/* C/C++ language support for compilation. Copyright (C) 2014-2019 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "compile-internal.h" #include "compile-c.h" #include "compile-cplus.h" #include "compile.h" #include "gdb-dlfcn.h" #include "c-lang.h" #include "macrotab.h" #include "macroscope.h" #include "regcache.h" #include "common/function-view.h" #include "common/preprocessor.h" /* See compile-internal.h. */ const char * c_get_mode_for_size (int size) { const char *mode = NULL; switch (size) { case 1: mode = "QI"; break; case 2: mode = "HI"; break; case 4: mode = "SI"; break; case 8: mode = "DI"; break; default: internal_error (__FILE__, __LINE__, _("Invalid GCC mode size %d."), size); } return mode; } /* See compile-internal.h. */ std::string c_get_range_decl_name (const struct dynamic_prop *prop) { return string_printf ("__gdb_prop_%s", host_address_to_string (prop)); } /* Load the plug-in library FE_LIBCC and return the initialization function FE_CONTEXT. */ template FUNCTYPE * load_libcompile (const char *fe_libcc, const char *fe_context) { FUNCTYPE *func; /* gdb_dlopen will call error () on an error, so no need to check value. */ gdb_dlhandle_up handle = gdb_dlopen (fe_libcc); func = (FUNCTYPE *) gdb_dlsym (handle, fe_context); if (func == NULL) error (_("could not find symbol %s in library %s"), fe_context, fe_libcc); /* Leave the library open. */ handle.release (); return func; } /* Return the compile instance associated with the current context. This function calls the symbol returned from the load_libcompile function. FE_LIBCC is the library to load. BASE_VERSION is the base compile plug-in version we support. API_VERSION is the API version supported. */ template compile_instance * get_compile_context (const char *fe_libcc, const char *fe_context, BASE_VERSION_TYPE base_version, API_VERSION_TYPE api_version) { static FUNCTYPE *func; static CTXTYPE *context; if (func == NULL) { func = load_libcompile (fe_libcc, fe_context); gdb_assert (func != NULL); } context = (*func) (base_version, api_version); if (context == NULL) error (_("The loaded version of GCC does not support the required version " "of the API.")); return new INSTTYPE (context); } /* A C-language implementation of get_compile_context. */ compile_instance * c_get_compile_context () { return get_compile_context (STRINGIFY (GCC_C_FE_LIBCC), STRINGIFY (GCC_C_FE_CONTEXT), GCC_FE_VERSION_0, GCC_C_FE_VERSION_0); } /* A C++-language implementation of get_compile_context. */ compile_instance * cplus_get_compile_context () { return get_compile_context (STRINGIFY (GCC_CP_FE_LIBCC), STRINGIFY (GCC_CP_FE_CONTEXT), GCC_FE_VERSION_0, GCC_CP_FE_VERSION_0); } /* Write one macro definition. */ static void print_one_macro (const char *name, const struct macro_definition *macro, struct macro_source_file *source, int line, ui_file *file) { /* Don't print command-line defines. They will be supplied another way. */ if (line == 0) return; /* None of -Wno-builtin-macro-redefined, #undef first or plain #define of the same value would avoid a warning. */ fprintf_filtered (file, "#ifndef %s\n# define %s", name, name); if (macro->kind == macro_function_like) { int i; fputs_filtered ("(", file); for (i = 0; i < macro->argc; i++) { fputs_filtered (macro->argv[i], file); if (i + 1 < macro->argc) fputs_filtered (", ", file); } fputs_filtered (")", file); } fprintf_filtered (file, " %s\n#endif\n", macro->replacement); } /* Write macro definitions at PC to FILE. */ static void write_macro_definitions (const struct block *block, CORE_ADDR pc, struct ui_file *file) { gdb::unique_xmalloc_ptr scope; if (block != NULL) scope = sal_macro_scope (find_pc_line (pc, 0)); else scope = default_macro_scope (); if (scope == NULL) scope = user_macro_scope (); if (scope != NULL && scope->file != NULL && scope->file->table != NULL) { macro_for_each_in_scope (scope->file, scope->line, [&] (const char *name, const macro_definition *macro, macro_source_file *source, int line) { print_one_macro (name, macro, source, line, file); }); } } /* Generate a structure holding all the registers used by the function we're generating. */ static void generate_register_struct (struct ui_file *stream, struct gdbarch *gdbarch, const unsigned char *registers_used) { int i; int seen = 0; fputs_unfiltered ("struct " COMPILE_I_SIMPLE_REGISTER_STRUCT_TAG " {\n", stream); if (registers_used != NULL) for (i = 0; i < gdbarch_num_regs (gdbarch); ++i) { if (registers_used[i]) { struct type *regtype = check_typedef (register_type (gdbarch, i)); std::string regname = compile_register_name_mangled (gdbarch, i); seen = 1; /* You might think we could use type_print here. However, target descriptions often use types with names like "int64_t", which may not be defined in the inferior (and in any case would not be looked up due to the #pragma business). So, we take a much simpler approach: for pointer- or integer-typed registers, emit the field in the most direct way; and for other register types (typically flags or vectors), emit a maximally-aligned array of the correct size. */ fputs_unfiltered (" ", stream); switch (TYPE_CODE (regtype)) { case TYPE_CODE_PTR: fprintf_filtered (stream, "__gdb_uintptr %s", regname.c_str ()); break; case TYPE_CODE_INT: { const char *mode = c_get_mode_for_size (TYPE_LENGTH (regtype)); if (mode != NULL) { if (TYPE_UNSIGNED (regtype)) fputs_unfiltered ("unsigned ", stream); fprintf_unfiltered (stream, "int %s" " __attribute__ ((__mode__(__%s__)))", regname.c_str (), mode); break; } } /* Fall through. */ default: fprintf_unfiltered (stream, " unsigned char %s[%s]" " __attribute__((__aligned__(" "__BIGGEST_ALIGNMENT__)))", regname.c_str (), pulongest (TYPE_LENGTH (regtype))); } fputs_unfiltered (";\n", stream); } } if (!seen) fputs_unfiltered (" char " COMPILE_I_SIMPLE_REGISTER_DUMMY ";\n", stream); fputs_unfiltered ("};\n\n", stream); } /* C-language policy to emit a push user expression pragma into BUF. */ struct c_push_user_expression { void push_user_expression (struct ui_file *buf) { fputs_unfiltered ("#pragma GCC user_expression\n", buf); } }; /* C-language policy to emit a pop user expression pragma into BUF. For C, this is a nop. */ struct pop_user_expression_nop { void pop_user_expression (struct ui_file *buf) { /* Nothing to do. */ } }; /* C-language policy to construct a code header for a block of code. Takes a scope TYPE argument which selects the correct header to insert into BUF. */ struct c_add_code_header { void add_code_header (enum compile_i_scope_types type, struct ui_file *buf) { switch (type) { case COMPILE_I_SIMPLE_SCOPE: fputs_unfiltered ("void " GCC_FE_WRAPPER_FUNCTION " (struct " COMPILE_I_SIMPLE_REGISTER_STRUCT_TAG " *" COMPILE_I_SIMPLE_REGISTER_ARG_NAME ") {\n", buf); break; case COMPILE_I_PRINT_ADDRESS_SCOPE: case COMPILE_I_PRINT_VALUE_SCOPE: /* is needed for a memcpy call below. */ fputs_unfiltered ("#include \n" "void " GCC_FE_WRAPPER_FUNCTION " (struct " COMPILE_I_SIMPLE_REGISTER_STRUCT_TAG " *" COMPILE_I_SIMPLE_REGISTER_ARG_NAME ", " COMPILE_I_PRINT_OUT_ARG_TYPE " " COMPILE_I_PRINT_OUT_ARG ") {\n", buf); break; case COMPILE_I_RAW_SCOPE: break; default: gdb_assert_not_reached (_("Unknown compiler scope reached.")); } } }; /* C-language policy to construct a code footer for a block of code. Takes a scope TYPE which selects the correct footer to insert into BUF. */ struct c_add_code_footer { void add_code_footer (enum compile_i_scope_types type, struct ui_file *buf) { switch (type) { case COMPILE_I_SIMPLE_SCOPE: case COMPILE_I_PRINT_ADDRESS_SCOPE: case COMPILE_I_PRINT_VALUE_SCOPE: fputs_unfiltered ("}\n", buf); break; case COMPILE_I_RAW_SCOPE: break; default: gdb_assert_not_reached (_("Unknown