/* Everything about breakpoints, for GDB.
Copyright (C) 1986-2014 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
#include "defs.h"
#include "arch-utils.h"
#include
#include "hashtab.h"
#include "symtab.h"
#include "frame.h"
#include "breakpoint.h"
#include "tracepoint.h"
#include "gdbtypes.h"
#include "expression.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "value.h"
#include "command.h"
#include "inferior.h"
#include "gdbthread.h"
#include "target.h"
#include "language.h"
#include
#include "gdb-demangle.h"
#include "filenames.h"
#include "annotate.h"
#include "symfile.h"
#include "objfiles.h"
#include "source.h"
#include "linespec.h"
#include "completer.h"
#include "gdb.h"
#include "ui-out.h"
#include "cli/cli-script.h"
#include "gdb_assert.h"
#include "block.h"
#include "solib.h"
#include "solist.h"
#include "observer.h"
#include "exceptions.h"
#include "memattr.h"
#include "ada-lang.h"
#include "top.h"
#include "valprint.h"
#include "jit.h"
#include "xml-syscall.h"
#include "parser-defs.h"
#include "gdb_regex.h"
#include "probe.h"
#include "cli/cli-utils.h"
#include "continuations.h"
#include "stack.h"
#include "skip.h"
#include "ax-gdb.h"
#include "dummy-frame.h"
#include "format.h"
/* readline include files */
#include "readline/readline.h"
#include "readline/history.h"
/* readline defines this. */
#undef savestring
#include "mi/mi-common.h"
#include "python/python.h"
/* Enums for exception-handling support. */
enum exception_event_kind
{
EX_EVENT_THROW,
EX_EVENT_RETHROW,
EX_EVENT_CATCH
};
/* Prototypes for local functions. */
static void enable_delete_command (char *, int);
static void enable_once_command (char *, int);
static void enable_count_command (char *, int);
static void disable_command (char *, int);
static void enable_command (char *, int);
static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
void *),
void *);
static void ignore_command (char *, int);
static int breakpoint_re_set_one (void *);
static void breakpoint_re_set_default (struct breakpoint *);
static void create_sals_from_address_default (char **,
struct linespec_result *,
enum bptype, char *,
char **);
static void create_breakpoints_sal_default (struct gdbarch *,
struct linespec_result *,
char *, char *, enum bptype,
enum bpdisp, int, int,
int,
const struct breakpoint_ops *,
int, int, int, unsigned);
static void decode_linespec_default (struct breakpoint *, char **,
struct symtabs_and_lines *);
static void clear_command (char *, int);
static void catch_command (char *, int);
static int can_use_hardware_watchpoint (struct value *);
static void break_command_1 (char *, int, int);
static void mention (struct breakpoint *);
static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
enum bptype,
const struct breakpoint_ops *);
static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
const struct symtab_and_line *);
/* This function is used in gdbtk sources and thus can not be made
static. */
struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
struct symtab_and_line,
enum bptype,
const struct breakpoint_ops *);
static struct breakpoint *
momentary_breakpoint_from_master (struct breakpoint *orig,
enum bptype type,
const struct breakpoint_ops *ops);
static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
CORE_ADDR bpaddr,
enum bptype bptype);
static void describe_other_breakpoints (struct gdbarch *,
struct program_space *, CORE_ADDR,
struct obj_section *, int);
static int breakpoint_address_match (struct address_space *aspace1,
CORE_ADDR addr1,
struct address_space *aspace2,
CORE_ADDR addr2);
static int watchpoint_locations_match (struct bp_location *loc1,
struct bp_location *loc2);
static int breakpoint_location_address_match (struct bp_location *bl,
struct address_space *aspace,
CORE_ADDR addr);
static void breakpoints_info (char *, int);
static void watchpoints_info (char *, int);
static int breakpoint_1 (char *, int,
int (*) (const struct breakpoint *));
static int breakpoint_cond_eval (void *);
static void cleanup_executing_breakpoints (void *);
static void commands_command (char *, int);
static void condition_command (char *, int);
typedef enum
{
mark_inserted,
mark_uninserted
}
insertion_state_t;
static int remove_breakpoint (struct bp_location *, insertion_state_t);
static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
static enum print_stop_action print_bp_stop_message (bpstat bs);
static int watchpoint_check (void *);
static void maintenance_info_breakpoints (char *, int);
static int hw_breakpoint_used_count (void);
static int hw_watchpoint_use_count (struct breakpoint *);
static int hw_watchpoint_used_count_others (struct breakpoint *except,
enum bptype type,
int *other_type_used);
static void hbreak_command (char *, int);
static void thbreak_command (char *, int);
static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
int count);
static void stop_command (char *arg, int from_tty);
static void stopin_command (char *arg, int from_tty);
static void stopat_command (char *arg, int from_tty);
static void tcatch_command (char *arg, int from_tty);
static void detach_single_step_breakpoints (void);
static int single_step_breakpoint_inserted_here_p (struct address_space *,
CORE_ADDR pc);
static void free_bp_location (struct bp_location *loc);
static void incref_bp_location (struct bp_location *loc);
static void decref_bp_location (struct bp_location **loc);
static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
static void update_global_location_list (int);
static void update_global_location_list_nothrow (int);
static int is_hardware_watchpoint (const struct breakpoint *bpt);
static void insert_breakpoint_locations (void);
static int syscall_catchpoint_p (struct breakpoint *b);
static void tracepoints_info (char *, int);
static void delete_trace_command (char *, int);
static void enable_trace_command (char *, int);
static void disable_trace_command (char *, int);
static void trace_pass_command (char *, int);
static void set_tracepoint_count (int num);
static int is_masked_watchpoint (const struct breakpoint *b);
static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
/* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
otherwise. */
static int strace_marker_p (struct breakpoint *b);
/* The abstract base class all breakpoint_ops structures inherit
from. */
struct breakpoint_ops base_breakpoint_ops;
/* The breakpoint_ops structure to be inherited by all breakpoint_ops
that are implemented on top of software or hardware breakpoints
(user breakpoints, internal and momentary breakpoints, etc.). */
static struct breakpoint_ops bkpt_base_breakpoint_ops;
/* Internal breakpoints class type. */
static struct breakpoint_ops internal_breakpoint_ops;
/* Momentary breakpoints class type. */
static struct breakpoint_ops momentary_breakpoint_ops;
/* Momentary breakpoints for bp_longjmp and bp_exception class type. */
static struct breakpoint_ops longjmp_breakpoint_ops;
/* The breakpoint_ops structure to be used in regular user created
breakpoints. */
struct breakpoint_ops bkpt_breakpoint_ops;
/* Breakpoints set on probes. */
static struct breakpoint_ops bkpt_probe_breakpoint_ops;
/* Dynamic printf class type. */
struct breakpoint_ops dprintf_breakpoint_ops;
/* The style in which to perform a dynamic printf. This is a user
option because different output options have different tradeoffs;
if GDB does the printing, there is better error handling if there
is a problem with any of the arguments, but using an inferior
function lets you have special-purpose printers and sending of
output to the same place as compiled-in print functions. */
static const char dprintf_style_gdb[] = "gdb";
static const char dprintf_style_call[] = "call";
static const char dprintf_style_agent[] = "agent";
static const char *const dprintf_style_enums[] = {
dprintf_style_gdb,
dprintf_style_call,
dprintf_style_agent,
NULL
};
static const char *dprintf_style = dprintf_style_gdb;
/* The function to use for dynamic printf if the preferred style is to
call into the inferior. The value is simply a string that is
copied into the command, so it can be anything that GDB can
evaluate to a callable address, not necessarily a function name. */
static char *dprintf_function = "";
/* The channel to use for dynamic printf if the preferred style is to
call into the inferior; if a nonempty string, it will be passed to
the call as the first argument, with the format string as the
second. As with the dprintf function, this can be anything that
GDB knows how to evaluate, so in addition to common choices like
"stderr", this could be an app-specific expression like
"mystreams[curlogger]". */
static char *dprintf_channel = "";
/* True if dprintf commands should continue to operate even if GDB
has disconnected. */
static int disconnected_dprintf = 1;
/* A reference-counted struct command_line. This lets multiple
breakpoints share a single command list. */
struct counted_command_line
{
/* The reference count. */
int refc;
/* The command list. */
struct command_line *commands;
};
struct command_line *
breakpoint_commands (struct breakpoint *b)
{
return b->commands ? b->commands->commands : NULL;
}
/* Flag indicating that a command has proceeded the inferior past the
current breakpoint. */
static int breakpoint_proceeded;
const char *
bpdisp_text (enum bpdisp disp)
{
/* NOTE: the following values are a part of MI protocol and
represent values of 'disp' field returned when inferior stops at
a breakpoint. */
static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
return bpdisps[(int) disp];
}
/* Prototypes for exported functions. */
/* If FALSE, gdb will not use hardware support for watchpoints, even
if such is available. */
static int can_use_hw_watchpoints;
static void
show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
struct cmd_list_element *c,
const char *value)
{
fprintf_filtered (file,
_("Debugger's willingness to use "
"watchpoint hardware is %s.\n"),
value);
}
/* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
for unrecognized breakpoint locations.
If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
static enum auto_boolean pending_break_support;
static void
show_pending_break_support (struct ui_file *file, int from_tty,
struct cmd_list_element *c,
const char *value)
{
fprintf_filtered (file,
_("Debugger's behavior regarding "
"pending breakpoints is %s.\n"),
value);
}
/* If 1, gdb will automatically use hardware breakpoints for breakpoints
set with "break" but falling in read-only memory.
If 0, gdb will warn about such breakpoints, but won't automatically
use hardware breakpoints. */
static int automatic_hardware_breakpoints;
static void
show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
struct cmd_list_element *c,
const char *value)
{
fprintf_filtered (file,
_("Automatic usage of hardware breakpoints is %s.\n"),
value);
}
/* If on, gdb will keep breakpoints inserted even as inferior is
stopped, and immediately insert any new breakpoints. If off, gdb
will insert breakpoints into inferior only when resuming it, and
will remove breakpoints upon stop. If auto, GDB will behave as ON
if in non-stop mode, and as OFF if all-stop mode.*/
static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
static void
show_always_inserted_mode (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
fprintf_filtered (file,
_("Always inserted breakpoint "
"mode is %s (currently %s).\n"),
value,
breakpoints_always_inserted_mode () ? "on" : "off");
else
fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
value);
}
int
breakpoints_always_inserted_mode (void)
{
return (always_inserted_mode == AUTO_BOOLEAN_TRUE
|| (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
}
static const char condition_evaluation_both[] = "host or target";
/* Modes for breakpoint condition evaluation. */
static const char condition_evaluation_auto[] = "auto";
static const char condition_evaluation_host[] = "host";
static const char condition_evaluation_target[] = "target";
static const char *const condition_evaluation_enums[] = {
condition_evaluation_auto,
condition_evaluation_host,
condition_evaluation_target,
NULL
};
/* Global that holds the current mode for breakpoint condition evaluation. */
static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
/* Global that we use to display information to the user (gets its value from
condition_evaluation_mode_1. */
static const char *condition_evaluation_mode = condition_evaluation_auto;
/* Translate a condition evaluation mode MODE into either "host"
or "target". This is used mostly to translate from "auto" to the
real setting that is being used. It returns the translated
evaluation mode. */
static const char *
translate_condition_evaluation_mode (const char *mode)
{
if (mode == condition_evaluation_auto)
{
if (target_supports_evaluation_of_breakpoint_conditions ())
return condition_evaluation_target;
else
return condition_evaluation_host;
}
else
return mode;
}
/* Discovers what condition_evaluation_auto translates to. */
static const char *
breakpoint_condition_evaluation_mode (void)
{
return translate_condition_evaluation_mode (condition_evaluation_mode);
}
/* Return true if GDB should evaluate breakpoint conditions or false
otherwise. */
static int
gdb_evaluates_breakpoint_condition_p (void)
{
const char *mode = breakpoint_condition_evaluation_mode ();
return (mode == condition_evaluation_host);
}
void _initialize_breakpoint (void);
/* Are we executing breakpoint commands? */
static int executing_breakpoint_commands;
/* Are overlay event breakpoints enabled? */
static int overlay_events_enabled;
/* See description in breakpoint.h. */
int target_exact_watchpoints = 0;
/* Walk the following statement or block through all breakpoints.
ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
current breakpoint. */
#define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
#define ALL_BREAKPOINTS_SAFE(B,TMP) \
for (B = breakpoint_chain; \
B ? (TMP=B->next, 1): 0; \
B = TMP)
/* Similar iterator for the low-level breakpoints. SAFE variant is
not provided so update_global_location_list must not be called
while executing the block of ALL_BP_LOCATIONS. */
#define ALL_BP_LOCATIONS(B,BP_TMP) \
for (BP_TMP = bp_location; \
BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
BP_TMP++)
/* Iterates through locations with address ADDRESS for the currently selected
program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
to where the loop should start from.
If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
appropriate location to start with. */
#define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
BP_LOCP_TMP = BP_LOCP_START; \
BP_LOCP_START \
&& (BP_LOCP_TMP < bp_location + bp_location_count \
&& (*BP_LOCP_TMP)->address == ADDRESS); \
BP_LOCP_TMP++)
/* Iterator for tracepoints only. */
#define ALL_TRACEPOINTS(B) \
for (B = breakpoint_chain; B; B = B->next) \
if (is_tracepoint (B))
/* Chains of all breakpoints defined. */
struct breakpoint *breakpoint_chain;
/* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
static struct bp_location **bp_location;
/* Number of elements of BP_LOCATION. */
static unsigned bp_location_count;
/* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
ADDRESS for the current elements of BP_LOCATION which get a valid
result from bp_location_has_shadow. You can use it for roughly
limiting the subrange of BP_LOCATION to scan for shadow bytes for
an address you need to read. */
static CORE_ADDR bp_location_placed_address_before_address_max;
/* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
+ bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
BP_LOCATION which get a valid result from bp_location_has_shadow.
You can use it for roughly limiting the subrange of BP_LOCATION to
scan for shadow bytes for an address you need to read. */
static CORE_ADDR bp_location_shadow_len_after_address_max;
/* The locations that no longer correspond to any breakpoint, unlinked
from bp_location array, but for which a hit may still be reported
by a target. */
VEC(bp_location_p) *moribund_locations = NULL;
/* Number of last breakpoint made. */
static int breakpoint_count;
/* The value of `breakpoint_count' before the last command that
created breakpoints. If the last (break-like) command created more
than one breakpoint, then the difference between BREAKPOINT_COUNT
and PREV_BREAKPOINT_COUNT is more than one. */
static int prev_breakpoint_count;
/* Number of last tracepoint made. */
static int tracepoint_count;
static struct cmd_list_element *breakpoint_set_cmdlist;
static struct cmd_list_element *breakpoint_show_cmdlist;
struct cmd_list_element *save_cmdlist;
/* Return whether a breakpoint is an active enabled breakpoint. */
static int
breakpoint_enabled (struct breakpoint *b)
{
return (b->enable_state == bp_enabled);
}
/* Set breakpoint count to NUM. */
static void
set_breakpoint_count (int num)
{
prev_breakpoint_count = breakpoint_count;
breakpoint_count = num;
set_internalvar_integer (lookup_internalvar ("bpnum"), num);
}
/* Used by `start_rbreak_breakpoints' below, to record the current
breakpoint count before "rbreak" creates any breakpoint. */
static int rbreak_start_breakpoint_count;
/* Called at the start an "rbreak" command to record the first
breakpoint made. */
void
start_rbreak_breakpoints (void)
{
rbreak_start_breakpoint_count = breakpoint_count;
}
/* Called at the end of an "rbreak" command to record the last
breakpoint made. */
void
end_rbreak_breakpoints (void)
{
prev_breakpoint_count = rbreak_start_breakpoint_count;
}
/* Used in run_command to zero the hit count when a new run starts. */
void
clear_breakpoint_hit_counts (void)
{
struct breakpoint *b;
ALL_BREAKPOINTS (b)
b->hit_count = 0;
}
/* Allocate a new counted_command_line with reference count of 1.
The new structure owns COMMANDS. */
static struct counted_command_line *
alloc_counted_command_line (struct command_line *commands)
{
struct counted_command_line *result
= xmalloc (sizeof (struct counted_command_line));
result->refc = 1;
result->commands = commands;
return result;
}
/* Increment reference count. This does nothing if CMD is NULL. */
static void
incref_counted_command_line (struct counted_command_line *cmd)
{
if (cmd)
++cmd->refc;
}
/* Decrement reference count. If the reference count reaches 0,
destroy the counted_command_line. Sets *CMDP to NULL. This does
nothing if *CMDP is NULL. */
static void
decref_counted_command_line (struct counted_command_line **cmdp)
{
if (*cmdp)
{
if (--(*cmdp)->refc == 0)
{
free_command_lines (&(*cmdp)->commands);
xfree (*cmdp);
}
*cmdp = NULL;
}
}
/* A cleanup function that calls decref_counted_command_line. */
static void
do_cleanup_counted_command_line (void *arg)
{
decref_counted_command_line (arg);
}
/* Create a cleanup that calls decref_counted_command_line on the
argument. */
static struct cleanup *
make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
{
return make_cleanup (do_cleanup_counted_command_line, cmdp);
}
/* Return the breakpoint with the specified number, or NULL
if the number does not refer to an existing breakpoint. */
struct breakpoint *
get_breakpoint (int num)
{
struct breakpoint *b;
ALL_BREAKPOINTS (b)
if (b->number == num)
return b;
return NULL;
}
/* Mark locations as "conditions have changed" in case the target supports
evaluating conditions on its side. */
static void
mark_breakpoint_modified (struct breakpoint *b)
{
struct bp_location *loc;
/* This is only meaningful if the target is
evaluating conditions and if the user has
opted for condition evaluation on the target's
side. */
if (gdb_evaluates_breakpoint_condition_p ()
|| !target_supports_evaluation_of_breakpoint_conditions ())
return;
if (!is_breakpoint (b))
return;
for (loc = b->loc; loc; loc = loc->next)
loc->condition_changed = condition_modified;
}
/* Mark location as "conditions have changed" in case the target supports
evaluating conditions on its side. */
static void
mark_breakpoint_location_modified (struct bp_location *loc)
{
/* This is only meaningful if the target is
evaluating conditions and if the user has
opted for condition evaluation on the target's
side. */
if (gdb_evaluates_breakpoint_condition_p ()
|| !target_supports_evaluation_of_breakpoint_conditions ())
return;
if (!is_breakpoint (loc->owner))
return;
loc->condition_changed = condition_modified;
}
/* Sets the condition-evaluation mode using the static global
condition_evaluation_mode. */
static void
set_condition_evaluation_mode (char *args, int from_tty,
struct cmd_list_element *c)
{
const char *old_mode, *new_mode;
if ((condition_evaluation_mode_1 == condition_evaluation_target)
&& !target_supports_evaluation_of_breakpoint_conditions ())
{
condition_evaluation_mode_1 = condition_evaluation_mode;
warning (_("Target does not support breakpoint condition evaluation.\n"
"Using host evaluation mode instead."));
return;
}
new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
/* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
settings was "auto". */
condition_evaluation_mode = condition_evaluation_mode_1;
/* Only update the mode if the user picked a different one. */
if (new_mode != old_mode)
{
struct bp_location *loc, **loc_tmp;
/* If the user switched to a different evaluation mode, we
need to synch the changes with the target as follows:
"host" -> "target": Send all (valid) conditions to the target.
