_type_sym = block_lookup_symbol (block, COMPILE_I_EXPR_PTR_TYPE, symbol_name_match_type::SEARCH_NAME, VAR_DOMAIN); if (gdb_ptr_type_sym == NULL) error (_("No \"%s\" symbol found"), COMPILE_I_EXPR_PTR_TYPE); gdb_ptr_type = gdb_ptr_type_sym->type (); gdb_ptr_type = check_typedef (gdb_ptr_type); if (gdb_ptr_type->code () != TYPE_CODE_PTR) error (_("Type of \"%s\" is not a pointer"), COMPILE_I_EXPR_PTR_TYPE); gdb_type_from_ptr = check_typedef (gdb_ptr_type->target_type ()); if (types_deeply_equal (gdb_type, gdb_type_from_ptr)) { if (scope != COMPILE_I_PRINT_ADDRESS_SCOPE) error (_("Expected address scope in compiled module \"%s\"."), objfile_name (objfile)); return gdb_type; } if (gdb_type->code () != TYPE_CODE_PTR) error (_("Invalid type code %d of symbol \"%s\" " "in compiled module \"%s\"."), gdb_type_from_ptr->code (), COMPILE_I_EXPR_VAL, objfile_name (objfile)); retval = gdb_type_from_ptr; switch (gdb_type_from_ptr->code ()) { case TYPE_CODE_ARRAY: gdb_type_from_ptr = gdb_type_from_ptr->target_type (); break; case TYPE_CODE_FUNC: break; default: error (_("Invalid type code %d of symbol \"%s\" " "in compiled module \"%s\"."), gdb_type_from_ptr->code (), COMPILE_I_EXPR_PTR_TYPE, objfile_name (objfile)); } if (!types_deeply_equal (gdb_type_from_ptr, gdb_type->target_type ())) error (_("Referenced types do not match for symbols \"%s\" and \"%s\" " "in compiled module \"%s\"."), COMPILE_I_EXPR_PTR_TYPE, COMPILE_I_EXPR_VAL, objfile_name (objfile)); if (scope == COMPILE_I_PRINT_ADDRESS_SCOPE) return NULL; return retval; } /* Fetch the type of first parameter of FUNC_SYM. Return NULL if FUNC_SYM has no parameters. Throw an error otherwise. */ static struct type * get_regs_type (struct symbol *func_sym, struct objfile *objfile) { struct type *func_type = func_sym->type (); struct type *regsp_type, *regs_type; /* No register parameter present. */ if (func_type->num_fields () == 0) return NULL; regsp_type = check_typedef (func_type->field (0).type ()); if (regsp_type->code () != TYPE_CODE_PTR) error (_("Invalid type code %d of first parameter of function \"%s\" " "in compiled module \"%s\"."), regsp_type->code (), GCC_FE_WRAPPER_FUNCTION, objfile_name (objfile)); regs_type = check_typedef (regsp_type->target_type ()); if (regs_type->code () != TYPE_CODE_STRUCT) error (_("Invalid type code %d of dereferenced first parameter " "of function \"%s\" in compiled module \"%s\"."), regs_type->code (), GCC_FE_WRAPPER_FUNCTION, objfile_name (objfile)); return regs_type; } /* Store all inferior registers required by REGS_TYPE to inferior memory starting at inferior address REGS_BASE. */ static void store_regs (struct type *regs_type, CORE_ADDR regs_base) { struct gdbarch *gdbarch = target_gdbarch (); int fieldno; for (fieldno = 0; fieldno < regs_type->num_fields (); fieldno++) { const char *reg_name = regs_type->field (fieldno).name (); ULONGEST reg_bitpos = regs_type->field (fieldno).loc_bitpos (); ULONGEST reg_bitsize = TYPE_FIELD_BITSIZE (regs_type, fieldno); ULONGEST reg_offset; struct type *reg_type = check_typedef (regs_type->field (fieldno).type ()); ULONGEST reg_size = reg_type->length (); int regnum; struct value *regval; CORE_ADDR inferior_addr; if (strcmp (reg_name, COMPILE_I_SIMPLE_REGISTER_DUMMY) == 0) continue; if ((reg_bitpos % 8) != 0 || reg_bitsize != 0) error (_("Invalid register \"%s\" position %s bits or size %s bits"), reg_name, pulongest (reg_bitpos), pulongest (reg_bitsize)); reg_offset = reg_bitpos / 8; if (reg_type->code () != TYPE_CODE_INT && reg_type->code () != TYPE_CODE_PTR) error (_("Invalid register \"%s\" type code %d"), reg_name, reg_type->code ()); regnum = compile_register_name_demangle (gdbarch, reg_name); regval = value_from_register (reg_type, regnum, get_current_frame ()); if (value_optimized_out (regval)) error (_("Register \"%s\" is optimized out."), reg_name); if (!value_entirely_available (regval)) error (_("Register \"%s\" is not available."), reg_name); inferior_addr = regs_base + reg_offset; if (0 != target_write_memory (inferior_addr, value_contents (regval).data (), reg_size)) error (_("Cannot write register \"%s\" to inferior memory at %s."), reg_name, paddress (gdbarch, inferior_addr)); } } /* Load the object file specified in FILE_NAMES into inferior memory. Throw an error otherwise. Caller must fully dispose the return value by calling compile_object_run. Returns NULL only for COMPILE_I_PRINT_ADDRESS_SCOPE when COMPILE_I_PRINT_VALUE_SCOPE should have been used instead. */ compile_module_up compile_object_load (const compile_file_names &file_names, enum compile_i_scope_types scope, void *scope_data) { CORE_ADDR regs_addr, out_value_addr = 0; struct symbol *func_sym; struct type *func_type; struct bound_minimal_symbol bmsym; long storage_needed; asymbol **symbol_table, **symp; long number_of_symbols, missing_symbols; struct type *regs_type, *out_value_type = NULL; char **matching; struct objfile *objfile; int expect_parameters; struct type *expect_return_type; gdb::unique_xmalloc_ptr filename (tilde_expand (file_names.object_file ())); gdb_bfd_ref_ptr abfd (gdb_bfd_open (filename.get (), gnutarget)); if (abfd == NULL) error (_("\"%s\": could not open as compiled module: %s"), filename.get (), bfd_errmsg (bfd_get_error ())); if (!bfd_check_format_matches (abfd.get (), bfd_object, &matching)) error (_("\"%s\": not in loadable format: %s"), filename.get (), gdb_bfd_errmsg (bfd_get_error (), matching).c_str ()); if ((bfd_get_file_flags (abfd.get ()) & (EXEC_P | DYNAMIC)) != 0) error (_("\"%s\": not in object format."), filename.get ()); struct setup_sections_data setup_sections_data (abfd.get ()); for (asection *sect = abfd->sections; sect != nullptr; sect = sect->next) setup_sections_data.setup_one_section (sect); setup_sections_data.setup_one_section (nullptr); storage_needed = bfd_get_symtab_upper_bound (abfd.get ()); if (storage_needed < 0) error (_("Cannot read symbols of compiled module \"%s\": %s"), filename.get (), bfd_errmsg (bfd_get_error ())); /* SYMFILE_VERBOSE is not passed even if FROM_TTY, user is not interested in "Reading symbols from ..." message for automatically generated file. */ objfile_up objfile_holder (symbol_file_add_from_bfd (abfd, filename.get (), 0, NULL, 0, NULL)); objfile = objfile_holder.get (); func_sym = lookup_global_symbol_from_objfile (objfile, GLOBAL_BLOCK, GCC_FE_WRAPPER_FUNCTION, VAR_DOMAIN).symbol; if (func_sym == NULL) error (_("Cannot find function \"%s\" in compiled module \"%s\"."), GCC_FE_WRAPPER_FUNCTION, objfile_name (objfile)); func_type = func_sym->type (); if (func_type->code () != TYPE_CODE_FUNC) error (_("Invalid type code %d of function \"%s\" in compiled " "module \"%s\"."), func_type->code (), GCC_FE_WRAPPER_FUNCTION, objfile_name (objfile)); switch (scope) { case COMPILE_I_SIMPLE_SCOPE: expect_parameters = 1; expect_return_type = builtin_type (target_gdbarch ())->builtin_void; break; case COMPILE_I_RAW_SCOPE: expect_parameters = 0; expect_return_type = builtin_type (target_gdbarch ())->builtin_void; break; case COMPILE_I_PRINT_ADDRESS_SCOPE: case COMPILE_I_PRINT_VALUE_SCOPE: expect_parameters = 2; expect_return_type = builtin_type (target_gdbarch ())->builtin_void; break; default: internal_error (__FILE__, __LINE__, _("invalid scope %d"), scope); } if (func_type->num_fields () != expect_parameters) error (_("Invalid %d parameters of function \"%s\" in compiled " "module \"%s\"."), func_type->num_fields (), GCC_FE_WRAPPER_FUNCTION, objfile_name (objfile)); if (!types_deeply_equal (expect_return_type, func_type->target_type ())) error (_("Invalid return type of function \"%s\" in compiled " "module \"%s\"."), GCC_FE_WRAPPER_FUNCTION, objfile_name (objfile)); /* The memory may be later needed by bfd_generic_get_relocated_section_contents called from default_symfile_relocate. */ symbol_table = (asymbol **) obstack_alloc (&objfile->objfile_obstack, storage_needed); number_of_symbols = bfd_canonicalize_symtab (abfd.get (), symbol_table); if (number_of_symbols < 0) error (_("Cannot parse symbols of compiled module \"%s\": %s"), filename.get (), bfd_errmsg (bfd_get_error ())); missing_symbols = 0; for (symp = symbol_table; symp < symbol_table + number_of_symbols; symp++) { asymbol *sym = *symp; if (sym->flags != 0) continue; sym->flags = BSF_GLOBAL; sym->section = bfd_abs_section_ptr; if (strcmp (sym->name, "_GLOBAL_OFFSET_TABLE_") == 0) { if (compile_debug) gdb_printf (gdb_stdlog, "ELF symbol \"%s\" relocated to zero\n", sym->name); /* It seems to be a GCC bug, with -mcmodel=large there should be no need for _GLOBAL_OFFSET_TABLE_. Together with -fPIE the data remain PC-relative even with _GLOBAL_OFFSET_TABLE_ as zero. */ sym->value = 0; continue; } if (strcmp (sym->name, ".TOC.") == 0) { /* Handle the .TOC. symbol as the linker would do. Set the .TOC. sections value to 0x8000 (see bfd/elf64-ppc.c TOC_BASE_OFF); point the symbol section at the ".toc" section; and pass the toc->vma value into bfd_set_gp_value(). If the .toc section is not found, use the first section with the SEC_ALLOC flag set. In the unlikely case that we still do not have a section identified, fall back to using the "*ABS*" section. */ asection *toc_fallback = bfd_get_section_by_name(abfd.get(), ".toc"); if (toc_fallback == NULL) { for (asection *tsect = abfd->sections; tsect != nullptr; tsect = tsect->next) { if (bfd_section_flags (tsect) & SEC_ALLOC) { toc_fallback = tsect; break; } } } if (toc_fallback == NULL) /* If we've gotten here, we have not found a section usable as a backup for the .toc section. In this case, use the absolute (*ABS*) section. */ toc_fallback = bfd_abs_section_ptr; sym->section = toc_fallback; sym->value = 0x8000; bfd_set_gp_value(abfd.get(), toc_fallback->vma); if (compile_debug) gdb_printf (gdb_stdlog, "Connectiong ELF symbol \"%s\" to the .toc section (%s)\n", sym->name, paddress (target_gdbarch (), sym->value)); continue; } bmsym = lookup_minimal_symbol (sym->name, NULL, NULL); switch (bmsym.minsym == NULL ? mst_unknown : bmsym.minsym->type ()) { case mst_text: case mst_bss: case mst_data: sym->value = bmsym.value_address (); if (compile_debug) gdb_printf (gdb_stdlog, "ELF mst_text symbol \"%s\" relocated to %s\n", sym->name, paddress (target_gdbarch (), sym->value)); break; case mst_text_gnu_ifunc: sym->value = gnu_ifunc_resolve_addr (target_gdbarch (), bmsym.value_address ()); if (compile_debug) gdb_printf (gdb_stdlog, "ELF mst_text_gnu_ifunc symbol \"%s\" " "relocated to %s\n", sym->name, paddress (target_gdbarch (), sym->value)); break; default: warning (_("Could not find symbol \"%s\" " "for compiled module \"%s\"."), sym->name, filename.get ()); missing_symbols++; } } if (missing_symbols) error (_("%ld symbols were missing, cannot continue."), missing_symbols); bfd_map_over_sections (abfd.get (), copy_sections, symbol_table); regs_type = get_regs_type (func_sym, objfile); if (regs_type == NULL) regs_addr = 0; else { /* Use read-only non-executable memory protection. */ regs_addr = gdbarch_infcall_mmap (target_gdbarch (), regs_type->length (), GDB_MMAP_PROT_READ); gdb_assert (regs_addr != 0); setup_sections_data.munmap_list.add (regs_addr, regs_type->length ()); if (compile_debug) gdb_printf (gdb_stdlog, "allocated %s bytes at %s for registers\n", paddress (target_gdbarch (), regs_type->length ()), paddress (target_gdbarch (), regs_addr)); store_regs (regs_type, regs_addr); } if (scope == COMPILE_I_PRINT_ADDRESS_SCOPE || scope == COMPILE_I_PRINT_VALUE_SCOPE) { out_value_type = get_out_value_type (func_sym, objfile, scope); if (out_value_type == NULL) return NULL; check_typedef (out_value_type); out_value_addr = gdbarch_infcall_mmap (target_gdbarch (), out_value_type->length (), (GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE)); gdb_assert (out_value_addr != 0); setup_sections_data.munmap_list.add (out_value_addr, out_value_type->length ()); if (compile_debug) gdb_printf (gdb_stdlog, "allocated %s bytes at %s for printed value\n", paddress (target_gdbarch (), out_value_type->length ()), paddress (target_gdbarch (), out_value_addr)); } compile_module_up retval (new struct compile_module); retval->objfile = objfile_holder.release (); retval->source_file = file_names.source_file (); retval->func_sym = func_sym; retval->regs_addr = regs_addr; retval->scope = scope; retval->scope_data = scope_data; retval->out_value_type = out_value_type; retval->out_value_addr = out_value_addr; retval->munmap_list = std::move (setup_sections_data.munmap_list); return retval; }