compiler scope reached.")); } } }; /* C-language policy to emit the user code snippet INPUT into BUF based on the scope TYPE. */ struct c_add_input { void add_input (enum compile_i_scope_types type, const char *input, struct ui_file *buf) { switch (type) { case COMPILE_I_PRINT_ADDRESS_SCOPE: case COMPILE_I_PRINT_VALUE_SCOPE: fprintf_unfiltered (buf, "__auto_type " COMPILE_I_EXPR_VAL " = %s;\n" "typeof (%s) *" COMPILE_I_EXPR_PTR_TYPE ";\n" "memcpy (" COMPILE_I_PRINT_OUT_ARG ", %s" COMPILE_I_EXPR_VAL ",\n" "sizeof (*" COMPILE_I_EXPR_PTR_TYPE "));\n" , input, input, (type == COMPILE_I_PRINT_ADDRESS_SCOPE ? "&" : "")); break; default: fputs_unfiltered (input, buf); break; } fputs_unfiltered ("\n", buf); } }; /* C++-language policy to emit a push user expression pragma into BUF. */ struct cplus_push_user_expression { void push_user_expression (struct ui_file *buf) { fputs_unfiltered ("#pragma GCC push_user_expression\n", buf); } }; /* C++-language policy to emit a pop user expression pragma into BUF. */ struct cplus_pop_user_expression { void pop_user_expression (struct ui_file *buf) { fputs_unfiltered ("#pragma GCC pop_user_expression\n", buf); } }; /* C++-language policy to construct a code header for a block of code. Takes a scope TYPE argument which selects the correct header to insert into BUF. */ struct cplus_add_code_header { void add_code_header (enum compile_i_scope_types type, struct ui_file *buf) { switch (type) { case COMPILE_I_SIMPLE_SCOPE: fputs_unfiltered ("void " GCC_FE_WRAPPER_FUNCTION " (struct " COMPILE_I_SIMPLE_REGISTER_STRUCT_TAG " *" COMPILE_I_SIMPLE_REGISTER_ARG_NAME ") {\n", buf); break; case COMPILE_I_PRINT_ADDRESS_SCOPE: case COMPILE_I_PRINT_VALUE_SCOPE: fputs_unfiltered ( "#include \n" "#include \n" "void " GCC_FE_WRAPPER_FUNCTION " (struct " COMPILE_I_SIMPLE_REGISTER_STRUCT_TAG " *" COMPILE_I_SIMPLE_REGISTER_ARG_NAME ", " COMPILE_I_PRINT_OUT_ARG_TYPE " " COMPILE_I_PRINT_OUT_ARG ") {\n", buf); break; case COMPILE_I_RAW_SCOPE: break; default: gdb_assert_not_reached (_("Unknown compiler scope reached.")); } } }; /* C++-language policy to emit the user code snippet INPUT into BUF based on the scope TYPE. */ struct cplus_add_input { void add_input (enum compile_i_scope_types type, const char *input, struct ui_file *buf) { switch (type) { case COMPILE_I_PRINT_VALUE_SCOPE: case COMPILE_I_PRINT_ADDRESS_SCOPE: fprintf_unfiltered (buf, /* "auto" strips ref- and cv- qualifiers, so we need to also strip those from COMPILE_I_EXPR_PTR_TYPE. */ "auto " COMPILE_I_EXPR_VAL " = %s;\n" "typedef " "std::add_pointer::type>::type " " __gdb_expr_ptr;\n" "__gdb_expr_ptr " COMPILE_I_EXPR_PTR_TYPE ";\n" "std::memcpy (" COMPILE_I_PRINT_OUT_ARG ", %s (" COMPILE_I_EXPR_VAL "),\n" "\tsizeof (*" COMPILE_I_EXPR_PTR_TYPE "));\n" ,input, input, (type == COMPILE_I_PRINT_ADDRESS_SCOPE ? "__builtin_addressof" : "")); break; default: fputs_unfiltered (input, buf); break; } fputs_unfiltered ("\n", buf); } }; /* A host class representing a compile program. CompileInstanceType is the type of the compile_instance for the language. PushUserExpressionPolicy and PopUserExpressionPolicy are used to push and pop user expression pragmas to the compile plug-in. AddCodeHeaderPolicy and AddCodeFooterPolicy are used to add the appropriate code header and footer, respectively. AddInputPolicy adds the actual user code. */ template class compile_program : private PushUserExpressionPolicy, private PopUserExpressionPolicy, private AddCodeHeaderPolicy, private AddCodeFooterPolicy, private AddInputPolicy { public: /* Construct a compile_program using the compiler instance INST using the architecture given by GDBARCH. */ compile_program (CompileInstanceType *inst, struct gdbarch *gdbarch) : m_instance (inst), m_arch (gdbarch) { } /* Take the source code provided by the user with the 'compile' command and compute