"target" -> "host": Remove all the conditions from the target.
*/
if (new_mode == condition_evaluation_target)
{
/* Mark everything modified and synch conditions with the
target. */
ALL_BP_LOCATIONS (loc, loc_tmp)
mark_breakpoint_location_modified (loc);
}
else
{
/* Manually mark non-duplicate locations to synch conditions
with the target. We do this to remove all the conditions the
target knows about. */
ALL_BP_LOCATIONS (loc, loc_tmp)
if (is_breakpoint (loc->owner) && loc->inserted)
loc->needs_update = 1;
}
/* Do the update. */
update_global_location_list (1);
}
return;
}
/* Shows the current mode of breakpoint condition evaluation. Explicitly shows
what "auto" is translating to. */
static void
show_condition_evaluation_mode (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
if (condition_evaluation_mode == condition_evaluation_auto)
fprintf_filtered (file,
_("Breakpoint condition evaluation "
"mode is %s (currently %s).\n"),
value,
breakpoint_condition_evaluation_mode ());
else
fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
value);
}
/* A comparison function for bp_location AP and BP that is used by
bsearch. This comparison function only cares about addresses, unlike
the more general bp_location_compare function. */
static int
bp_location_compare_addrs (const void *ap, const void *bp)
{
struct bp_location *a = *(void **) ap;
struct bp_location *b = *(void **) bp;
if (a->address == b->address)
return 0;
else
return ((a->address > b->address) - (a->address < b->address));
}
/* Helper function to skip all bp_locations with addresses
less than ADDRESS. It returns the first bp_location that
is greater than or equal to ADDRESS. If none is found, just
return NULL. */
static struct bp_location **
get_first_locp_gte_addr (CORE_ADDR address)
{
struct bp_location dummy_loc;
struct bp_location *dummy_locp = &dummy_loc;
struct bp_location **locp_found = NULL;
/* Initialize the dummy location's address field. */
memset (&dummy_loc, 0, sizeof (struct bp_location));
dummy_loc.address = address;
/* Find a close match to the first location at ADDRESS. */
locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
sizeof (struct bp_location **),
bp_location_compare_addrs);
/* Nothing was found, nothing left to do. */
if (locp_found == NULL)
return NULL;
/* We may have found a location that is at ADDRESS but is not the first in the
location's list. Go backwards (if possible) and locate the first one. */
while ((locp_found - 1) >= bp_location
&& (*(locp_found - 1))->address == address)
locp_found--;
return locp_found;
}
void
set_breakpoint_condition (struct breakpoint *b, char *exp,
int from_tty)
{
xfree (b->cond_string);
b->cond_string = NULL;
if (is_watchpoint (b))
{
struct watchpoint *w = (struct watchpoint *) b;
xfree (w->cond_exp);
w->cond_exp = NULL;
}
else
{
struct bp_location *loc;
for (loc = b->loc; loc; loc = loc->next)
{
xfree (loc->cond);
loc->cond = NULL;
/* No need to free the condition agent expression
bytecode (if we have one). We will handle this
when we go through update_global_location_list. */
}
}
if (*exp == 0)
{
if (from_tty)
printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
}
else
{
const char *arg = exp;
/* I don't know if it matters whether this is the string the user
typed in or the decompiled expression. */
b->cond_string = xstrdup (arg);
b->condition_not_parsed = 0;
if (is_watchpoint (b))
{
struct watchpoint *w = (struct watchpoint *) b;
innermost_block = NULL;
arg = exp;
w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
if (*arg)
error (_("Junk at end of expression"));
w->cond_exp_valid_block = innermost_block;
}
else
{
struct bp_location *loc;
for (loc = b->loc; loc; loc = loc->next)
{
arg = exp;
loc->cond =
parse_exp_1 (&arg, loc->address,
block_for_pc (loc->address), 0);
if (*arg)
error (_("Junk at end of expression"));
}
}
}
mark_breakpoint_modified (b);
observer_notify_breakpoint_modified (b);
}
/* Completion for the "condition" command. */
static VEC (char_ptr) *
condition_completer (struct cmd_list_element *cmd,
const char *text, const char *word)
{
const char *space;
text = skip_spaces_const (text);
space = skip_to_space_const (text);
if (*space == '\0')
{
int len;
struct breakpoint *b;
VEC (char_ptr) *result = NULL;
if (text[0] == '$')
{
/* We don't support completion of history indices. */
if (isdigit (text[1]))
return NULL;
return complete_internalvar (&text[1]);
}
/* We're completing the breakpoint number. */
len = strlen (text);
ALL_BREAKPOINTS (b)
{
char number[50];
xsnprintf (number, sizeof (number), "%d", b->number);
if (strncmp (number, text, len) == 0)
VEC_safe_push (char_ptr, result, xstrdup (number));
}
return result;
}
/* We're completing the expression part. */
text = skip_spaces_const (space);
return expression_completer (cmd, text, word);
}
/* condition N EXP -- set break condition of breakpoint N to EXP. */
static void
condition_command (char *arg, int from_tty)
{
struct breakpoint *b;
char *p;
int bnum;
if (arg == 0)
error_no_arg (_("breakpoint number"));
p = arg;
bnum = get_number (&p);
if (bnum == 0)
error (_("Bad breakpoint argument: '%s'"), arg);
ALL_BREAKPOINTS (b)
if (b->number == bnum)
{
/* Check if this breakpoint has a Python object assigned to
it, and if it has a definition of the "stop"
method. This method and conditions entered into GDB from
the CLI are mutually exclusive. */
if (b->py_bp_object
&& gdbpy_breakpoint_has_py_cond (b->py_bp_object))
error (_("Cannot set a condition where a Python 'stop' "
"method has been defined in the breakpoint."));
set_breakpoint_condition (b, p, from_tty);
if (is_breakpoint (b))
update_global_location_list (1);
return;
}
error (_("No breakpoint number %d."), bnum);
}
/* Check that COMMAND do not contain commands that are suitable
only for tracepoints and not suitable for ordinary breakpoints.
Throw if any such commands is found. */
static void
check_no_tracepoint_commands (struct command_line *commands)
{
struct command_line *c;
for (c = commands; c; c = c->next)
{
int i;
if (c->control_type == while_stepping_control)
error (_("The 'while-stepping' command can "
"only be used for tracepoints"));
for (i = 0; i < c->body_count; ++i)
check_no_tracepoint_commands ((c->body_list)[i]);
/* Not that command parsing removes leading whitespace and comment
lines and also empty lines. So, we only need to check for
command directly. */
if (strstr (c->line, "collect ") == c->line)
error (_("The 'collect' command can only be used for tracepoints"));
if (strstr (c->line, "teval ") == c->line)
error (_("The 'teval' command can only be used for tracepoints"));
}
}
/* Encapsulate tests for different types of tracepoints. */
static int
is_tracepoint_type (enum bptype type)
{
return (type == bp_tracepoint
|| type == bp_fast_tracepoint
|| type == bp_static_tracepoint);
}
int
is_tracepoint (const struct breakpoint *b)
{
return is_tracepoint_type (b->type);
}
/* A helper function that validates that COMMANDS are valid for a
breakpoint. This function will throw an exception if a problem is
found. */
static void
validate_commands_for_breakpoint (struct breakpoint *b,
struct command_line *commands)
{
if (is_tracepoint (b))
{
struct tracepoint *t = (struct tracepoint *) b;
struct command_line *c;
struct command_line *while_stepping = 0;
/* Reset the while-stepping step count. The previous commands
might have included a while-stepping action, while the new
ones might not. */
t->step_count = 0;
/* We need to verify that each top-level element of commands is
valid for tracepoints, that there's at most one
while-stepping element, and that the while-stepping's body
has valid tracing commands excluding nested while-stepping.
We also need to validate the tracepoint action line in the
context of the tracepoint --- validate_actionline actually
has side effects, like setting the tracepoint's
while-stepping STEP_COUNT, in addition to checking if the
collect/teval actions parse and make sense in the
tracepoint's context. */
for (c = commands; c; c = c->next)
{
if (c->control_type == while_stepping_control)
{
if (b->type == bp_fast_tracepoint)
error (_("The 'while-stepping' command "
"cannot be used for fast tracepoint"));
else if (b->type == bp_static_tracepoint)
error (_("The 'while-stepping' command "
"cannot be used for static tracepoint"));
if (while_stepping)
error (_("The 'while-stepping' command "
"can be used only once"));
else
while_stepping = c;
}
validate_actionline (c->line, b);
}
if (while_stepping)
{
struct command_line *c2;
gdb_assert (while_stepping->body_count == 1);
c2 = while_stepping->body_list[0];
for (; c2; c2 = c2->next)
{
if (c2->control_type == while_stepping_control)
error (_("The 'while-stepping' command cannot be nested"));
}
}
}
else
{
check_no_tracepoint_commands (commands);
}
}
/* Return a vector of all the static tracepoints set at ADDR. The
caller is responsible for releasing the vector. */
VEC(breakpoint_p) *
static_tracepoints_here (CORE_ADDR addr)
{
struct breakpoint *b;
VEC(breakpoint_p) *found = 0;
struct bp_location *loc;
ALL_BREAKPOINTS (b)
if (b->type == bp_static_tracepoint)
{
for (loc = b->loc; loc; loc = loc->next)
if (loc->address == addr)
VEC_safe_push(breakpoint_p, found, b);
}
return found;
}
/* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
validate that only allowed commands are included. */
void
breakpoint_set_commands (struct breakpoint *b,
struct command_line *commands)
{
validate_commands_for_breakpoint (b, commands);
decref_counted_command_line (&b->commands);
b->commands = alloc_counted_command_line (commands);
observer_notify_breakpoint_modified (b);
}
/* Set the internal `silent' flag on the breakpoint. Note that this
is not the same as the "silent" that may appear in the breakpoint's
commands. */
void
breakpoint_set_silent (struct breakpoint *b, int silent)
{
int old_silent = b->silent;
b->silent = silent;
if (old_silent != silent)
observer_notify_breakpoint_modified (b);
}
/* Set the thread for this breakpoint. If THREAD is -1, make the
breakpoint work for any thread. */
void
breakpoint_set_thread (struct breakpoint *b, int thread)
{
int old_thread = b->thread;
b->thread = thread;
if (old_thread != thread)
observer_notify_breakpoint_modified (b);
}
/* Set the task for this breakpoint. If TASK is 0, make the
breakpoint work for any task. */
void
breakpoint_set_task (struct breakpoint *b, int task)
{
int old_task = b->task;
b->task = task;
if (old_task != task)
observer_notify_breakpoint_modified (b);
}
void
check_tracepoint_command (char *line, void *closure)
{
struct breakpoint *b = closure;
validate_actionline (line, b);
}
/* A structure used to pass information through
map_breakpoint_numbers. */
struct commands_info
{
/* True if the command was typed at a tty. */
int from_tty;
/* The breakpoint range spec. */
char *arg;
/* Non-NULL if the body of the commands are being read from this
already-parsed command. */
struct command_line *control;
/* The command lines read from the user, or NULL if they have not
yet been read. */
struct counted_command_line *cmd;
};
/* A callback for map_breakpoint_numbers that sets the commands for
commands_command. */
static void
do_map_commands_command (struct breakpoint *b, void *data)
{
struct commands_info *info = data;
if (info->cmd == NULL)
{
struct command_line *l;
if (info->control != NULL)
l = copy_command_lines (info->control->body_list[0]);
else
{
struct cleanup *old_chain;
char *str;
str = xstrprintf (_("Type commands for breakpoint(s) "
"%s, one per line."),
info->arg);
old_chain = make_cleanup (xfree, str);
l = read_command_lines (str,
info->from_tty, 1,
(is_tracepoint (b)
? check_tracepoint_command : 0),
b);
do_cleanups (old_chain);
}
info->cmd = alloc_counted_command_line (l);
}
/* If a breakpoint was on the list more than once, we don't need to
do anything. */
if (b->commands != info->cmd)
{
validate_commands_for_breakpoint (b, info->cmd->commands);
incref_counted_command_line (info->cmd);
decref_counted_command_line (&b->commands);
b->commands = info->cmd;
observer_notify_breakpoint_modified (b);
}
}
static void
commands_command_1 (char *arg, int from_tty,
struct command_line *control)
{
struct cleanup *cleanups;
struct commands_info info;
info.from_tty = from_tty;
info.control = control;
info.cmd = NULL;
/* If we read command lines from the user, then `info' will hold an
extra reference to the commands that we must clean up. */
cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
if (arg == NULL || !*arg)
{
if (breakpoint_count - prev_breakpoint_count > 1)
arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
breakpoint_count);
else if (breakpoint_count > 0)
arg = xstrprintf ("%d", breakpoint_count);
else
{
/* So that we don't try to free the incoming non-NULL
argument in the cleanup below. Mapping breakpoint
numbers will fail in this case. */
arg = NULL;
}
}
else
/* The command loop has some static state, so we need to preserve
our argument. */
arg = xstrdup (arg);
if (arg != NULL)
make_cleanup (xfree, arg);
info.arg = arg;
map_breakpoint_numbers (arg, do_map_commands_command, &info);
if (info.cmd == NULL)
error (_("No breakpoints specified."));
do_cleanups (cleanups);
}
static void
commands_command (char *arg, int from_tty)
{
commands_command_1 (arg, from_tty, NULL);
}
/* Like commands_command, but instead of reading the commands from
input stream, takes them from an already parsed command structure.
This is used by cli-script.c to DTRT with breakpoint commands
that are part of if and while bodies. */
enum command_control_type
commands_from_control_command (char *arg, struct command_line *cmd)
{
commands_command_1 (arg, 0, cmd);
return simple_control;
}
/* Return non-zero if BL->TARGET_INFO contains valid information. */
static int
bp_location_has_shadow (struct bp_location *bl)
{
if (bl->loc_type != bp_loc_software_breakpoint)
return 0;
if (!bl->inserted)
return 0;
if (bl->target_info.shadow_len == 0)
/* BL isn't valid, or doesn't shadow memory. */
return 0;
return 1;
}
/* Update BUF, which is LEN bytes read from the target address MEMADDR,
by replacing any memory breakpoints with their shadowed contents.
If READBUF is not NULL, this buffer must not overlap with any of
the breakpoint location's shadow_contents buffers. Otherwise,
a failed assertion internal error will be raised.
The range of shadowed area by each bp_location is:
bl->address - bp_location_placed_address_before_address_max
up to bl->address + bp_location_shadow_len_after_address_max
The range we were requested to resolve shadows for is:
memaddr ... memaddr + len
Thus the safe cutoff boundaries for performance optimization are
memaddr + len <= (bl->address
- bp_location_placed_address_before_address_max)
and:
bl->address + bp_location_shadow_len_after_address_max <= memaddr */
void
breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
const gdb_byte *writebuf_org,
ULONGEST memaddr, LONGEST len)
{
/* Left boundary, right boundary and median element of our binary
search. */
unsigned bc_l, bc_r, bc;
/* Find BC_L which is a leftmost element which may affect BUF
content. It is safe to report lower value but a failure to
report higher one. */
bc_l = 0;
bc_r = bp_location_count;
while (bc_l + 1 < bc_r)
{
struct bp_location *bl;
bc = (bc_l + bc_r) / 2;
bl = bp_location[bc];
/* Check first BL->ADDRESS will not overflow due to the added
constant. Then advance the left boundary only if we are sure
the BC element can in no way affect the BUF content (MEMADDR
to MEMADDR + LEN range).
Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
offset so that we cannot miss a breakpoint with its shadow
range tail still reaching MEMADDR. */
if ((bl->address + bp_location_shadow_len_after_address_max
>= bl->address)
&& (bl->address + bp_location_shadow_len_after_address_max
<= memaddr))
bc_l = bc;
else
bc_r = bc;
}
/* Due to the binary search above, we need to make sure we pick the
first location that's at BC_L's address. E.g., if there are
multiple locations at the same address, BC_L may end up pointing
at a duplicate location, and miss the "master"/"inserted"
location. Say, given locations L1, L2 and L3 at addresses A and
B:
L1@A, L2@A, L3@B, ...
BC_L could end up pointing at location L2, while the "master"
location could be L1. Since the `loc->inserted' flag is only set
on "master" locations, we'd forget to restore the shadow of L1
and L2. */
while (bc_l > 0
&& bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
bc_l--;
/* Now do full processing of the found relevant range of elements. */
for (bc = bc_l; bc < bp_location_count; bc++)
{
struct bp_location *bl = bp_location[bc];
CORE_ADDR bp_addr = 0;
int bp_size = 0;
int bptoffset = 0;
/* bp_location array has BL->OWNER always non-NULL. */
if (bl->owner->type == bp_none)
warning (_("reading through apparently deleted breakpoint #%d?"),
bl->owner->number);
/* Performance optimization: any further element can no longer affect BUF
content. */
if (bl->address >= bp_location_placed_address_before_address_max
&& memaddr + len <= (bl->address
- bp_location_placed_address_before_address_max))
break;
if (!bp_location_has_shadow (bl))
continue;
if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
current_program_space->aspace, 0))
continue;
/* Addresses and length of the part of the breakpoint that
we need to copy. */
bp_addr = bl->target_info.placed_address;
bp_size = bl->target_info.shadow_len;
if (bp_addr + bp_size <= memaddr)
/* The breakpoint is entirely before the chunk of memory we
are reading. */
continue;
if (bp_addr >= memaddr + len)
/* The breakpoint is entirely after the chunk of memory we are
reading. */
continue;
/* Offset within shadow_contents. */
if (bp_addr < memaddr)
{
/* Only copy the second part of the breakpoint. */
bp_size -= memaddr - bp_addr;
bptoffset = memaddr - bp_addr;
bp_addr = memaddr;
}
if (bp_addr + bp_size > memaddr + len)
{
/* Only copy the first part of the breakpoint. */
bp_size -= (bp_addr + bp_size) - (memaddr + len);
}
if (readbuf != NULL)
{
/* Verify that the readbuf buffer does not overlap with
the shadow_contents buffer. */
gdb_assert (bl->target_info.shadow_contents >= readbuf + len
|| readbuf >= (bl->target_info.shadow_contents
+ bl->target_info.shadow_len));
/* Update the read buffer with this inserted breakpoint's
shadow. */
memcpy (readbuf + bp_addr - memaddr,
bl->target_info.shadow_contents + bptoffset, bp_size);
}
else
{
struct gdbarch *gdbarch = bl->gdbarch;
const unsigned char *bp;
CORE_ADDR placed_address = bl->target_info.placed_address;
int placed_size = bl->target_info.placed_size;
/* Update the shadow with what we want to write to memory. */
memcpy (bl->target_info.shadow_contents + bptoffset,
writebuf_org + bp_addr - memaddr, bp_size);
/* Determine appropriate breakpoint contents and size for this
address. */
bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
/* Update the final write buffer with this inserted
breakpoint's INSN. */
memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
}
}
}
/* Return true if BPT is either a software breakpoint or a hardware
breakpoint. */
int
is_breakpoint (const struct breakpoint *bpt)
{
return (bpt->type == bp_breakpoint
|| bpt->type == bp_hardware_breakpoint
|| bpt->type == bp_dprintf);
}
/* Return true if BPT is of any hardware watchpoint kind. */
static int
is_hardware_watchpoint (const struct breakpoint *bpt)
{
return (bpt->type == bp_hardware_watchpoint
|| bpt->type == bp_read_watchpoint
|| bpt->type == bp_access_watchpoint);
}
/* Return true if BPT is of any watchpoint kind, hardware or
software. */
int
is_watchpoint (const struct breakpoint *bpt)
{
return (is_hardware_watchpoint (bpt)
|| bpt->type == bp_watchpoint);
}
/* Returns true if the current thread and its running state are safe
to evaluate or update watchpoint B. Watchpoints on local
expressions need to be evaluated in the context of the thread that
was current when the watchpoint was created, and, that thread needs
to be stopped to be able to select the correct frame context.
Watchpoints on global expressions can be evaluated on any thread,
and in any state. It is presently left to the target allowing
memory accesses when threads are running. */
static int
watchpoint_in_thread_scope (struct watchpoint *b)
{
return (b->base.pspace == current_program_space
&& (ptid_equal (b->watchpoint_thread, null_ptid)
|| (ptid_equal (inferior_ptid, b->watchpoint_thread)
&& !is_executing (inferior_ptid))));
}
/* Set watchpoint B to disp_del_at_next_stop, even including its possible
associated bp_watchpoint_scope breakpoint. */
static void
watchpoint_del_at_next_stop (struct watchpoint *w)
{
struct breakpoint *b = &w->base;
if (b->related_breakpoint != b)
{
gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
gdb_assert (b->related_breakpoint->related_breakpoint == b);
b->related_breakpoint->disposition = disp_del_at_next_stop;
b->related_breakpoint->related_breakpoint = b->related_breakpoint;
b->related_breakpoint = b;
}
b->disposition = disp_del_at_next_stop;
}
/* Assuming that B is a watchpoint:
- Reparse watchpoint expression, if REPARSE is non-zero
- Evaluate expression and store the result in B->val
- Evaluate the condition if there is one, and store the result
in b->loc->cond.
- Update the list of values that must be watched in B->loc.
If the watchpoint disposition is disp_del_at_next_stop, then do
nothing. If this is local watchpoint that is out of scope, delete
it.
Even with `set breakpoint always-inserted on' the watchpoints are
removed + inserted on each stop here. Normal breakpoints must
never be removed because they might be missed by a running thread
when debugging in non-stop mode. On the other hand, hardware
watchpoints (is_hardware_watchpoint; processed here) are specific
to each LWP since they are stored in each LWP's hardware debug
registers. Therefore, such LWP must be stopped first in order to
be able to modify its hardware watchpoints.
Hardware watchpoints must be reset exactly once after being
presented to the user. It cannot be done sooner, because it would
reset the data used to present the watchpoint hit to the user. And
it must not be done later because it could display the same single
watchpoint hit during multiple GDB stops. Note that the latter is
relevant only to the hardware watchpoint types bp_read_watchpoint
and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
not user-visible - its hit is suppressed if the memory content has
not changed.
The following constraints influence the location where we can reset
hardware watchpoints:
* target_stopped_by_watchpoint and target_stopped_data_address are
called several times when GDB stops.
[linux]
* Multiple hardware watchpoints can be hit at the same time,
causing GDB to stop. GDB only presents one hardware watchpoint
hit at a time as the reason for stopping, and all the other hits
are presented later, one after the other, each time the user
requests the execution to be resumed. Execution is not resumed
for the threads still having pending hit event stored in
LWP_INFO->STATUS. While the watchpoint is already removed from
the inferior on the first stop the thread hit event is kept being
reported from its cached value by linux_nat_stopped_data_address
until the real thread resume happens after the watchpoint gets
presented and thus its LWP_INFO->STATUS gets reset.
Therefore the hardware watchpoint hit can get safely reset on the
watchpoint removal from inferior. */
static void
update_watchpoint (struct watchpoint *b, int reparse)
{
int within_current_scope;
struct frame_id saved_frame_id;
int frame_saved;
/* If this is a local watchpoint, we only want to check if the
watchpoint frame is in scope if the current thread is the thread
that was used to create the watchpoint. */
if (!watchpoint_in_thread_scope (b))
return;
if (b->base.disposition == disp_del_at_next_stop)
return;
frame_saved = 0;
/* Determine if the watchpoint is within scope. */
if (b->exp_valid_block == NULL)
within_current_scope = 1;
else
{
struct frame_info *fi = get_current_frame ();
struct gdbarch *frame_arch = get_frame_arch (fi);
CORE_ADDR frame_pc = get_frame_pc (fi);
/* If we're in a function epilogue, unwinding may not work
properly, so do not attempt to recreate locations at this
point. See similar comments in watchpoint_check. */
if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
return;
/* Save the current frame's ID so we can restore it after
evaluating the watchpoint expression on its own frame. */
/* FIXME drow/2003-09-09: It would be nice if evaluate_expression
took a frame parameter, so that we didn't have to change the
selected frame. */
frame_saved = 1;
saved_frame_id = get_frame_id (get_selected_frame (NULL));
fi = frame_find_by_id (b->watchpoint_frame);
within_current_scope = (fi != NULL);
if (within_current_scope)
select_frame (fi);
}
/* We don't free locations. They are stored in the bp_location array
and update_global_location_list will eventually delete them and
remove breakpoints if needed. */
b->base.loc = NULL;
if (within_current_scope && reparse)
{
const char *s;
if (b->exp)
{
xfree (b->exp);
b->exp = NULL;
}
s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
/* If the meaning of expression itself changed, the old value is
no longer relevant. We don't want to report a watchpoint hit
to the user when the old value and the new value may actually
be completely different objects. */
value_free (b->val);
b->val = NULL;
b->val_valid = 0;
/* Note that unlike with breakpoints, the watchpoint's condition
expression is stored in the breakpoint object, not in the
locations (re)created below. */
if (b->base.cond_string != NULL)
{
if (b->cond_exp != NULL)
{
xfree (b->cond_exp);
b->cond_exp = NULL;
}
s = b->base.cond_string;
b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
}
}
/* If we failed to parse the expression, for example because
it refers to a global variable in a not-yet-loaded shared library,
don't try to insert watchpoint. We don't automatically delete
such watchpoint, though, since failure to parse expression
is different from out-of-scope watchpoint. */
if (!target_has_execution)
{
/* Without execution, memory can't change. No use to try and
set watchpoint locations. The watchpoint will be reset when
the target gains execution, through breakpoint_re_set. */
if (!can_use_hw_watchpoints)
{
if (b->base.ops->works_in_software_mode (&b->base))
b->base.type = bp_watchpoint;
else
error (_("Can't set read/access watchpoint when "
"hardware watchpoints are disabled."));
}
}
else if (within_current_scope && b->exp)
{
int pc = 0;
struct value *val_chain, *v, *result, *next;
struct program_space *frame_pspace;
fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
/* Avoid setting b->val if it's already set. The meaning of
b->val is 'the last value' user saw, and we should update
it only if we reported that last value to user. As it
happens, the code that reports it updates b->val directly.
We don't keep track of the memory value for masked
watchpoints. */
if (!b->val_valid && !is_masked_watchpoint (&b->base))
{
b->val = v;
b->val_valid = 1;
}
frame_pspace = get_frame_program_space (get_selected_frame (NULL));
/* Look at each value on the value chain. */
for (v = val_chain; v; v = value_next (v))
{
/* If it's a memory location, and GDB actually needed
its contents to evaluate the expression, then we
must watch it. If the first value returned is
still lazy, that means an error occurred reading it;
watch it anyway in case it becomes readable. */
if (VALUE_LVAL (v) == lval_memory
&& (v == val_chain || ! value_lazy (v)))
{
struct type *vtype = check_typedef (value_type (v));
/* We only watch structs and arrays if user asked
for it explicitly, never if they just happen to
appear in the middle of some value chain. */
if (v == result
|| (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
&& TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
{
CORE_ADDR addr;
int type;
struct bp_location *loc, **tmp;
addr = value_address (v);
type = hw_write;
if (b->base.type == bp_read_watchpoint)
type = hw_read;
else if (b->base.type == bp_access_watchpoint)
type = hw_access;
loc = allocate_bp_location (&b->base);
for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
;
*tmp = loc;
loc->gdbarch = get_type_arch (value_type (v));
loc->pspace = frame_pspace;
loc->address = addr;
loc->length = TYPE_LENGTH (value_type (v));
loc->watchpoint_type = type;
}
}
}
/* Change the type of breakpoint between hardware assisted or
an ordinary watchpoint depending on the hardware support
and free hardware slots. REPARSE is set when the inferior
is started. */
if (reparse)
{
int reg_cnt;
enum bp_loc_type loc_type;
struct bp_location *bl;
reg_cnt = can_use_hardware_watchpoint (val_chain);
if (reg_cnt)
{
int i, target_resources_ok, other_type_used;
enum bptype type;
/* Use an exact watchpoint when there's only one memory region to be
watched, and only one debug register is needed to watch it. */
b->exact = target_exact_watchpoints && reg_cnt == 1;
/* We need to determine how many resources are already
used for all other hardware watchpoints plus this one
to see if we still have enough resources to also fit
this watchpoint in as well. */
/* If this is a software watchpoint, we try to turn it
to a hardware one -- count resources as if B was of
hardware watchpoint type. */
type = b->base.type;
if (type == bp_watchpoint)
type = bp_hardware_watchpoint;
/* This watchpoint may or may not have been placed on
the list yet at this point (it won't be in the list
if we're trying to create it for the first time,
through watch_command), so always account for it
manually. */
/* Count resources used by all watchpoints except B. */
i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
/* Add in the resources needed for B. */
i += hw_watchpoint_use_count (&b->base);
target_resources_ok
= target_can_use_hardware_watchpoint (type, i, other_type_used);
if (target_resources_ok <= 0)
{
int sw_mode = b->base.ops->works_in_software_mode (&b->base);
if (target_resources_ok == 0 && !sw_mode)
error (_("Target does not support this type of "
"hardware watchpoint."));
else if (target_resources_ok < 0 && !sw_mode)
error (_("There are not enough available hardware "
"resources for this watchpoint."));
/* Downgrade to software watchpoint. */
b->base.type = bp_watchpoint;
}
else
{
/* If this was a software watchpoint, we've just
found we have enough resources to turn it to a
hardware watchpoint. Otherwise, this is a
nop. */
b->base.type = type;
}
}
else if (!b->base.ops->works_in_software_mode (&b->base))
{
if (!can_use_hw_watchpoints)
error (_("Can't set read/access watchpoint when "
"hardware watchpoints are disabled."));
else
error (_("Expression cannot be implemented with "
"read/access watchpoint."));
}
else
b->base.type = bp_watchpoint;
loc_type = (b->base.type == bp_watchpoint? bp_loc_other
: bp_loc_hardware_watchpoint);
for (bl = b->base.loc; bl; bl = bl->next)
bl->loc_type = loc_type;
}
for (v = val_chain; v; v = next)
{
next = value_next (v);
if (v != b->val)
value_free (v);
}
/* If a software watchpoint is not watching any memory, then the
above left it without any location set up. But,
bpstat_stop_status requires a location to be able to report
stops, so make sure there's at least a dummy one. */
if (b->base.type == bp_watchpoint && b->base.loc == NULL)
{
struct breakpoint *base = &b->base;
base->loc = allocate_bp_location (base);
base->loc->pspace = frame_pspace;
base->loc->address = -1;
base->loc->length = -1;
base->loc->watchpoint_type = -1;
}
}
else if (!within_current_scope)
{
printf_filtered (_("\
Watchpoint %d deleted because the program has left the block\n\
in which its expression is valid.\n"),
b->base.number);
watchpoint_del_at_next_stop (b);
}
/* Restore the selected frame. */
if (frame_saved)
select_frame (frame_find_by_id (saved_frame_id));
}
/* Returns 1 iff breakpoint location should be
inserted in the inferior. We don't differentiate the type of BL's owner
(breakpoint vs. tracepoint), although insert_location in tracepoint's
breakpoint_ops is not defined, because in insert_bp_location,
tracepoint's insert_location will not be called. */
static int
should_be_inserted (struct bp_location *bl)
{
if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
return 0;
if (bl->owner->disposition == disp_del_at_next_stop)
return 0;
if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
return 0;
if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
return 0;
/* This is set for example, when we're attached to the parent of a
vfork, and have detached from the child. The child is running
free, and we expect it to do an exec or exit, at which point the
OS makes the parent schedulable again (and the target reports
that the vfork is done). Until the child is done with the shared
memory region, do not insert breakpoints in the parent, otherwise
the child could still trip on the parent's breakpoints. Since
the parent is blocked anyway, it won't miss any breakpoint. */
if (bl->pspace->breakpoints_not_allowed)
return 0;
return 1;
}
/* Same as should_be_inserted but does the check assuming
that the location is not duplicated. */
static int
unduplicated_should_be_inserted (struct bp_location *bl)
{
int result;
const int save_duplicate = bl->duplicate;
bl->duplicate = 0;
result = should_be_inserted (bl);
bl->duplicate = save_duplicate;
return result;
}
/* Parses a conditional described by an expression COND into an
agent expression bytecode suitable for evaluation
by the bytecode interpreter. Return NULL if there was
any error during parsing. */
static struct agent_expr *
parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
{
struct agent_expr *aexpr = NULL;
volatile struct gdb_exception ex;
if (!cond)
return NULL;
/* We don't want to stop processing, so catch any errors
that may show up. */
TRY_CATCH (ex, RETURN_MASK_ERROR)
{
aexpr = gen_eval_for_expr (scope, cond);
}
if (ex.reason < 0)
{
/* If we got here, it means the condition could not be parsed to a valid
bytecode expression and thus can't be evaluated on the target's side.
It's no use iterating through the conditions. */
return NULL;
}
/* We have a valid agent expression. */
return aexpr;
}
/* Based on location BL, create a list of breakpoint conditions to be
passed on to the target. If we have duplicated locations with different
conditions, we will add such conditions to the list. The idea is that the
target will evaluate the list of conditions and will only notify GDB when
one of them is true. */
static void
build_target_condition_list (struct bp_location *bl)
{
struct bp_location **locp = NULL, **loc2p;
int null_condition_or_parse_error = 0;
int modified = bl->needs_update;
struct bp_location *loc;
/* Release conditions left over from a previous insert. */
VEC_free (agent_expr_p, bl->target_info.conditions);
/* This is only meaningful if the target is
evaluating conditions and if the user has
opted for condition evaluation on the target's
side. */
if (gdb_evaluates_breakpoint_condition_p ()
|| !target_supports_evaluation_of_breakpoint_conditions ())
return;
/* Do a first pass to check for locations with no assigned
conditions or conditions that fail to parse to a valid agent expression
bytecode. If any of these happen, then it's no use to send conditions
to the target since this location will always trigger and generate a
response back to GDB. */
ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
{
loc = (*loc2p);
if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
{
if (modified)
{
struct agent_expr *aexpr;
/* Re-parse the conditions since something changed. In that
case we already freed the condition bytecodes (see
force_breakpoint_reinsertion). We just
need to parse the condition to bytecodes again. */
aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
loc->cond_bytecode = aexpr;
/* Check if we managed to parse the conditional expression
correctly. If not, we will not send this condition
to the target. */
if (aexpr)
continue;
}
/* If we have a NULL bytecode expression, it means something
went wrong or we have a null condition expression. */
if (!loc->cond_bytecode)
{
null_condition_or_parse_error = 1;
break;
}
}
}
/* If any of these happened, it means we will have to evaluate the conditions
for the location's address on gdb's side. It is no use keeping bytecodes
for all the other duplicate locations, thus we free all of them here.
This is so we have a finer control over which locations' conditions are
being evaluated by GDB or the remote stub. */
if (null_condition_or_parse_error)
{
ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
{
loc = (*loc2p);
if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
{
/* Only go as far as the first NULL bytecode is
located. */
if (!loc->cond_bytecode)
return;
free_agent_expr (loc->cond_bytecode);
loc->cond_bytecode = NULL;
}
}
}
/* No NULL conditions or failed bytecode generation. Build a condition list
for this location's address. */
ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
{
loc = (*loc2p);
if (loc->cond
&& is_breakpoint (loc->owner)
&& loc->pspace->num == bl->pspace->num
&& loc->owner->enable_state == bp_enabled
&& loc->enabled)
/* Add the condition to the vector. This will be used later to send the
conditions to the target. */
VEC_safe_push (agent_expr_p, bl->target_info.conditions,
loc->cond_bytecode);
}
return;
}
/* Parses a command described by string CMD into an agent expression
bytecode suitable for evaluation by the bytecode interpreter.
Return NULL if there was any error during parsing. */
static struct agent_expr *
parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
{
struct cleanup *old_cleanups = 0;
struct expression *expr, **argvec;
struct agent_expr *aexpr = NULL;
volatile struct gdb_exception ex;
const char *cmdrest;
const char *format_start, *format_end;
struct format_piece *fpieces;
int nargs;
struct gdbarch *gdbarch = get_current_arch ();
if (!cmd)
return NULL;
cmdrest = cmd;
if (*cmdrest == ',')
++cmdrest;
cmdrest = skip_spaces_const (cmdrest);
if (*cmdrest++ != '"')
error (_("No format string following the location"));
format_start = cmdrest;
fpieces = parse_format_string (&cmdrest);
old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
format_end = cmdrest;
if (*cmdrest++ != '"')
error (_("Bad format string, non-terminated '\"'."));
cmdrest = skip_spaces_const (cmdrest);
if (!(*cmdrest == ',' || *cmdrest == '\0'))
error (_("Invalid argument syntax"));
if (*cmdrest == ',')
cmdrest++;
cmdrest = skip_spaces_const (cmdrest);
/* For each argument, make an expression. */
argvec = (struct expression **) alloca (strlen (cmd)
* sizeof (struct expression *));
nargs = 0;
while (*cmdrest != '\0')
{
const char *cmd1;
cmd1 = cmdrest;
expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
argvec[nargs++] = expr;
cmdrest = cmd1;
if (*cmdrest == ',')
++cmdrest;
}
/* We don't want to stop processing, so catch any errors
that may show up. */
TRY_CATCH (ex, RETURN_MASK_ERROR)
{
aexpr = gen_printf (scope, gdbarch, 0, 0,
format_start, format_end - format_start,
fpieces, nargs, argvec);
}
do_cleanups (old_cleanups);
if (ex.reason < 0)
{
/* If we got here, it means the command could not be parsed to a valid
bytecode expression and thus can't be evaluated on the target's side.