the additional wrapping, macro, variable and register operations needed. INPUT is the source code derived from the 'compile' command, EXPR_BLOCK denotes the block relevant contextually to the inferior when the expression was created, and EXPR_PC indicates the value of $PC. Returns the text of the program to compile. */ std::string compute (const char *input, const struct block *expr_block, CORE_ADDR expr_pc) { string_file var_stream; string_file buf; /* Do not generate local variable information for "raw" compilations. In this case we aren't emitting our own function and the user's code may only refer to globals. */ if (m_instance->scope () != COMPILE_I_RAW_SCOPE) { /* Generate the code to compute variable locations, but do it before generating the function header, so we can define the register struct before the function body. This requires a temporary stream. */ gdb::unique_xmalloc_ptr registers_used = generate_c_for_variable_locations (m_instance, &var_stream, m_arch, expr_block, expr_pc); buf.puts ("typedef unsigned int" " __attribute__ ((__mode__(__pointer__)))" " __gdb_uintptr;\n"); buf.puts ("typedef int" " __attribute__ ((__mode__(__pointer__)))" " __gdb_intptr;\n"); /* Iterate all log2 sizes in bytes supported by c_get_mode_for_size. */ for (int i = 0; i < 4; ++i) { const char *mode = c_get_mode_for_size (1 << i); gdb_assert (mode != NULL); buf.printf ("typedef int" " __attribute__ ((__mode__(__%s__)))" " __gdb_int_%s;\n", mode, mode); } generate_register_struct (&buf, m_arch, registers_used.get ()); } AddCodeHeaderPolicy::add_code_header (m_instance->scope (), &buf); if (m_instance->scope () == COMPILE_I_SIMPLE_SCOPE || m_instance->scope () == COMPILE_I_PRINT_ADDRESS_SCOPE || m_instance->scope () == COMPILE_I_PRINT_VALUE_SCOPE) { buf.write (var_stream.c_str (), var_stream.size ()); PushUserExpressionPolicy::push_user_expression (&buf); } write_macro_definitions (expr_block, expr_pc, &buf); /* The user expression has to be in its own scope, so that "extern" works properly. Otherwise gcc thinks that the "extern" declaration is in the same scope as the declaration provided by gdb. */ if (m_instance->scope () != COMPILE_I_RAW_SCOPE) buf.puts ("{\n"); buf.puts ("#line 1 \"gdb command line\"\n"); AddInputPolicy::add_input (m_instance->scope (), input, &buf); /* For larger user expressions the automatic semicolons may be confusing. */ if (strchr (input, '\n') == NULL) buf.puts (";\n"); if (m_instance->scope () != COMPILE_I_RAW_SCOPE) buf.puts ("}\n"); if (m_instance->scope () == COMPILE_I_SIMPLE_SCOPE || m_instance->scope () == COMPILE_I_PRINT_ADDRESS_SCOPE || m_instance->scope () == COMPILE_I_PRINT_VALUE_SCOPE) PopUserExpressionPolicy::pop_user_expression (&buf); AddCodeFooterPolicy::add_code_footer (m_instance->scope (), &buf); return buf.string (); } private: /* The compile instance to be used for compilation and type-conversion. */ CompileInstanceType *m_instance; /* The architecture to be used. */ struct gdbarch *m_arch; }; /* The types used for C and C++ program computations. */ typedef compile_program c_compile_program; typedef compile_program cplus_compile_program; /* The la_compute_program method for C. */ std::string c_compute_program (compile_instance *inst, const char *input, struct gdbarch *gdbarch, const struct block *expr_block, CORE_ADDR expr_pc) { compile_c_instance *c_inst = static_cast (inst); c_compile_program program (c_inst, gdbarch); return program.compute (input, expr_block, expr_pc); } /* The la_compute_program method for C++. */ std::string cplus_compute_program (compile_instance *inst, const char *input, struct gdbarch *gdbarch, const struct block *expr_block, CORE_ADDR expr_pc) { compile_cplus_instance *cplus_inst = static_cast (inst); cplus_compile_program program (cplus_inst, gdbarch); return program.compute (input, expr_block, expr_pc); }