It's no use iterating through the other commands. */
return NULL;
}
/* We have a valid agent expression, return it. */
return aexpr;
}
/* Based on location BL, create a list of breakpoint commands to be
passed on to the target. If we have duplicated locations with
different commands, we will add any such to the list. */
static void
build_target_command_list (struct bp_location *bl)
{
struct bp_location **locp = NULL, **loc2p;
int null_command_or_parse_error = 0;
int modified = bl->needs_update;
struct bp_location *loc;
/* Release commands left over from a previous insert. */
VEC_free (agent_expr_p, bl->target_info.tcommands);
/* For now, limit to agent-style dprintf breakpoints. */
if (bl->owner->type != bp_dprintf
|| strcmp (dprintf_style, dprintf_style_agent) != 0)
return;
if (!target_can_run_breakpoint_commands ())
return;
/* Do a first pass to check for locations with no assigned
conditions or conditions that fail to parse to a valid agent expression
bytecode. If any of these happen, then it's no use to send conditions
to the target since this location will always trigger and generate a
response back to GDB. */
ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
{
loc = (*loc2p);
if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
{
if (modified)
{
struct agent_expr *aexpr;
/* Re-parse the commands since something changed. In that
case we already freed the command bytecodes (see
force_breakpoint_reinsertion). We just
need to parse the command to bytecodes again. */
aexpr = parse_cmd_to_aexpr (bl->address,
loc->owner->extra_string);
loc->cmd_bytecode = aexpr;
if (!aexpr)
continue;
}
/* If we have a NULL bytecode expression, it means something
went wrong or we have a null command expression. */
if (!loc->cmd_bytecode)
{
null_command_or_parse_error = 1;
break;
}
}
}
/* If anything failed, then we're not doing target-side commands,
and so clean up. */
if (null_command_or_parse_error)
{
ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
{
loc = (*loc2p);
if (is_breakpoint (loc->owner)
&& loc->pspace->num == bl->pspace->num)
{
/* Only go as far as the first NULL bytecode is
located. */
if (loc->cmd_bytecode == NULL)
return;
free_agent_expr (loc->cmd_bytecode);
loc->cmd_bytecode = NULL;
}
}
}
/* No NULL commands or failed bytecode generation. Build a command list
for this location's address. */
ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
{
loc = (*loc2p);
if (loc->owner->extra_string
&& is_breakpoint (loc->owner)
&& loc->pspace->num == bl->pspace->num
&& loc->owner->enable_state == bp_enabled
&& loc->enabled)
/* Add the command to the vector. This will be used later
to send the commands to the target. */
VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
loc->cmd_bytecode);
}
bl->target_info.persist = 0;
/* Maybe flag this location as persistent. */
if (bl->owner->type == bp_dprintf && disconnected_dprintf)
bl->target_info.persist = 1;
}
/* Insert a low-level "breakpoint" of some type. BL is the breakpoint
location. Any error messages are printed to TMP_ERROR_STREAM; and
DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
Returns 0 for success, 1 if the bp_location type is not supported or
-1 for failure.
NOTE drow/2003-09-09: This routine could be broken down to an
object-style method for each breakpoint or catchpoint type. */
static int
insert_bp_location (struct bp_location *bl,
struct ui_file *tmp_error_stream,
int *disabled_breaks,
int *hw_breakpoint_error,
int *hw_bp_error_explained_already)
{
enum errors bp_err = GDB_NO_ERROR;
const char *bp_err_message = NULL;
struct gdb_exception e;
if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
return 0;
/* Note we don't initialize bl->target_info, as that wipes out
the breakpoint location's shadow_contents if the breakpoint
is still inserted at that location. This in turn breaks
target_read_memory which depends on these buffers when
a memory read is requested at the breakpoint location:
Once the target_info has been wiped, we fail to see that
we have a breakpoint inserted at that address and thus
read the breakpoint instead of returning the data saved in
the breakpoint location's shadow contents. */
bl->target_info.placed_address = bl->address;
bl->target_info.placed_address_space = bl->pspace->aspace;
bl->target_info.length = bl->length;
/* When working with target-side conditions, we must pass all the conditions
for the same breakpoint address down to the target since GDB will not
insert those locations. With a list of breakpoint conditions, the target
can decide when to stop and notify GDB. */
if (is_breakpoint (bl->owner))
{
build_target_condition_list (bl);
build_target_command_list (bl);
/* Reset the modification marker. */
bl->needs_update = 0;
}
if (bl->loc_type == bp_loc_software_breakpoint
|| bl->loc_type == bp_loc_hardware_breakpoint)
{
if (bl->owner->type != bp_hardware_breakpoint)
{
/* If the explicitly specified breakpoint type
is not hardware breakpoint, check the memory map to see
if the breakpoint address is in read only memory or not.
Two important cases are:
- location type is not hardware breakpoint, memory
is readonly. We change the type of the location to
hardware breakpoint.
- location type is hardware breakpoint, memory is
read-write. This means we've previously made the
location hardware one, but then the memory map changed,
so we undo.
When breakpoints are removed, remove_breakpoints will use
location types we've just set here, the only possible
problem is that memory map has changed during running
program, but it's not going to work anyway with current
gdb. */
struct mem_region *mr
= lookup_mem_region (bl->target_info.placed_address);
if (mr)
{
if (automatic_hardware_breakpoints)
{
enum bp_loc_type new_type;
if (mr->attrib.mode != MEM_RW)
new_type = bp_loc_hardware_breakpoint;
else
new_type = bp_loc_software_breakpoint;
if (new_type != bl->loc_type)
{
static int said = 0;
bl->loc_type = new_type;
if (!said)
{
fprintf_filtered (gdb_stdout,
_("Note: automatically using "
"hardware breakpoints for "
"read-only addresses.\n"));
said = 1;
}
}
}
else if (bl->loc_type == bp_loc_software_breakpoint
&& mr->attrib.mode != MEM_RW)
warning (_("cannot set software breakpoint "
"at readonly address %s"),
paddress (bl->gdbarch, bl->address));
}
}
/* First check to see if we have to handle an overlay. */
if (overlay_debugging == ovly_off
|| bl->section == NULL
|| !(section_is_overlay (bl->section)))
{
/* No overlay handling: just set the breakpoint. */
TRY_CATCH (e, RETURN_MASK_ALL)
{
int val;
val = bl->owner->ops->insert_location (bl);
if (val)
bp_err = GENERIC_ERROR;
}
if (e.reason < 0)
{
bp_err = e.error;
bp_err_message = e.message;
}
}
else
{
/* This breakpoint is in an overlay section.
Shall we set a breakpoint at the LMA? */
if (!overlay_events_enabled)
{
/* Yes -- overlay event support is not active,
so we must try to set a breakpoint at the LMA.
This will not work for a hardware breakpoint. */
if (bl->loc_type == bp_loc_hardware_breakpoint)
warning (_("hardware breakpoint %d not supported in overlay!"),
bl->owner->number);
else
{
CORE_ADDR addr = overlay_unmapped_address (bl->address,
bl->section);
/* Set a software (trap) breakpoint at the LMA. */
bl->overlay_target_info = bl->target_info;
bl->overlay_target_info.placed_address = addr;
/* No overlay handling: just set the breakpoint. */
TRY_CATCH (e, RETURN_MASK_ALL)
{
int val;
val = target_insert_breakpoint (bl->gdbarch,
&bl->overlay_target_info);
if (val)
bp_err = GENERIC_ERROR;
}
if (e.reason < 0)
{
bp_err = e.error;
bp_err_message = e.message;
}
if (bp_err != GDB_NO_ERROR)
fprintf_unfiltered (tmp_error_stream,
"Overlay breakpoint %d "
"failed: in ROM?\n",
bl->owner->number);
}
}
/* Shall we set a breakpoint at the VMA? */
if (section_is_mapped (bl->section))
{
/* Yes. This overlay section is mapped into memory. */
TRY_CATCH (e, RETURN_MASK_ALL)
{
int val;
val = bl->owner->ops->insert_location (bl);
if (val)
bp_err = GENERIC_ERROR;
}
if (e.reason < 0)
{
bp_err = e.error;
bp_err_message = e.message;
}
}
else
{
/* No. This breakpoint will not be inserted.
No error, but do not mark the bp as 'inserted'. */
return 0;
}
}
if (bp_err != GDB_NO_ERROR)
{
/* Can't set the breakpoint. */
/* In some cases, we might not be able to insert a
breakpoint in a shared library that has already been
removed, but we have not yet processed the shlib unload
event. Unfortunately, some targets that implement
breakpoint insertion themselves (necessary if this is a
HW breakpoint, but SW breakpoints likewise) can't tell
why the breakpoint insertion failed (e.g., the remote
target doesn't define error codes), so we must treat
generic errors as memory errors. */
if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
&& solib_name_from_address (bl->pspace, bl->address))
{
/* See also: disable_breakpoints_in_shlibs. */
bl->shlib_disabled = 1;
observer_notify_breakpoint_modified (bl->owner);
if (!*disabled_breaks)
{
fprintf_unfiltered (tmp_error_stream,
"Cannot insert breakpoint %d.\n",
bl->owner->number);
fprintf_unfiltered (tmp_error_stream,
"Temporarily disabling shared "
"library breakpoints:\n");
}
*disabled_breaks = 1;
fprintf_unfiltered (tmp_error_stream,
"breakpoint #%d\n", bl->owner->number);
return 0;
}
else
{
if (bl->loc_type == bp_loc_hardware_breakpoint)
{
*hw_breakpoint_error = 1;
*hw_bp_error_explained_already = bp_err_message != NULL;
fprintf_unfiltered (tmp_error_stream,
"Cannot insert hardware breakpoint %d%s",
bl->owner->number, bp_err_message ? ":" : ".\n");
if (bp_err_message != NULL)
fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
}
else
{
if (bp_err_message == NULL)
{
char *message
= memory_error_message (TARGET_XFER_E_IO,
bl->gdbarch, bl->address);
struct cleanup *old_chain = make_cleanup (xfree, message);
fprintf_unfiltered (tmp_error_stream,
"Cannot insert breakpoint %d.\n"
"%s\n",
bl->owner->number, message);
do_cleanups (old_chain);
}
else
{
fprintf_unfiltered (tmp_error_stream,
"Cannot insert breakpoint %d: %s\n",
bl->owner->number,
bp_err_message);
}
}
return 1;
}
}
else
bl->inserted = 1;
return 0;
}
else if (bl->loc_type == bp_loc_hardware_watchpoint
/* NOTE drow/2003-09-08: This state only exists for removing
watchpoints. It's not clear that it's necessary... */
&& bl->owner->disposition != disp_del_at_next_stop)
{
int val;
gdb_assert (bl->owner->ops != NULL
&& bl->owner->ops->insert_location != NULL);
val = bl->owner->ops->insert_location (bl);
/* If trying to set a read-watchpoint, and it turns out it's not
supported, try emulating one with an access watchpoint. */
if (val == 1 && bl->watchpoint_type == hw_read)
{
struct bp_location *loc, **loc_temp;
/* But don't try to insert it, if there's already another
hw_access location that would be considered a duplicate
of this one. */
ALL_BP_LOCATIONS (loc, loc_temp)
if (loc != bl
&& loc->watchpoint_type == hw_access
&& watchpoint_locations_match (bl, loc))
{
bl->duplicate = 1;
bl->inserted = 1;
bl->target_info = loc->target_info;
bl->watchpoint_type = hw_access;
val = 0;
break;
}
if (val == 1)
{
bl->watchpoint_type = hw_access;
val = bl->owner->ops->insert_location (bl);
if (val)
/* Back to the original value. */
bl->watchpoint_type = hw_read;
}
}
bl->inserted = (val == 0);
}
else if (bl->owner->type == bp_catchpoint)
{
int val;
gdb_assert (bl->owner->ops != NULL
&& bl->owner->ops->insert_location != NULL);
val = bl->owner->ops->insert_location (bl);
if (val)
{
bl->owner->enable_state = bp_disabled;
if (val == 1)
warning (_("\
Error inserting catchpoint %d: Your system does not support this type\n\
of catchpoint."), bl->owner->number);
else
warning (_("Error inserting catchpoint %d."), bl->owner->number);
}
bl->inserted = (val == 0);
/* We've already printed an error message if there was a problem
inserting this catchpoint, and we've disabled the catchpoint,
so just return success. */
return 0;
}
return 0;
}
/* This function is called when program space PSPACE is about to be
deleted. It takes care of updating breakpoints to not reference
PSPACE anymore. */
void
breakpoint_program_space_exit (struct program_space *pspace)
{
struct breakpoint *b, *b_temp;
struct bp_location *loc, **loc_temp;
/* Remove any breakpoint that was set through this program space. */
ALL_BREAKPOINTS_SAFE (b, b_temp)
{
if (b->pspace == pspace)
delete_breakpoint (b);
}
/* Breakpoints set through other program spaces could have locations
bound to PSPACE as well. Remove those. */
ALL_BP_LOCATIONS (loc, loc_temp)
{
struct bp_location *tmp;
if (loc->pspace == pspace)
{
/* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
if (loc->owner->loc == loc)
loc->owner->loc = loc->next;
else
for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
if (tmp->next == loc)
{
tmp->next = loc->next;
break;
}
}
}
/* Now update the global location list to permanently delete the
removed locations above. */
update_global_location_list (0);
}
/* Make sure all breakpoints are inserted in inferior.
Throws exception on any error.
A breakpoint that is already inserted won't be inserted
again, so calling this function twice is safe. */
void
insert_breakpoints (void)
{
struct breakpoint *bpt;
ALL_BREAKPOINTS (bpt)
if (is_hardware_watchpoint (bpt))
{
struct watchpoint *w = (struct watchpoint *) bpt;
update_watchpoint (w, 0 /* don't reparse. */);
}
update_global_location_list (1);
/* update_global_location_list does not insert breakpoints when
always_inserted_mode is not enabled. Explicitly insert them
now. */
if (!breakpoints_always_inserted_mode ())
insert_breakpoint_locations ();
}
/* Invoke CALLBACK for each of bp_location. */
void
iterate_over_bp_locations (walk_bp_location_callback callback)
{
struct bp_location *loc, **loc_tmp;
ALL_BP_LOCATIONS (loc, loc_tmp)
{
callback (loc, NULL);
}
}
/* This is used when we need to synch breakpoint conditions between GDB and the
target. It is the case with deleting and disabling of breakpoints when using
always-inserted mode. */
static void
update_inserted_breakpoint_locations (void)
{
struct bp_location *bl, **blp_tmp;
int error_flag = 0;
int val = 0;
int disabled_breaks = 0;
int hw_breakpoint_error = 0;
int hw_bp_details_reported = 0;
struct ui_file *tmp_error_stream = mem_fileopen ();
struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
/* Explicitly mark the warning -- this will only be printed if
there was an error. */
fprintf_unfiltered (tmp_error_stream, "Warning:\n");
save_current_space_and_thread ();
ALL_BP_LOCATIONS (bl, blp_tmp)
{
/* We only want to update software breakpoints and hardware
breakpoints. */
if (!is_breakpoint (bl->owner))
continue;
/* We only want to update locations that are already inserted
and need updating. This is to avoid unwanted insertion during
deletion of breakpoints. */
if (!bl->inserted || (bl->inserted && !bl->needs_update))
continue;
switch_to_program_space_and_thread (bl->pspace);
/* For targets that support global breakpoints, there's no need
to select an inferior to insert breakpoint to. In fact, even
if we aren't attached to any process yet, we should still
insert breakpoints. */
if (!gdbarch_has_global_breakpoints (target_gdbarch ())
&& ptid_equal (inferior_ptid, null_ptid))
continue;
val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
&hw_breakpoint_error, &hw_bp_details_reported);
if (val)
error_flag = val;
}
if (error_flag)
{
target_terminal_ours_for_output ();
error_stream (tmp_error_stream);
}
do_cleanups (cleanups);
}
/* Used when starting or continuing the program. */
static void
insert_breakpoint_locations (void)
{
struct breakpoint *bpt;
struct bp_location *bl, **blp_tmp;
int error_flag = 0;
int val = 0;
int disabled_breaks = 0;
int hw_breakpoint_error = 0;
int hw_bp_error_explained_already = 0;
struct ui_file *tmp_error_stream = mem_fileopen ();
struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
/* Explicitly mark the warning -- this will only be printed if
there was an error. */
fprintf_unfiltered (tmp_error_stream, "Warning:\n");
save_current_space_and_thread ();
ALL_BP_LOCATIONS (bl, blp_tmp)
{
if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
continue;
/* There is no point inserting thread-specific breakpoints if
the thread no longer exists. ALL_BP_LOCATIONS bp_location
has BL->OWNER always non-NULL. */
if (bl->owner->thread != -1
&& !valid_thread_id (bl->owner->thread))
continue;
switch_to_program_space_and_thread (bl->pspace);
/* For targets that support global breakpoints, there's no need
to select an inferior to insert breakpoint to. In fact, even
if we aren't attached to any process yet, we should still
insert breakpoints. */
if (!gdbarch_has_global_breakpoints (target_gdbarch ())
&& ptid_equal (inferior_ptid, null_ptid))
continue;
val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
&hw_breakpoint_error, &hw_bp_error_explained_already);
if (val)
error_flag = val;
}
/* If we failed to insert all locations of a watchpoint, remove
them, as half-inserted watchpoint is of limited use. */
ALL_BREAKPOINTS (bpt)
{
int some_failed = 0;
struct bp_location *loc;
if (!is_hardware_watchpoint (bpt))
continue;
if (!breakpoint_enabled (bpt))
continue;
if (bpt->disposition == disp_del_at_next_stop)
continue;
for (loc = bpt->loc; loc; loc = loc->next)
if (!loc->inserted && should_be_inserted (loc))
{
some_failed = 1;
break;
}
if (some_failed)
{
for (loc = bpt->loc; loc; loc = loc->next)
if (loc->inserted)
remove_breakpoint (loc, mark_uninserted);
hw_breakpoint_error = 1;
fprintf_unfiltered (tmp_error_stream,
"Could not insert hardware watchpoint %d.\n",
bpt->number);
error_flag = -1;
}
}
if (error_flag)
{
/* If a hardware breakpoint or watchpoint was inserted, add a
message about possibly exhausted resources. */
if (hw_breakpoint_error && !hw_bp_error_explained_already)
{
fprintf_unfiltered (tmp_error_stream,
"Could not insert hardware breakpoints:\n\
You may have requested too many hardware breakpoints/watchpoints.\n");
}
target_terminal_ours_for_output ();
error_stream (tmp_error_stream);
}
do_cleanups (cleanups);
}
/* Used when the program stops.
Returns zero if successful, or non-zero if there was a problem
removing a breakpoint location. */
int
remove_breakpoints (void)
{
struct bp_location *bl, **blp_tmp;
int val = 0;
ALL_BP_LOCATIONS (bl, blp_tmp)
{
if (bl->inserted && !is_tracepoint (bl->owner))
val |= remove_breakpoint (bl, mark_uninserted);
}
return val;
}
/* When a thread exits, remove breakpoints that are related to
that thread. */
static void
remove_threaded_breakpoints (struct thread_info *tp, int silent)
{
struct breakpoint *b, *b_tmp;
ALL_BREAKPOINTS_SAFE (b, b_tmp)
{
if (b->thread == tp->num && user_breakpoint_p (b))
{
b->disposition = disp_del_at_next_stop;
printf_filtered (_("\
Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
b->number, tp->num);
/* Hide it from the user. */
b->number = 0;
}
}
}
/* Remove breakpoints of process PID. */
int
remove_breakpoints_pid (int pid)
{
struct bp_location *bl, **blp_tmp;
int val;
struct inferior *inf = find_inferior_pid (pid);
ALL_BP_LOCATIONS (bl, blp_tmp)
{
if (bl->pspace != inf->pspace)
continue;
if (bl->owner->type == bp_dprintf)
continue;
if (bl->inserted)
{
val = remove_breakpoint (bl, mark_uninserted);
if (val != 0)
return val;
}
}
return 0;
}
int
reattach_breakpoints (int pid)
{
struct cleanup *old_chain;
struct bp_location *bl, **blp_tmp;
int val;
struct ui_file *tmp_error_stream;
int dummy1 = 0, dummy2 = 0, dummy3 = 0;
struct inferior *inf;
struct thread_info *tp;
tp = any_live_thread_of_process (pid);
if (tp == NULL)
return 1;
inf = find_inferior_pid (pid);
old_chain = save_inferior_ptid ();
inferior_ptid = tp->ptid;
tmp_error_stream = mem_fileopen ();
make_cleanup_ui_file_delete (tmp_error_stream);
ALL_BP_LOCATIONS (bl, blp_tmp)
{
if (bl->pspace != inf->pspace)
continue;
if (bl->inserted)
{
bl->inserted = 0;
val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
if (val != 0)
{
do_cleanups (old_chain);
return val;
}
}
}
do_cleanups (old_chain);
return 0;
}
static int internal_breakpoint_number = -1;
/* Set the breakpoint number of B, depending on the value of INTERNAL.
If INTERNAL is non-zero, the breakpoint number will be populated
from internal_breakpoint_number and that variable decremented.
Otherwise the breakpoint number will be populated from
breakpoint_count and that value incremented. Internal breakpoints
do not set the internal var bpnum. */
static void
set_breakpoint_number (int internal, struct breakpoint *b)
{
if (internal)
b->number = internal_breakpoint_number--;
else
{
set_breakpoint_count (breakpoint_count + 1);
b->number = breakpoint_count;
}
}
static struct breakpoint *
create_internal_breakpoint (struct gdbarch *gdbarch,
CORE_ADDR address, enum bptype type,
const struct breakpoint_ops *ops)
{
struct symtab_and_line sal;
struct breakpoint *b;
init_sal (&sal); /* Initialize to zeroes. */
sal.pc = address;
sal.section = find_pc_overlay (sal.pc);
sal.pspace = current_program_space;
b = set_raw_breakpoint (gdbarch, sal, type, ops);
b->number = internal_breakpoint_number--;
b->disposition = disp_donttouch;
return b;
}
static const char *const longjmp_names[] =
{
"longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
};
#define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
/* Per-objfile data private to breakpoint.c. */
struct breakpoint_objfile_data
{
/* Minimal symbol for "_ovly_debug_event" (if any). */
struct minimal_symbol *overlay_msym;
/* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
/* True if we have looked for longjmp probes. */
int longjmp_searched;
/* SystemTap probe points for longjmp (if any). */
VEC (probe_p) *longjmp_probes;
/* Minimal symbol for "std::terminate()" (if any). */
struct minimal_symbol *terminate_msym;
/* Minimal symbol for "_Unwind_DebugHook" (if any). */
struct minimal_symbol *exception_msym;
/* True if we have looked for exception probes. */
int exception_searched;
/* SystemTap probe points for unwinding (if any). */
VEC (probe_p) *exception_probes;
};
static const struct objfile_data *breakpoint_objfile_key;
/* Minimal symbol not found sentinel. */
static struct minimal_symbol msym_not_found;
/* Returns TRUE if MSYM point to the "not found" sentinel. */
static int
msym_not_found_p (const struct minimal_symbol *msym)
{
return msym == &msym_not_found;
}
/* Return per-objfile data needed by breakpoint.c.
Allocate the data if necessary. */
static struct breakpoint_objfile_data *
get_breakpoint_objfile_data (struct objfile *objfile)
{
struct breakpoint_objfile_data *bp_objfile_data;
bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
if (bp_objfile_data == NULL)
{
bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
sizeof (*bp_objfile_data));
memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
}
return bp_objfile_data;
}
static void
free_breakpoint_probes (struct objfile *obj, void *data)
{
struct breakpoint_objfile_data *bp_objfile_data = data;
VEC_free (probe_p, bp_objfile_data->longjmp_probes);
VEC_free (probe_p, bp_objfile_data->exception_probes);
}
static void
create_overlay_event_breakpoint (void)
{
struct objfile *objfile;
const char *const func_name = "_ovly_debug_event";
ALL_OBJFILES (objfile)
{
struct breakpoint *b;
struct breakpoint_objfile_data *bp_objfile_data;
CORE_ADDR addr;
bp_objfile_data = get_breakpoint_objfile_data (objfile);
if (msym_not_found_p (bp_objfile_data->overlay_msym))
continue;
if (bp_objfile_data->overlay_msym == NULL)
{
struct minimal_symbol *m;
m = lookup_minimal_symbol_text (func_name, objfile);
if (m == NULL)
{
/* Avoid future lookups in this objfile. */
bp_objfile_data->overlay_msym = &msym_not_found;
continue;
}
bp_objfile_data->overlay_msym = m;
}
addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
bp_overlay_event,
&internal_breakpoint_ops);
b->addr_string = xstrdup (func_name);
if (overlay_debugging == ovly_auto)
{
b->enable_state = bp_enabled;
overlay_events_enabled = 1;
}
else
{
b->enable_state = bp_disabled;
overlay_events_enabled = 0;
}
}
update_global_location_list (1);
}
static void
create_longjmp_master_breakpoint (void)
{
struct program_space *pspace;
struct cleanup *old_chain;
old_chain = save_current_program_space ();
ALL_PSPACES (pspace)
{
struct objfile *objfile;
set_current_program_space (pspace);
ALL_OBJFILES (objfile)
{
int i;
struct gdbarch *gdbarch;
struct breakpoint_objfile_data *bp_objfile_data;
gdbarch = get_objfile_arch (objfile);
bp_objfile_data = get_breakpoint_objfile_data (objfile);
if (!bp_objfile_data->longjmp_searched)
{
VEC (probe_p) *ret;
ret = find_probes_in_objfile (objfile, "libc", "longjmp");
if (ret != NULL)
{
/* We are only interested in checking one element. */
struct probe *p = VEC_index (probe_p, ret, 0);
if (!can_evaluate_probe_arguments (p))
{
/* We cannot use the probe interface here, because it does
not know how to evaluate arguments. */
VEC_free (probe_p, ret);
ret = NULL;
}
}
bp_objfile_data->longjmp_probes = ret;
bp_objfile_data->longjmp_searched = 1;
}
if (bp_objfile_data->longjmp_probes != NULL)
{
int i;
struct probe *probe;
struct gdbarch *gdbarch = get_objfile_arch (objfile);
for (i = 0;
VEC_iterate (probe_p,
bp_objfile_data->longjmp_probes,
i, probe);
++i)
{
struct breakpoint *b;
b = create_internal_breakpoint (gdbarch, probe->address,
bp_longjmp_master,
&internal_breakpoint_ops);
b->addr_string = xstrdup ("-probe-stap libc:longjmp");
b->enable_state = bp_disabled;
}
continue;
}
if (!gdbarch_get_longjmp_target_p (gdbarch))
continue;
for (i = 0; i < NUM_LONGJMP_NAMES; i++)
{
struct breakpoint *b;
const char *func_name;
CORE_ADDR addr;
if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
continue;
func_name = longjmp_names[i];
if (bp_objfile_data->longjmp_msym[i] == NULL)
{
struct minimal_symbol *m;
m = lookup_minimal_symbol_text (func_name, objfile);
if (m == NULL)
{
/* Prevent future lookups in this objfile. */
bp_objfile_data->longjmp_msym[i] = &msym_not_found;
continue;
}
bp_objfile_data->longjmp_msym[i] = m;
}
addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
&internal_breakpoint_ops);
b->addr_string = xstrdup (func_name);
b->enable_state = bp_disabled;
}
}
}
update_global_location_list (1);
do_cleanups (old_chain);
}
/* Create a master std::terminate breakpoint. */
static void
create_std_terminate_master_breakpoint (void)
{
struct program_space *pspace;
struct cleanup *old_chain;
const char *const func_name = "std::terminate()";
old_chain = save_current_program_space ();
ALL_PSPACES (pspace)
{
struct objfile *objfile;
CORE_ADDR addr;
set_current_program_space (pspace);
ALL_OBJFILES (objfile)
{
struct breakpoint *b;
struct breakpoint_objfile_data *bp_objfile_data;
bp_objfile_data = get_breakpoint_objfile_data (objfile);
if (msym_not_found_p (bp_objfile_data->terminate_msym))
continue;
if (bp_objfile_data->terminate_msym == NULL)
{
struct minimal_symbol *m;
m = lookup_minimal_symbol (func_name, NULL, objfile);
if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
&& MSYMBOL_TYPE (m) != mst_file_text))
{
/* Prevent future lookups in this objfile. */
bp_objfile_data->terminate_msym = &msym_not_found;
continue;
}
bp_objfile_data->terminate_msym = m;
}
addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
bp_std_terminate_master,
&internal_breakpoint_ops);
b->addr_string = xstrdup (func_name);
b->enable_state = bp_disabled;
}
}
update_global_location_list (1);
do_cleanups (old_chain);
}
/* Install a master breakpoint on the unwinder's debug hook. */
static void
create_exception_master_breakpoint (void)
{
struct objfile *objfile;
const char *const func_name = "_Unwind_DebugHook";
ALL_OBJFILES (objfile)
{
struct breakpoint *b;
struct gdbarch *gdbarch;
struct breakpoint_objfile_data *bp_objfile_data;
CORE_ADDR addr;
bp_objfile_data = get_breakpoint_objfile_data (objfile);
/* We prefer the SystemTap probe point if it exists. */
if (!bp_objfile_data->exception_searched)
{
VEC (probe_p) *ret;
ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
if (ret != NULL)
{
/* We are only interested in checking one element. */
struct probe *p = VEC_index (probe_p, ret, 0);
if (!can_evaluate_probe_arguments (p))
{
/* We cannot use the probe interface here, because it does
not know how to evaluate arguments. */
VEC_free (probe_p, ret);
ret = NULL;
}
}
bp_objfile_data->exception_probes = ret;
bp_objfile_data->exception_searched = 1;
}
if (bp_objfile_data->exception_probes != NULL)
{
struct gdbarch *gdbarch = get_objfile_arch (objfile);
int i;
struct probe *probe;
for (i = 0;
VEC_iterate (probe_p,
bp_objfile_data->exception_probes,
i, probe);
++i)
{
struct breakpoint *b;
b = create_internal_breakpoint (gdbarch, probe->address,
bp_exception_master,
&internal_breakpoint_ops);
b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
b->enable_state = bp_disabled;
}
continue;
}
/* Otherwise, try the hook function. */
if (msym_not_found_p (bp_objfile_data->exception_msym))
continue;
gdbarch = get_objfile_arch (objfile);
if (bp_objfile_data->exception_msym == NULL)
{
struct minimal_symbol *debug_hook;
debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
if (debug_hook == NULL)
{
bp_objfile_data->exception_msym = &msym_not_found;
continue;
}
bp_objfile_data->exception_msym = debug_hook;
}
addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
¤t_target);
b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
&internal_breakpoint_ops);
b->addr_string = xstrdup (func_name);
b->enable_state = bp_disabled;
}
update_global_location_list (1);
}
void
update_breakpoints_after_exec (void)
{
struct breakpoint *b, *b_tmp;
struct bp_location *bploc, **bplocp_tmp;
/* We're about to delete breakpoints from GDB's lists. If the
INSERTED flag is true, GDB will try to lift the breakpoints by
writing the breakpoints' "shadow contents" back into memory. The
"shadow contents" are NOT valid after an exec, so GDB should not
do that. Instead, the target is responsible from marking
breakpoints out as soon as it detects an exec. We don't do that
here instead, because there may be other attempts to delete
breakpoints after detecting an exec and before reaching here. */
ALL_BP_LOCATIONS (bploc, bplocp_tmp)
if (bploc->pspace == current_program_space)
gdb_assert (!bploc->inserted);
ALL_BREAKPOINTS_SAFE (b, b_tmp)
{
if (b->pspace != current_program_space)
continue;
/* Solib breakpoints must be explicitly reset after an exec(). */
if (b->type == bp_shlib_event)
{
delete_breakpoint (b);
continue;
}
/* JIT breakpoints must be explicitly reset after an exec(). */
if (b->type == bp_jit_event)
{
delete_breakpoint (b);
continue;
}
/* Thread event breakpoints must be set anew after an exec(),
as must overlay event and longjmp master breakpoints. */
if (b->type == bp_thread_event || b->type == bp_overlay_event
|| b->type == bp_longjmp_master || b->type == bp_std_terminate_master
|| b->type == bp_exception_master)
{
delete_breakpoint (b);
continue;
}
/* Step-resume breakpoints are meaningless after an exec(). */
if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
{
delete_breakpoint (b);
continue;
}
/* Longjmp and longjmp-resume breakpoints are also meaningless
after an exec. */
if (b->type == bp_longjmp || b->type == bp_longjmp_resume
|| b->type == bp_longjmp_call_dummy
|| b->type == bp_exception || b->type == bp_exception_resume)
{
delete_breakpoint (b);
continue;
}
if (b->type == bp_catchpoint)
{
/* For now, none of the bp_catchpoint breakpoints need to
do anything at this point. In the future, if some of
the catchpoints need to something, we will need to add
a new method, and call this method from here. */
continue;
}
/* bp_finish is a special case. The only way we ought to be able
to see one of these when an exec() has happened, is if the user
caught a vfork, and then said "finish". Ordinarily a finish just
carries them to the call-site of the current callee, by setting
a temporary bp there and resuming. But in this case, the finish
will carry them entirely through the vfork & exec.
We don't want to allow a bp_finish to remain inserted now. But
we can't safely delete it, 'cause finish_command has a handle to
the bp on a bpstat, and will later want to delete it. There's a
chance (and I've seen it happen) that if we delete the bp_finish
here, that its storage will get reused by the time finish_command
gets 'round to deleting the "use to be a bp_finish" breakpoint.
We really must allow finish_command to delete a bp_finish.
In the absence of a general solution for the "how do we know
it's safe to delete something others may have handles to?"
problem, what we'll do here is just uninsert the bp_finish, and
let finish_command delete it.
(We know the bp_finish is "doomed" in the sense that it's
momentary, and will be deleted as soon as finish_command sees
the inferior stopped. So it doesn't matter that the bp's
address is probably bogus in the new a.out, unlike e.g., the
solib breakpoints.) */
if (b->type == bp_finish)
{
continue;
}
/* Without a symbolic address, we have little hope of the
pre-exec() address meaning the same thing in the post-exec()
a.out. */
if (b->addr_string == NULL)
{
delete_breakpoint (b);
continue;
}
}
/* FIXME what about longjmp breakpoints? Re-create them here? */
create_overlay_event_breakpoint ();
create_longjmp_master_breakpoint ();
create_std_terminate_master_breakpoint ();
create_exception_master_breakpoint ();
}
int
detach_breakpoints (ptid_t ptid)
{
struct bp_location *bl, **blp_tmp;
int val = 0;
struct cleanup *old_chain = save_inferior_ptid ();
struct inferior *inf = current_inferior ();
if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
error (_("Cannot detach breakpoints of inferior_ptid"));
/* Set inferior_ptid; remove_breakpoint_1 uses this global. */
inferior_ptid = ptid;
ALL_BP_LOCATIONS (bl, blp_tmp)
{
if (bl->pspace != inf->pspace)
continue;
/* This function must physically remove breakpoints locations
from the specified ptid, without modifying the breakpoint
package's state. Locations of type bp_loc_other are only
maintained at GDB side. So, there is no need to remove
these bp_loc_other locations. Moreover, removing these
would modify the breakpoint package's state. */
if (bl->loc_type == bp_loc_other)
continue;
if (bl->inserted)
val |= remove_breakpoint_1 (bl, mark_inserted);
}
/* Detach single-step breakpoints as well. */
detach_single_step_breakpoints ();
do_cleanups (old_chain);
return val;
}
/* Remove the breakpoint location BL from the current address space.
Note that this is used to detach breakpoints from a child fork.
When we get here, the child isn't in the inferior list, and neither
do we have objects to represent its address space --- we should
*not* look at bl->pspace->aspace here. */
static int
remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
{
int val;
/* BL is never in moribund_locations by our callers. */
gdb_assert (bl->owner != NULL);
if (bl->owner->enable_state == bp_permanent)
/* Permanent breakpoints cannot be inserted or removed. */
return 0;
/* The type of none suggests that owner is actually deleted.
This should not ever happen. */
gdb_assert (bl->owner->type != bp_none);
if (bl->loc_type == bp_loc_software_breakpoint
|| bl->loc_type == bp_loc_hardware_breakpoint)
{
/* "Normal" instruction breakpoint: either the standard
trap-instruction bp (bp_breakpoint), or a
bp_hardware_breakpoint. */
/* First check to see if we have to handle an overlay. */
if (overlay_debugging == ovly_off
|| bl->section == NULL
|| !(section_is_overlay (bl->section)))
{
/* No overlay handling: just remove the breakpoint. */
val = bl->owner->ops->remove_location (bl);
}
else
{
/* This breakpoint is in an overlay section.
Did we set a breakpoint at the LMA? */
if (!overlay_events_enabled)
{
/* Yes -- overlay event support is not active, so we
should have set a breakpoint at the LMA. Remove it.
*/
/* Ignore any failures: if the LMA is in ROM, we will
have already warned when we failed to insert it. */
if (bl->loc_type == bp_loc_hardware_breakpoint)
target_remove_hw_breakpoint (bl->gdbarch,
&bl->overlay_target_info);
else
target_remove_breakpoint (bl->gdbarch,
&bl->overlay_target_info);
}
/* Did we set a breakpoint at the VMA?
If so, we will have marked the breakpoint 'inserted'. */
if (bl->inserted)
{
/* Yes -- remove it. Previously we did not bother to
remove the breakpoint if the section had been
unmapped, but let's not rely on that being safe. We
don't know what the overlay manager might do. */
/* However, we should remove *software* breakpoints only
if the section is still mapped, or else we overwrite
wrong code with the saved shadow contents. */
if (bl->loc_type == bp_loc_hardware_breakpoint
|| section_is_mapped (bl->section))
val = bl->owner->ops->remove_location (bl);
else
val = 0;
}
else
{
/* No -- not inserted, so no need to remove. No error. */
val = 0;
}
}
/* In some cases, we might not be able to remove a breakpoint
in a shared library that has already been removed, but we
have not yet processed the shlib unload event. */
if (val && solib_name_from_address (bl->pspace, bl->address))
val = 0;
if (val)
return val;
bl->inserted = (is == mark_inserted);
}
else if (bl->loc_type == bp_loc_hardware_watchpoint)
{
gdb_assert (bl->owner->ops != NULL
&& bl->owner->ops->remove_location != NULL);
bl->inserted = (is == mark_inserted);
bl->owner->ops->remove_location (bl);
/* Failure to remove any of the hardware watchpoints comes here. */
if ((is == mark_uninserted) && (bl->inserted))
warning (_("Could not remove hardware watchpoint %d."),
bl->owner->number);
}
else if (bl->owner->type == bp_catchpoint
&& breakpoint_enabled (bl->owner)
&& !bl->duplicate)
{
gdb_assert (bl->owner->ops != NULL
&& bl->owner->ops->remove_location != NULL);
val = bl->owner->ops->remove_location (bl);
if (val)
return val;
bl->inserted = (is == mark_inserted);
}
return 0;
}
static int
remove_breakpoint (struct bp_location *bl, insertion_state_t is)
{
int ret;
struct cleanup *old_chain;
/* BL is never in moribund_locations by our callers. */
gdb_assert (bl->owner != NULL);
if (bl->owner->enable_state == bp_permanent)
/* Permanent breakpoints cannot be inserted or removed. */
return 0;
/* The type of none suggests that owner is actually deleted.
This should not ever happen. */
gdb_assert (bl->owner->type != bp_none);
old_chain = save_current_space_and_thread ();
switch_to_program_space_and_thread (bl->pspace);
ret = remove_breakpoint_1 (bl, is);
do_cleanups (old_chain);
return ret;
}
/* Clear the "inserted" flag in all breakpoints. */
void
mark_breakpoints_out (void)
{
struct bp_location *bl, **blp_tmp;
ALL_BP_LOCATIONS (bl, blp_tmp)
if (bl->pspace == current_program_space)
bl->inserted = 0;
}
/* Clear the "inserted" flag in all breakpoints and delete any
breakpoints which should go away between runs of the program.
Plus other such housekeeping that has to be done for breakpoints
between runs.
Note: this function gets called at the end of a run (by
generic_mourn_inferior) and when a run begins (by
init_wait_for_inferior). */
void
breakpoint_init_inferior (enum inf_context context)
{
struct breakpoint *b, *b_tmp;
struct bp_location *bl, **blp_tmp;
int ix;
struct program_space *pspace = current_program_space;
/* If breakpoint locations are shared across processes, then there's
nothing to do. */
if (gdbarch_has_global_breakpoints (target_gdbarch ()))
return;
ALL_BP_LOCATIONS (bl, blp_tmp)
{
/* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
if (bl->pspace == pspace
&& bl->owner->enable_state != bp_permanent)
bl->inserted = 0;
}
ALL_BREAKPOINTS_SAFE (b, b_tmp)
{
if (b->loc && b->loc->pspace != pspace)
continue;
switch (b->type)
{
case bp_call_dummy:
case bp_longjmp_call_dummy:
/* If the call dummy breakpoint is at the entry point it will
cause problems when the inferior is rerun, so we better get
rid of it. */
case bp_watchpoint_scope:
/* Also get rid of scope breakpoints. */
case bp_shlib_event:
/* Also remove solib event breakpoints. Their addresses may
have changed since the last time we ran the program.
Actually we may now be debugging against different target;
and so the solib backend that installed this breakpoint may
not be used in by the target. E.g.,
(gdb) file prog-linux
(gdb) run # native linux target
...
(gdb) kill
(gdb) file prog-win.exe
(gdb) tar rem :9999 # remote Windows gdbserver.
*/
case bp_step_resume:
/* Also remove step-resume breakpoints. */
delete_breakpoint (b);
break;
case bp_watchpoint:
case bp_hardware_watchpoint:
case bp_read_watchpoint:
case bp_access_watchpoint:
{
struct watchpoint *w = (struct watchpoint *) b;
/* Likewise for watchpoints on local expressions. */
if (w->exp_valid_block != NULL)
delete_breakpoint (b);
else if (context == inf_starting)
{
/* Reset val field to force reread of starting value in
insert_breakpoints. */
if (w->val)
value_free (w->val);
w->val = NULL;
w->val_valid = 0;
}
}
break;
default:
break;
}
}
/* Get rid of the moribund locations. */
for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
decref_bp_location (&bl);
VEC_free (bp_location_p, moribund_locations);
}
/* These functions concern about actual breakpoints inserted in the
target --- to e.g. check if we need to do decr_pc adjustment or if
we need to hop over the bkpt --- so we check for address space
match, not program space. */
/* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
exists at PC. It returns ordinary_breakpoint_here if it's an
ordinary breakpoint, or permanent_breakpoint_here if it's a
permanent breakpoint.
- When continuing from a location with an ordinary breakpoint, we
actually single step once before calling insert_breakpoints.
- When continuing from a location with a permanent breakpoint, we
need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
the target, to advance the PC past the breakpoint. */
enum breakpoint_here
breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
{
struct bp_location *bl, **blp_tmp;
int any_breakpoint_here = 0;
ALL_BP_LOCATIONS (bl, blp_tmp)
{
if (bl->loc_type != bp_loc_software_breakpoint
&& bl->loc_type != bp_loc_hardware_breakpoint)
continue;
/* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
if ((breakpoint_enabled (bl->owner)
|| bl->owner->enable_state == bp_permanent)
&& breakpoint_location_address_match (bl, aspace, pc))
{
if (overlay_debugging
&& section_is_overlay (bl->section)
&& !section_is_mapped (bl->section))
continue; /* unmapped overlay -- can't be a match */
else if (bl->owner->enable_state == bp_permanent)
return permanent_breakpoint_here;
else
any_breakpoint_here = 1;
}
}
return any_breakpoint_here ? ordinary_breakpoint_here : 0;
}
/* Return true if there's a moribund breakpoint at PC. */
int
moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
{
struct bp_location *loc;
int ix;
for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
if (breakpoint_location_address_match (loc, aspace, pc))
return 1;
return 0;
}
/* Returns non-zero if there's a breakpoint inserted at PC, which is
inserted using regular breakpoint_chain / bp_location array
mechanism. This does not check for single-step breakpoints, which
are inserted and removed using direct target manipulation. */
int
regular_breakpoint_inserted_here_p (struct address_space *aspace,
CORE_ADDR pc)
{
struct bp_location *bl, **blp_tmp;
ALL_BP_LOCATIONS (bl, blp_tmp)
{
if (bl->loc_type != bp_loc_software_breakpoint
&& bl->loc_type != bp_loc_hardware_breakpoint)
continue;
if (bl->inserted
&& breakpoint_location_address_match (bl, aspace, pc))
{
if (overlay_debugging
&& section_is_overlay (bl->section)
&& !section_is_mapped (bl->section))
continue; /* unmapped overlay -- can't be a match */
else
return 1;
}
}
return 0;
}
/* Returns non-zero iff there's either regular breakpoint
or a single step breakpoint inserted at PC. */
int
breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
{
if (regular_breakpoint_inserted_here_p (aspace, pc))
return 1;
if (single_step_breakpoint_inserted_here_p (aspace, pc))
return 1;
return 0;
}
/* This function returns non-zero iff there is a software breakpoint
inserted at PC. */
int
software_breakpoint_inserted_here_p (struct address_space *aspace,
CORE_ADDR pc)
{
struct bp_location *bl, **blp_tmp;
ALL_BP_LOCATIONS (bl, blp_tmp)
{
if (bl->loc_type != bp_loc_software_breakpoint)
continue;
if (bl->inserted
&& breakpoint_address_match (bl->pspace->aspace, bl->address,
aspace, pc))
{
if (overlay_debugging
&& section_is_overlay (bl->section)
&& !section_is_mapped (bl->section))
continue; /* unmapped overlay -- can't be a match */
else
return 1;
}
}
/* Also check for software single-step breakpoints. */
if (single_step_breakpoint_inserted_here_p (aspace, pc))
return 1;
return 0;
}
int
hardware_watchpoint_inserted_in_range (struct address_space *aspace,
CORE_ADDR addr, ULONGEST len)
{
struct breakpoint *bpt;
ALL_BREAKPOINTS (bpt)
{
struct bp_location *loc;
if (bpt->type != bp_hardware_watchpoint
&& bpt->type != bp_access_watchpoint)
continue;
if (!breakpoint_enabled (bpt))
continue;
for (loc = bpt->loc; loc; loc = loc->next)
if (loc->pspace->aspace == aspace && loc->inserted)
{
CORE_ADDR l, h;
/* Check for intersection. */
l = max (loc->address, addr);
h = min (loc->address + loc->length, addr + len);
if (l < h)
return 1;
}
}
return 0;
}
/* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
PC is valid for process/thread PTID. */
int
breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
ptid_t ptid)
{
struct bp_location *bl, **blp_tmp;
/* The thread and task IDs associated to PTID, computed lazily. */
int thread = -1;
int task = 0;
ALL_BP_LOCATIONS (bl, blp_tmp)
{
if (bl->loc_type != bp_loc_software_breakpoint
&& bl->loc_type != bp_loc_hardware_breakpoint)
continue;
/* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
if (!breakpoint_enabled (bl->owner)
&& bl->owner->enable_state != bp_permanent)
continue;
if (!breakpoint_location_address_match (bl, aspace, pc))
continue;
if (bl->owner->thread != -1)
{
/* This is a thread-specific breakpoint. Check that ptid
matches that thread. If thread hasn't been computed yet,
it is now time to do so. */
if (thread == -1)
thread = pid_to_thread_id (ptid);
if (bl->owner->thread != thread)
continue;
}
if (bl->owner->task != 0)
{
/* This is a task-specific breakpoint. Check that ptid
matches that task. If task hasn't been computed yet,
it is now time to do so. */
if (task == 0)
task = ada_get_task_number (ptid);
if (bl->owner->task != task)
continue;
}
if (overlay_debugging
&& section_is_overlay (bl->section)
&& !section_is_mapped (bl->section))
continue; /* unmapped overlay -- can't be a match */
return 1;
}
return 0;
}
/* bpstat stuff. External routines' interfaces are documented
in breakpoint.h. */
int
is_catchpoint (struct breakpoint *ep)
{
return (ep->type == bp_catchpoint);
}
/* Frees any storage that is part of a bpstat. Does not walk the
'next' chain. */
static void
bpstat_free (bpstat bs)
{
if (bs->old_val != NULL)
value_free (bs->old_val);
decref_counted_command_line (&bs->commands);
decref_bp_location (&bs->bp_location_at);
xfree (bs);
}
/* Clear a bpstat so that it says we are not at any breakpoint.
Also free any storage that is part of a bpstat. */
void
bpstat_clear (bpstat *bsp)
{
bpstat p;
bpstat q;
if (bsp == 0)
return;
p = *bsp;
while (p != NULL)
{
q = p->next;
bpstat_free (p);
p = q;
}
*bsp = NULL;
}
/* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
is part of the bpstat is copied as well. */
bpstat
bpstat_copy (bpstat bs)
{
bpstat p = NULL;
bpstat tmp;
bpstat retval = NULL;
if (bs == NULL)
return bs;
for (; bs != NULL; bs = bs->next)
{
tmp = (bpstat) xmalloc (sizeof (*tmp));
memcpy (tmp, bs, sizeof (*tmp));
incref_counted_command_line (tmp->commands);
incref_bp_location (tmp->bp_location_at);
if (bs->old_val != NULL)
{
tmp->old_val = value_copy (bs->old_val);
release_value (tmp->old_val);
}
if (p == NULL)
/* This is the first thing in the chain. */
retval = tmp;
else
p->next = tmp;
p = tmp;
}
p->next = NULL;
return retval;
}
/* Find the bpstat associated with this breakpoint. */
bpstat
bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
{
if (bsp == NULL)
return NULL;
for (; bsp != NULL; bsp = bsp->next)
{
if (bsp->breakpoint_at == breakpoint)
return bsp;
}
return NULL;
}
/* See breakpoint.h. */
int
bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
{
for (; bsp != NULL; bsp = bsp->next)
{
if (bsp->breakpoint_at == NULL)
{
/* A moribund location can never explain a signal other than
GDB_SIGNAL_TRAP. */
if (sig == GDB_SIGNAL_TRAP)
return 1;
}
else
{
if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
sig))
return 1;
}
}
return 0;
}
/* Put in *NUM the breakpoint number of the first breakpoint we are
stopped at. *BSP upon return is a bpstat which points to the
remaining breakpoints stopped at (but which is not guaranteed to be
good for anything but further calls to bpstat_num).
Return 0 if passed a bpstat which does not indicate any breakpoints.
Return -1 if stopped at a breakpoint that has been deleted since
we set it.
Return 1 otherwise. */
int
bpstat_num (bpstat *bsp, int *num)
{
struct breakpoint *b;
if ((*bsp) == NULL)
return 0; /* No more breakpoint values */
/* We assume we'll never have several bpstats that correspond to a
single breakpoint -- otherwise, this function might return the
same number more than once and this will look ugly. */
b = (*bsp)->breakpoint_at;
*bsp = (*bsp)->next;
if (b == NULL)
return -1; /* breakpoint that's been deleted since */
*num = b->number; /* We have its number */
return 1;
}
/* See breakpoint.h. */
void
bpstat_clear_actions (void)
{
struct thread_info *tp;
bpstat bs;
if (ptid_equal (inferior_ptid, null_ptid))
return;
tp = find_thread_ptid (inferior_ptid);
if (tp == NULL)
return;
for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
{
decref_counted_command_line (&bs->commands);
if (bs->old_val != NULL)
{
value_free (bs->old_val);
bs->old_val = NULL;
}
}
}
/* Called when a command is about to proceed the inferior. */
static void
breakpoint_about_to_proceed (void)
{
if (!ptid_equal (inferior_ptid, null_ptid))
{
struct thread_info *tp = inferior_thread ();
/* Allow inferior function calls in breakpoint commands to not
interrupt the command list. When the call finishes
successfully, the inferior will be standing at the same
breakpoint as if nothing happened. */
if (tp->control.in_infcall)
return;
}
breakpoint_proceeded = 1;
}
/* Stub for cleaning up our state if we error-out of a breakpoint
command. */
static void
cleanup_executing_breakpoints (void *ignore)
{
executing_breakpoint_commands = 0;
}
/* Return non-zero iff CMD as the first line of a command sequence is `silent'
or its equivalent. */
static int
command_line_is_silent (struct command_line *cmd)
{
return cmd && (strcmp ("silent", cmd->line) == 0
|| (xdb_commands && strcmp ("Q", cmd->line) == 0));
}
/* Execute all the commands associated with all the breakpoints at
this location. Any of these commands could cause the process to
proceed beyond this point, etc. We look out for such changes by
checking the global "breakpoint_proceeded" after each command.
Returns true if a breakpoint command resumed the inferior. In that
case, it is the caller's responsibility to recall it again with the
bpstat of the current thread. */
static int
bpstat_do_actions_1 (bpstat *bsp)
{
bpstat bs;
struct cleanup *old_chain;
int again = 0;
/* Avoid endless recursion if a `source' command is contained
in bs->commands. */
if (executing_breakpoint_commands)
return 0;
executing_breakpoint_commands = 1;
old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
prevent_dont_repeat ();
/* This pointer will iterate over the list of bpstat's. */
bs = *bsp;
breakpoint_proceeded = 0;
for (; bs != NULL; bs = bs->next)
{
struct counted_command_line *ccmd;
struct command_line *cmd;
struct cleanup *this_cmd_tree_chain;
/* Take ownership of the BSP's command tree, if it has one.
The command tree could legitimately contain commands like
'step' and 'next', which call clear_proceed_status, which
frees stop_bpstat's command tree. To make sure this doesn't
free the tree we're executing out from under us, we need to
take ownership of the tree ourselves. Since a given bpstat's
commands are only executed once, we don't need to copy it; we
can clear the pointer in the bpstat, and make sure we free
the tree when we're done. */
ccmd = bs->commands;
bs->commands = NULL;
this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
cmd = ccmd ? ccmd->commands : NULL;
if (command_line_is_silent (cmd))
{
/* The action has been already done by bpstat_stop_status. */
cmd = cmd->next;
}
while (cmd != NULL)
{
execute_control_command (cmd);
if (breakpoint_proceeded)
break;
else
cmd = cmd->next;
}
/* We can free this command tree now. */
do_cleanups (this_cmd_tree_chain);
if (breakpoint_proceeded)
{
if (target_can_async_p ())
/* If we are in async mode, then the target might be still
running, not stopped at any breakpoint, so nothing for
us to do here -- just return to the event loop. */
;
else
/* In sync mode, when execute_control_command returns
we're already standing on the next breakpoint.
Breakpoint commands for that stop were not run, since
execute_command does not run breakpoint commands --
only command_line_handler does, but that one is not
involved in execution of breakpoint commands. So, we
can now execute breakpoint commands. It should be
noted that making execute_command do bpstat actions is
not an option -- in this case we'll have recursive
invocation of bpstat for each breakpoint with a
command, and can easily blow up GDB stack. Instead, we
return true, which will trigger the caller to recall us
with the new stop_bpstat. */
again = 1;
break;
}
}
do_cleanups (old_chain);
return again;
}
void
bpstat_do_actions (void)
{
struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
/* Do any commands attached to breakpoint we are stopped at. */
while (!ptid_equal (inferior_ptid, null_ptid)
&& target_has_execution
&& !is_exited (inferior_ptid)
&& !is_executing (inferior_ptid))
/* Since in sync mode, bpstat_do_actions may resume the inferior,
and only return when it is stopped at the next breakpoint, we
keep doing breakpoint actions until it returns false to
indicate the inferior was not resumed. */
if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
break;
discard_cleanups (cleanup_if_error);
}
/* Print out the (old or new) value associated with a watchpoint. */
static void
watchpoint_value_print (struct value *val, struct ui_file *stream)
{
if (val == NULL)
fprintf_unfiltered (stream, _(""));
else
{
struct value_print_options opts;
get_user_print_options (&opts);
value_print (val, stream, &opts);
}
}
/* Generic routine for printing messages indicating why we
stopped. The behavior of this function depends on the value
'print_it' in the bpstat structure. Under some circumstances we
may decide not to print anything here and delegate the task to
normal_stop(). */
static enum print_stop_action
print_bp_stop_message (bpstat bs)
{
switch (bs->print_it)
{
case print_it_noop:
/* Nothing should be printed for this bpstat entry. */
return PRINT_UNKNOWN;
break;
case print_it_done:
/* We still want to print the frame, but we already printed the
relevant messages. */
return PRINT_SRC_AND_LOC;
break;
case print_it_normal:
{
struct breakpoint *b = bs->breakpoint_at;
/* bs->breakpoint_at can be NULL if it was a momentary breakpoint
which has since been deleted. */
if (b == NULL)
return PRINT_UNKNOWN;
/* Normal case. Call the breakpoint's print_it method. */
return b->ops->print_it (bs);
}
break;
default:
internal_error (__FILE__, __LINE__,
_("print_bp_stop_message: unrecognized enum value"));
break;
}
}
/* A helper function that prints a shared library stopped event. */
static void
print_solib_event (int is_catchpoint)
{
int any_deleted
= !VEC_empty (char_ptr, current_program_space->deleted_solibs);
int any_added
= !VEC_empty (so_list_ptr, current_program_space->added_solibs);
if (!is_catchpoint)
{
if (any_added || any_deleted)
ui_out_text (current_uiout,
_("Stopped due to shared library event:\n"));
else
ui_out_text (current_uiout,
_("Stopped due to shared library event (no "
"libraries added or removed)\n"));
}
if (ui_out_is_mi_like_p (current_uiout))
ui_out_field_string (current_uiout, "reason",
async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
if (any_deleted)
{
struct cleanup *cleanup;
char *name;
int ix;
ui_out_text (current_uiout, _(" Inferior unloaded "));
cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
"removed");
for (ix = 0;
VEC_iterate (char_ptr, current_program_space->deleted_solibs,
ix, name);
++ix)
{
if (ix > 0)
ui_out_text (current_uiout, " ");
ui_out_field_string (current_uiout, "library", name);
ui_out_text (current_uiout, "\n");
}
do_cleanups (cleanup);
}
if (any_added)
{
struct so_list *iter;
int ix;
struct cleanup *cleanup;
ui_out_text (current_uiout, _(" Inferior loaded "));
cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
"added");
for (ix = 0;
VEC_iterate (so_list_ptr, current_program_space->added_solibs,
ix, iter);
++ix)
{
if (ix > 0)
ui_out_text (current_uiout, " ");
ui_out_field_string (current_uiout, "library", iter->so_name);
ui_out_text (current_uiout, "\n");
}
do_cleanups (cleanup);
}
}
/* Print a message indicating what happened. This is called from
normal_stop(). The input to this routine is the head of the bpstat
list - a list of the eventpoints that caused this stop. KIND is
the target_waitkind for the stopping event. This
routine calls the generic print routine for printing a message
about reasons for stopping. This will print (for example) the
"Breakpoint n," part of the output. The return value of this
routine is one of:
PRINT_UNKNOWN: Means we printed nothing.
PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
code to print the location. An example is
"Breakpoint 1, " which should be followed by
the location.
PRINT_SRC_ONLY: Means we printed something, but there is no need
to also print the location part of the message.
An example is the catch/throw messages, which
don't require a location appended to the end.
PRINT_NOTHING: We have done some printing and we don't need any
further info to be printed. */
enum print_stop_action
bpstat_print (bpstat bs, int kind)
{
int val;
/* Maybe another breakpoint in the chain caused us to stop.
(Currently all watchpoints go on the bpstat whether hit or not.
That probably could (should) be changed, provided care is taken
with respect to bpstat_explains_signal). */
for (; bs; bs = bs->next)
{
val = print_bp_stop_message (bs);
if (val == PRINT_SRC_ONLY
|| val == PRINT_SRC_AND_LOC
|| val == PRINT_NOTHING)
return val;
}
/* If we had hit a shared library event breakpoint,
print_bp_stop_message would print out this message. If we hit an
OS-level shared library event, do the same thing. */
if (kind == TARGET_WAITKIND_LOADED)
{
print_solib_event (0);
return PRINT_NOTHING;
}
/* We reached the end of the chain, or we got a null BS to start
with and nothing was printed. */
return PRINT_UNKNOWN;
}
/* Evaluate the expression EXP and return 1 if value is zero.
This returns the inverse of the condition because it is called
from catch_errors which returns 0 if an exception happened, and if an
exception happens we want execution to stop.
The argument is a "struct expression *" that has been cast to a
"void *" to make it pass through catch_errors. */
static int
breakpoint_cond_eval (void *exp)
{
struct value *mark = value_mark ();
int i = !value_true (evaluate_expression ((struct expression *) exp));
value_free_to_mark (mark);
return i;
}
/* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
static bpstat
bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
{
bpstat bs;
bs = (bpstat) xmalloc (sizeof (*bs));
bs->next = NULL;
**bs_link_pointer = bs;
*bs_link_pointer = &bs->next;
bs->breakpoint_at = bl->owner;
bs->bp_location_at = bl;
incref_bp_location (bl);
/* If the condition is false, etc., don't do the commands. */
bs->commands = NULL;
bs->old_val = NULL;
bs->print_it = print_it_normal;
return bs;
}
/* The target has stopped with waitstatus WS. Check if any hardware
watchpoints have triggered, according to the target. */
int
watchpoints_triggered (struct target_waitstatus *ws)
{
int stopped_by_watchpoint = target_stopped_by_watchpoint ();
CORE_ADDR addr;
struct breakpoint *b;
if (!stopped_by_watchpoint)
{
/* We were not stopped by a watchpoint. Mark all watchpoints
as not triggered. */
ALL_BREAKPOINTS (b)
if (is_hardware_watchpoint (b))
{
struct watchpoint *w = (struct watchpoint *) b;
w->watchpoint_triggered = watch_triggered_no;
}
return 0;
}
if (!target_stopped_data_address (¤t_target, &addr))
{
/* We were stopped by a watchpoint, but we don't know where.
Mark all watchpoints as unknown. */
ALL_BREAKPOINTS (b)
if (is_hardware_watchpoint (b))
{
struct watchpoint *w = (struct watchpoint *) b;
w->watchpoint_triggered = watch_triggered_unknown;
}
return 1;
}
/* The target could report the data address. Mark watchpoints
affected by this data address as triggered, and all others as not
triggered. */
ALL_BREAKPOINTS (b)
if (is_hardware_watchpoint (b))
{
struct watchpoint *w = (struct watchpoint *) b;
struct bp_location *loc;
w->watchpoint_triggered = watch_triggered_no;
for (loc = b->loc; loc; loc = loc->next)
{
if (is_masked_watchpoint (b))
{
CORE_ADDR newaddr = addr & w->hw_wp_mask;
CORE_ADDR start = loc->address & w->hw_wp_mask;
if (newaddr == start)
{
w->watchpoint_triggered = watch_triggered_yes;
break;
}
}
/* Exact match not required. Within range is sufficient. */
else if (target_watchpoint_addr_within_range (¤t_target,
addr, loc->address,
loc->length))
{
w->watchpoint_triggered = watch_triggered_yes;
break;
}
}
}
return 1;
}
/* Possible return values for watchpoint_check (this can't be an enum
because of check_errors). */
/* The watchpoint has been deleted. */
#define WP_DELETED 1
/* The value has changed. */
#define WP_VALUE_CHANGED 2
/* The value has not changed. */
#define WP_VALUE_NOT_CHANGED 3
/* Ignore this watchpoint, no matter if the value changed or not. */
#define WP_IGNORE 4
#define BP_TEMPFLAG 1
#define BP_HARDWAREFLAG 2
/* Evaluate watchpoint condition expression and check if its value
changed.
P should be a pointer to struct bpstat, but is defined as a void *
in order for this function to be usable with catch_errors. */
static int
watchpoint_check (void *p)
{
bpstat bs = (bpstat) p;
struct watchpoint *b;
struct frame_info *fr;
int within_current_scope;
/* BS is built from an existing struct breakpoint. */
gdb_assert (bs->breakpoint_at != NULL);
b = (struct watchpoint *) bs->breakpoint_at;
/* If this is a local watchpoint, we only want to check if the
watchpoint frame is in scope if the current thread is the thread
that was used to create the watchpoint. */
if (!watchpoint_in_thread_scope (b))
return WP_IGNORE;
if (b->exp_valid_block == NULL)
within_current_scope = 1;
else
{
struct frame_info *frame = get_current_frame ();
struct gdbarch *frame_arch = get_frame_arch (frame);
CORE_ADDR frame_pc = get_frame_pc (frame);
/* in_function_epilogue_p() returns a non-zero value if we're
still in the function but the stack frame has already been
invalidated. Since we can't rely on the values of local
variables after the stack has been destroyed, we are treating
the watchpoint in that state as `not changed' without further
checking. Don't mark watchpoints as changed if the current
frame is in an epilogue - even if they are in some other
frame, our view of the stack is likely to be wrong and
frame_find_by_id could error out. */
if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
return WP_IGNORE;
fr = frame_find_by_id (b->watchpoint_frame);
within_current_scope = (fr != NULL);
/* If we've gotten confused in the unwinder, we might have
returned a frame that can't describe this variable. */
if (within_current_scope)
{
struct symbol *function;
function = get_frame_function (fr);
if (function == NULL
|| !contained_in (b->exp_valid_block,
SYMBOL_BLOCK_VALUE (function)))
within_current_scope = 0;
}
if (within_current_scope)
/* If we end up stopping, the current frame will get selected
in normal_stop. So this call to select_frame won't affect
the user. */
select_frame (fr);
}
if (within_current_scope)
{
/* We use value_{,free_to_}mark because it could be a *long*
time before we return to the command level and call
free_all_values. We can't call free_all_values because we
might be in the middle of evaluating a function call. */
int pc = 0;
struct value *mark;
struct value *new_val;
if (is_masked_watchpoint (&b->base))
/* Since we don't know the exact trigger address (from
stopped_data_address), just tell the user we've triggered
a mask watchpoint. */
return WP_VALUE_CHANGED;
mark = value_mark ();
fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
/* We use value_equal_contents instead of value_equal because
the latter coerces an array to a pointer, thus comparing just
the address of the array instead of its contents. This is
not what we want. */
if ((b->val != NULL) != (new_val != NULL)
|| (b->val != NULL && !value_equal_contents (b->val, new_val)))
{
if (new_val != NULL)
{
release_value (new_val);
value_free_to_mark (mark);
}
bs->old_val = b->val;
b->val = new_val;
b->val_valid = 1;
return WP_VALUE_CHANGED;
}
else
{
/* Nothing changed. */
value_free_to_mark (mark);
return WP_VALUE_NOT_CHANGED;
}
}
else
{
struct ui_out *uiout = current_uiout;
/* This seems like the only logical thing to do because
if we temporarily ignored the watchpoint, then when
we reenter the block in which it is valid it contains
garbage (in the case of a function, it may have two
garbage values, one before and one after the prologue).
So we can't even detect the first assignment to it and
watch after that (since the garbage may or may not equal
the first value assigned). */
/* We print all the stop information in
breakpoint_ops->print_it, but in this case, by the time we
call breakpoint_ops->print_it this bp will be deleted
already. So we have no choice but print the information
here. */
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string
(uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
ui_out_text (uiout, "\nWatchpoint ");
ui_out_field_int (uiout, "wpnum", b->base.number);
ui_out_text (uiout,
" deleted because the program has left the block in\n\
which its expression is valid.\n");
/* Make sure the watchpoint's commands aren't executed. */
decref_counted_command_line (&b->base.commands);
watchpoint_del_at_next_stop (b);
return WP_DELETED;
}
}
/* Return true if it looks like target has stopped due to hitting
breakpoint location BL. This function does not check if we should
stop, only if BL explains the stop. */
static int
bpstat_check_location (const struct bp_location *bl,
struct address_space *aspace, CORE_ADDR bp_addr,
const struct target_waitstatus *ws)
{
struct breakpoint *b = bl->owner;
/* BL is from an existing breakpoint. */
gdb_assert (b != NULL);
return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
}
/* Determine if the watched values have actually changed, and we
should stop. If not, set BS->stop to 0. */
static void
bpstat_check_watchpoint (bpstat bs)
{
const struct bp_location *bl;
struct watchpoint *b;
/* BS is built for existing struct breakpoint. */
bl = bs->bp_location_at;
gdb_assert (bl != NULL);
b = (struct watchpoint *) bs->breakpoint_at;
gdb_assert (b != NULL);
{
int must_check_value = 0;
if (b->base.type == bp_watchpoint)
/* For a software watchpoint, we must always check the
watched value. */
must_check_value = 1;
else if (b->watchpoint_triggered == watch_triggered_yes)
/* We have a hardware watchpoint (read, write, or access)
and the target earlier reported an address watched by
this watchpoint. */
must_check_value = 1;
else if (b->watchpoint_triggered == watch_triggered_unknown
&& b->base.type == bp_hardware_watchpoint)
/* We were stopped by a hardware watchpoint, but the target could
not report the data address. We must check the watchpoint's
value. Access and read watchpoints are out of luck; without
a data address, we can't figure it out. */
must_check_value = 1;
if (must_check_value)
{
char *message
= xstrprintf ("Error evaluating expression for watchpoint %d\n",
b->base.number);
struct cleanup *cleanups = make_cleanup (xfree, message);
int e = catch_errors (watchpoint_check, bs, message,
RETURN_MASK_ALL);
do_cleanups (cleanups);
switch (e)
{
case WP_DELETED:
/* We've already printed what needs to be printed. */
bs->print_it = print_it_done;
/* Stop. */
break;
case WP_IGNORE:
bs->print_it = print_it_noop;
bs->stop = 0;
break;
case WP_VALUE_CHANGED:
if (b->base.type == bp_read_watchpoint)
{
/* There are two cases to consider here:
1. We're watching the triggered memory for reads.
In that case, trust the target, and always report
the watchpoint hit to the user. Even though
reads don't cause value changes, the value may
have changed since the last time it was read, and
since we're not trapping writes, we will not see
those, and as such we should ignore our notion of
old value.
2. We're watching the triggered memory for both
reads and writes. There are two ways this may
happen:
2.1. This is a target that can't break on data
reads only, but can break on accesses (reads or
writes), such as e.g., x86. We detect this case
at the time we try to insert read watchpoints.
2.2. Otherwise, the target supports read
watchpoints, but, the user set an access or write
watchpoint watching the same memory as this read
watchpoint.
If we're watching memory writes as well as reads,
ignore watchpoint hits when we find that the
value hasn't changed, as reads don't cause
changes. This still gives false positives when
the program writes the same value to memory as
what there was already in memory (we will confuse
it for a read), but it's much better than
nothing. */
int other_write_watchpoint = 0;
if (bl->watchpoint_type == hw_read)
{
struct breakpoint *other_b;
ALL_BREAKPOINTS (other_b)
if (other_b->type == bp_hardware_watchpoint
|| other_b->type == bp_access_watchpoint)
{
struct watchpoint *other_w =
(struct watchpoint *) other_b;
if (other_w->watchpoint_triggered
== watch_triggered_yes)
{
other_write_watchpoint = 1;
break;
}
}
}
if (other_write_watchpoint
|| bl->watchpoint_type == hw_access)
{
/* We're watching the same memory for writes,
and the value changed since the last time we
updated it, so this trap must be for a write.
Ignore it. */
bs->print_it = print_it_noop;
bs->stop = 0;
}
}
break;
case WP_VALUE_NOT_CHANGED:
if (b->base.type == bp_hardware_watchpoint
|| b->base.type == bp_watchpoint)
{
/* Don't stop: write watchpoints shouldn't fire if
the value hasn't changed. */
bs->print_it = print_it_noop;
bs->stop = 0;
}
/* Stop. */
break;
default:
/* Can't happen. */
case 0:
/* Error from catch_errors. */
printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
watchpoint_del_at_next_stop (b);
/* We've already printed what needs to be printed. */
bs->print_it = print_it_done;
break;
}
}
else /* must_check_value == 0 */
{
/* This is a case where some watchpoint(s) triggered, but
not at the address of this watchpoint, or else no
watchpoint triggered after all. So don't print
anything for this watchpoint. */
bs->print_it = print_it_noop;
bs->stop = 0;
}
}
}
/* For breakpoints that are currently marked as telling gdb to stop,
check conditions (condition proper, frame, thread and ignore count)
of breakpoint referred to by BS. If we should not stop for this
breakpoint, set BS->stop to 0. */
static void
bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
{
int thread_id = pid_to_thread_id (ptid);
const struct bp_location *bl;
struct breakpoint *b;
int value_is_zero = 0;
struct expression *cond;
gdb_assert (bs->stop);
/* BS is built for existing struct breakpoint. */
bl = bs->bp_location_at;
gdb_assert (bl != NULL);
b = bs->breakpoint_at;
gdb_assert (b != NULL);
/* Even if the target evaluated the condition on its end and notified GDB, we
need to do so again since GDB does not know if we stopped due to a
breakpoint or a single step breakpoint. */
if (frame_id_p (b->frame_id)
&& !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
{
bs->stop = 0;
return;
}
/* If this is a thread-specific breakpoint, don't waste cpu evaluating the
condition if this isn't the specified thread. */
if (b->thread != -1 && b->thread != thread_id)
{
bs->stop = 0;
return;
}
/* Evaluate Python breakpoints that have a "stop" method implemented. */
if (b->py_bp_object)
bs->stop = gdbpy_should_stop (b->py_bp_object);
if (is_watchpoint (b))
{
struct watchpoint *w = (struct watchpoint *) b;
cond = w->cond_exp;
}
else
cond = bl->cond;
if (cond && b->disposition != disp_del_at_next_stop)
{
int within_current_scope = 1;
struct watchpoint * w;
/* We use value_mark and value_free_to_mark because it could
be a long time before we return to the command level and
call free_all_values. We can't call free_all_values
because we might be in the middle of evaluating a
function call. */
struct value *mark = value_mark ();
if (is_watchpoint (b))
w = (struct watchpoint *) b;
else
w = NULL;
/* Need to select the frame, with all that implies so that
the conditions will have the right context. Because we
use the frame, we will not see an inlined function's
variables when we arrive at a breakpoint at the start
of the inlined function; the current frame will be the
call site. */
if (w == NULL || w->cond_exp_valid_block == NULL)
select_frame (get_current_frame ());
else
{
struct frame_info *frame;
/* For local watchpoint expressions, which particular
instance of a local is being watched matters, so we
keep track of the frame to evaluate the expression
in. To evaluate the condition however, it doesn't
really matter which instantiation of the function
where the condition makes sense triggers the
watchpoint. This allows an expression like "watch
global if q > 10" set in `func', catch writes to
global on all threads that call `func', or catch
writes on all recursive calls of `func' by a single
thread. We simply always evaluate the condition in
the innermost frame that's executing where it makes
sense to evaluate the condition. It seems
intuitive. */
frame = block_innermost_frame (w->cond_exp_valid_block);
if (frame != NULL)
select_frame (frame);
else
within_current_scope = 0;
}
if (within_current_scope)
value_is_zero
= catch_errors (breakpoint_cond_eval, cond,
"Error in testing breakpoint condition:\n",
RETURN_MASK_ALL);
else
{
warning (_("Watchpoint condition cannot be tested "
"in the current scope"));
/* If we failed to set the right context for this
watchpoint, unconditionally report it. */
value_is_zero = 0;
}
/* FIXME-someday, should give breakpoint #. */
value_free_to_mark (mark);
}
if (cond && value_is_zero)
{
bs->stop = 0;
}
else if (b->ignore_count > 0)
{
b->ignore_count--;
bs->stop = 0;
/* Increase the hit count even though we don't stop. */
++(b->hit_count);
observer_notify_breakpoint_modified (b);
}
}
/* Get a bpstat associated with having just stopped at address
BP_ADDR in thread PTID.
Determine whether we stopped at a breakpoint, etc, or whether we
don't understand this stop. Result is a chain of bpstat's such
that:
if we don't understand the stop, the result is a null pointer.
if we understand why we stopped, the result is not null.
Each element of the chain refers to a particular breakpoint or
watchpoint at which we have stopped. (We may have stopped for
several reasons concurrently.)
Each element of the chain has valid next, breakpoint_at,
commands, FIXME??? fields. */
bpstat
bpstat_stop_status (struct address_space *aspace,
CORE_ADDR bp_addr, ptid_t ptid,
const struct target_waitstatus *ws)
{
struct breakpoint *b = NULL;
struct bp_location *bl;
struct bp_location *loc;
/* First item of allocated bpstat's. */
bpstat bs_head = NULL, *bs_link = &bs_head;
/* Pointer to the last thing in the chain currently. */
bpstat bs;
int ix;
int need_remove_insert;
int removed_any;
/* First, build the bpstat chain with locations that explain a
target stop, while being careful to not set the target running,
as that may invalidate locations (in particular watchpoint
locations are recreated). Resuming will happen here with
breakpoint conditions or watchpoint expressions that include
inferior function calls. */
ALL_BREAKPOINTS (b)
{
if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
continue;
for (bl = b->loc; bl != NULL; bl = bl->next)
{
/* For hardware watchpoints, we look only at the first
location. The watchpoint_check function will work on the
entire expression, not the individual locations. For
read watchpoints, the watchpoints_triggered function has
checked all locations already. */
if (b->type == bp_hardware_watchpoint && bl != b->loc)
break;
if (!bl->enabled || bl->shlib_disabled)
continue;
if (!bpstat_check_location (bl, aspace, bp_addr, ws))
continue;
/* Come here if it's a watchpoint, or if the break address
matches. */
bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
explain stop. */
/* Assume we stop. Should we find a watchpoint that is not
actually triggered, or if the condition of the breakpoint
evaluates as false, we'll reset 'stop' to 0. */
bs->stop = 1;
bs->print = 1;
/* If this is a scope breakpoint, mark the associated
watchpoint as triggered so that we will handle the
out-of-scope event. We'll get to the watchpoint next
iteration. */
if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
{
struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
w->watchpoint_triggered = watch_triggered_yes;
}
}
}
for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
{
if (breakpoint_location_address_match (loc, aspace, bp_addr))
{
bs = bpstat_alloc (loc, &bs_link);
/* For hits of moribund locations, we should just proceed. */
bs->stop = 0;
bs->print = 0;
bs->print_it = print_it_noop;
}
}
/* A bit of special processing for shlib breakpoints. We need to
process solib loading here, so that the lists of loaded and
unloaded libraries are correct before we handle "catch load" and
"catch unload". */
for (bs = bs_head; bs != NULL; bs = bs->next)
{
if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
{
handle_solib_event ();
break;
}
}
/* Now go through the locations that caused the target to stop, and
check whether we're interested in reporting this stop to higher
layers, or whether we should resume the target transparently. */
removed_any = 0;
for (bs = bs_head; bs != NULL; bs = bs->next)
{
if (!bs->stop)
continue;
b = bs->breakpoint_at;
b->ops->check_status (bs);
if (bs->stop)
{
bpstat_check_breakpoint_conditions (bs, ptid);
if (bs->stop)
{
++(b->hit_count);
observer_notify_breakpoint_modified (b);
/* We will stop here. */
if (b->disposition == disp_disable)
{
--(b->enable_count);
if (b->enable_count <= 0
&& b->enable_state != bp_permanent)
b->enable_state = bp_disabled;
removed_any = 1;
}
if (b->silent)
bs->print = 0;
bs->commands = b->commands;
incref_counted_command_line (bs->commands);
if (command_line_is_silent (bs->commands
? bs->commands->commands : NULL))
bs->print = 0;
b->ops->after_condition_true (bs);
}
}
/* Print nothing for this entry if we don't stop or don't
print. */
if (!bs->stop || !bs->print)
bs->print_it = print_it_noop;
}
/* If we aren't stopping, the value of some hardware watchpoint may
not have changed, but the intermediate memory locations we are
watching may have. Don't bother if we're stopping; this will get
done later. */
need_remove_insert = 0;
if (! bpstat_causes_stop (bs_head))
for (bs = bs_head; bs != NULL; bs = bs->next)
if (!bs->stop
&& bs->breakpoint_at
&& is_hardware_watchpoint (bs->breakpoint_at))
{
struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
update_watchpoint (w, 0 /* don't reparse. */);
need_remove_insert = 1;
}
if (need_remove_insert)
update_global_location_list (1);
else if (removed_any)
update_global_location_list (0);
return bs_head;
}
static void
handle_jit_event (void)
{
struct frame_info *frame;
struct gdbarch *gdbarch;
/* Switch terminal for any messages produced by
breakpoint_re_set. */
target_terminal_ours_for_output ();
frame = get_current_frame ();
gdbarch = get_frame_arch (frame);
jit_event_handler (gdbarch);
target_terminal_inferior ();
}
/* Prepare WHAT final decision for infrun. */
/* Decide what infrun needs to do with this bpstat. */
struct bpstat_what
bpstat_what (bpstat bs_head)
{
struct bpstat_what retval;
int jit_event = 0;
bpstat bs;
retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
retval.call_dummy = STOP_NONE;
retval.is_longjmp = 0;
for (bs = bs_head; bs != NULL; bs = bs->next)
{
/* Extract this BS's action. After processing each BS, we check
if its action overrides all we've seem so far. */
enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
enum bptype bptype;
if (bs->breakpoint_at == NULL)
{
/* I suspect this can happen if it was a momentary
breakpoint which has since been deleted. */
bptype = bp_none;
}
else
bptype = bs->breakpoint_at->type;
switch (bptype)
{
case bp_none:
break;
case bp_breakpoint:
case bp_hardware_breakpoint:
case bp_until:
case bp_finish:
case bp_shlib_event:
if (bs->stop)
{
if (bs->print)
this_action = BPSTAT_WHAT_STOP_NOISY;
else
this_action = BPSTAT_WHAT_STOP_SILENT;
}
else
this_action = BPSTAT_WHAT_SINGLE;
break;
case bp_watchpoint:
case bp_hardware_watchpoint:
case bp_read_watchpoint:
case bp_access_watchpoint:
if (bs->stop)
{
if (bs->print)
this_action = BPSTAT_WHAT_STOP_NOISY;
else
this_action = BPSTAT_WHAT_STOP_SILENT;
}
else
{
/* There was a watchpoint, but we're not stopping.
This requires no further action. */
}
break;
case bp_longjmp:
case bp_longjmp_call_dummy:
case bp_exception:
this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
retval.is_longjmp = bptype != bp_exception;
break;
case bp_longjmp_resume:
case bp_exception_resume:
this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
retval.is_longjmp = bptype == bp_longjmp_resume;
break;
case bp_step_resume:
if (bs->stop)
this_action = BPSTAT_WHAT_STEP_RESUME;
else
{
/* It is for the wrong frame. */
this_action = BPSTAT_WHAT_SINGLE;
}
break;
case bp_hp_step_resume:
if (bs->stop)
this_action = BPSTAT_WHAT_HP_STEP_RESUME;
else
{
/* It is for the wrong frame. */
this_action = BPSTAT_WHAT_SINGLE;
}
break;
case bp_watchpoint_scope:
case bp_thread_event:
case bp_overlay_event:
case bp_longjmp_master:
case bp_std_terminate_master:
case bp_exception_master:
this_action = BPSTAT_WHAT_SINGLE;
break;
case bp_catchpoint:
if (bs->stop)
{
if (bs->print)
this_action = BPSTAT_WHAT_STOP_NOISY;
else
this_action = BPSTAT_WHAT_STOP_SILENT;
}
else
{
/* There was a catchpoint, but we're not stopping.
This requires no further action. */
}
break;
case bp_jit_event:
jit_event = 1;
this_action = BPSTAT_WHAT_SINGLE;
break;
case bp_call_dummy:
/* Make sure the action is stop (silent or noisy),
so infrun.c pops the dummy frame. */
retval.call_dummy = STOP_STACK_DUMMY;
this_action = BPSTAT_WHAT_STOP_SILENT;
break;
case bp_std_terminate:
/* Make sure the action is stop (silent or noisy),
so infrun.c pops the dummy frame. */
retval.call_dummy = STOP_STD_TERMINATE;
this_action = BPSTAT_WHAT_STOP_SILENT;
break;
case bp_tracepoint:
case bp_fast_tracepoint:
case bp_static_tracepoint:
/* Tracepoint hits should not be reported back to GDB, and
if one got through somehow, it should have been filtered
out already. */
internal_error (__FILE__, __LINE__,
_("bpstat_what: tracepoint encountered"));
break;
case bp_gnu_ifunc_resolver:
/* Step over it (and insert bp_gnu_ifunc_resolver_return). */
this_action = BPSTAT_WHAT_SINGLE;
break;
case bp_gnu_ifunc_resolver_return:
/* The breakpoint will be removed, execution will restart from the
PC of the former breakpoint. */
this_action = BPSTAT_WHAT_KEEP_CHECKING;
break;
case bp_dprintf:
if (bs->stop)
this_action = BPSTAT_WHAT_STOP_SILENT;
else
this_action = BPSTAT_WHAT_SINGLE;
break;
default:
internal_error (__FILE__, __LINE__,
_("bpstat_what: unhandled bptype %d"), (int) bptype);
}
retval.main_action = max (retval.main_action, this_action);
}
/* These operations may affect the bs->breakpoint_at state so they are
delayed after MAIN_ACTION is decided above. */
if (jit_event)
{
if (debug_infrun)
fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
handle_jit_event ();
}
for (bs = bs_head; bs != NULL; bs = bs->next)
{
struct breakpoint *b = bs->breakpoint_at;
if (b == NULL)
continue;
switch (b->type)
{
case bp_gnu_ifunc_resolver:
gnu_ifunc_resolver_stop (b);
break;
case bp_gnu_ifunc_resolver_return:
gnu_ifunc_resolver_return_stop (b);
break;
}
}
return retval;
}
/* Nonzero if we should step constantly (e.g. watchpoints on machines
without hardware support). This isn't related to a specific bpstat,
just to things like whether watchpoints are set. */
int
bpstat_should_step (void)
{
struct breakpoint *b;
ALL_BREAKPOINTS (b)
if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
return 1;
return 0;
}
int
bpstat_causes_stop (bpstat bs)
{
for (; bs != NULL; bs = bs->next)
if (bs->stop)
return 1;
return 0;
}
/* Compute a string of spaces suitable to indent the next line
so it starts at the position corresponding to the table column
named COL_NAME in the currently active table of UIOUT. */
static char *
wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
{
static char wrap_indent[80];
int i, total_width, width, align;
char *text;
total_width = 0;
for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
{
if (strcmp (text, col_name) == 0)
{
gdb_assert (total_width < sizeof wrap_indent);
memset (wrap_indent, ' ', total_width);
wrap_indent[total_width] = 0;
return wrap_indent;
}
total_width += width + 1;
}
return NULL;
}
/* Determine if the locations of this breakpoint will have their conditions
evaluated by the target, host or a mix of both. Returns the following:
"host": Host evals condition.
"host or target": Host or Target evals condition.
"target": Target evals condition.
*/
static const char *
bp_condition_evaluator (struct breakpoint *b)
{
struct bp_location *bl;
char host_evals = 0;
char target_evals = 0;
if (!b)
return NULL;
if (!is_breakpoint (b))
return NULL;
if (gdb_evaluates_breakpoint_condition_p ()
|| !target_supports_evaluation_of_breakpoint_conditions ())
return condition_evaluation_host;
for (bl = b->loc; bl; bl = bl->next)
{
if (bl->cond_bytecode)
target_evals++;
else
host_evals++;
}
if (host_evals && target_evals)
return condition_evaluation_both;
else if (target_evals)
return condition_evaluation_target;
else
return condition_evaluation_host;
}
/* Determine the breakpoint location's condition evaluator. This is
similar to bp_condition_evaluator, but for locations. */
static const char *
bp_location_condition_evaluator (struct bp_location *bl)
{
if (bl && !is_breakpoint (bl->owner))
return NULL;
if (gdb_evaluates_breakpoint_condition_p ()
|| !target_supports_evaluation_of_breakpoint_conditions ())
return condition_evaluation_host;
if (bl && bl->cond_bytecode)
return condition_evaluation_target;
else
return condition_evaluation_host;
}
/* Print the LOC location out of the list of B->LOC locations. */
static void
print_breakpoint_location (struct breakpoint *b,
struct bp_location *loc)
{
struct ui_out *uiout = current_uiout;
struct cleanup *old_chain = save_current_program_space ();
if (loc != NULL && loc->shlib_disabled)
loc = NULL;
if (loc != NULL)
set_current_program_space (loc->pspace);
if (b->display_canonical)
ui_out_field_string (uiout, "what", b->addr_string);
else if (loc && loc->symtab)
{
struct symbol *sym
= find_pc_sect_function (loc->address, loc->section);
if (sym)
{
ui_out_text (uiout, "in ");
ui_out_field_string (uiout, "func",
SYMBOL_PRINT_NAME (sym));
ui_out_text (uiout, " ");
ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
ui_out_text (uiout, "at ");
}
ui_out_field_string (uiout, "file",
symtab_to_filename_for_display (loc->symtab));
ui_out_text (uiout, ":");
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string (uiout, "fullname",
symtab_to_fullname (loc->symtab));
ui_out_field_int (uiout, "line", loc->line_number);
}
else if (loc)
{
struct ui_file *stb = mem_fileopen ();
struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
print_address_symbolic (loc->gdbarch, loc->address, stb,
demangle, "");
ui_out_field_stream (uiout, "at", stb);
do_cleanups (stb_chain);
}
else
ui_out_field_string (uiout, "pending", b->addr_string);
if (loc && is_breakpoint (b)
&& breakpoint_condition_evaluation_mode () == condition_evaluation_target
&& bp_condition_evaluator (b) == condition_evaluation_both)
{
ui_out_text (uiout, " (");
ui_out_field_string (uiout, "evaluated-by",
bp_location_condition_evaluator (loc));
ui_out_text (uiout, ")");
}
do_cleanups (old_chain);
}
static const char *
bptype_string (enum bptype type)
{
struct ep_type_description
{
enum bptype type;
char *description;
};
static struct ep_type_description bptypes[] =
{
{bp_none, "?deleted?"},
{bp_breakpoint, "breakpoint"},
{bp_hardware_breakpoint, "hw breakpoint"},
{bp_until, "until"},
{bp_finish, "finish"},
{bp_watchpoint, "watchpoint"},
{bp_hardware_watchpoint, "hw watchpoint"},
{bp_read_watchpoint, "read watchpoint"},
{bp_access_watchpoint, "acc watchpoint"},
{bp_longjmp, "longjmp"},
{bp_longjmp_resume, "longjmp resume"},
{bp_longjmp_call_dummy, "longjmp for call dummy"},
{bp_exception, "exception"},
{bp_exception_resume, "exception resume"},
{bp_step_resume, "step resume"},
{bp_hp_step_resume, "high-priority step resume"},
{bp_watchpoint_scope, "watchpoint scope"},
{bp_call_dummy, "call dummy"},
{bp_std_terminate, "std::terminate"},
{bp_shlib_event, "shlib events"},
{bp_thread_event, "thread events"},
{bp_overlay_event, "overlay events"},
{bp_longjmp_master, "longjmp master"},
{bp_std_terminate_master, "std::terminate master"},
{bp_exception_master, "exception master"},
{bp_catchpoint, "catchpoint"},
{bp_tracepoint, "tracepoint"},
{bp_fast_tracepoint, "fast tracepoint"},
{bp_static_tracepoint, "static tracepoint"},
{bp_dprintf, "dprintf"},
{bp_jit_event, "jit events"},
{bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
{bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
};
if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
|| ((int) type != bptypes[(int) type].type))
internal_error (__FILE__, __LINE__,
_("bptypes table does not describe type #%d."),
(int) type);
return bptypes[(int) type].description;
}
/* For MI, output a field named 'thread-groups' with a list as the value.
For CLI, prefix the list with the string 'inf'. */
static void
output_thread_groups (struct ui_out *uiout,
const char *field_name,
VEC(int) *inf_num,
int mi_only)
{
struct cleanup *back_to;
int is_mi = ui_out_is_mi_like_p (uiout);
int inf;
int i;
/* For backward compatibility, don't display inferiors in CLI unless
there are several. Always display them for MI. */
if (!is_mi && mi_only)
return;
back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
{
if (is_mi)
{
char mi_group[10];
xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
ui_out_field_string (uiout, NULL, mi_group);
}
else
{
if (i == 0)
ui_out_text (uiout, " inf ");
else
ui_out_text (uiout, ", ");
ui_out_text (uiout, plongest (inf));
}
}
do_cleanups (back_to);
}
/* Print B to gdb_stdout. */
static void
print_one_breakpoint_location (struct breakpoint *b,
struct bp_location *loc,
int loc_number,
struct bp_location **last_loc,
int allflag)
{
struct command_line *l;
static char bpenables[] = "nynny";
struct ui_out *uiout = current_uiout;
int header_of_multiple = 0;
int part_of_multiple = (loc != NULL);
struct value_print_options opts;
get_user_print_options (&opts);
gdb_assert (!loc || loc_number != 0);
/* See comment in print_one_breakpoint concerning treatment of
breakpoints with single disabled location. */
if (loc == NULL
&& (b->loc != NULL
&& (b->loc->next != NULL || !b->loc->enabled)))
header_of_multiple = 1;
if (loc == NULL)
loc = b->loc;
annotate_record ();
/* 1 */
annotate_field (0);
if (part_of_multiple)
{
char *formatted;
formatted = xstrprintf ("%d.%d", b->number, loc_number);
ui_out_field_string (uiout, "number", formatted);
xfree (formatted);
}
else
{
ui_out_field_int (uiout, "number", b->number);
}
/* 2 */
annotate_field (1);
if (part_of_multiple)
ui_out_field_skip (uiout, "type");
else
ui_out_field_string (uiout, "type", bptype_string (b->type));
/* 3 */
annotate_field (2);
if (part_of_multiple)
ui_out_field_skip (uiout, "disp");
else
ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
/* 4 */
annotate_field (3);
if (part_of_multiple)
ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
else
ui_out_field_fmt (uiout, "enabled", "%c",
bpenables[(int) b->enable_state]);
ui_out_spaces (uiout, 2);
/* 5 and 6 */
if (b->ops != NULL && b->ops->print_one != NULL)
{
/* Although the print_one can possibly print all locations,
calling it here is not likely to get any nice result. So,
make sure there's just one location. */
gdb_assert (b->loc == NULL || b->loc->next == NULL);
b->ops->print_one (b, last_loc);
}
else
switch (b->type)
{
case bp_none:
internal_error (__FILE__, __LINE__,
_("print_one_breakpoint: bp_none encountered\n"));
break;
case bp_watchpoint:
case bp_hardware_watchpoint:
case bp_read_watchpoint:
case bp_access_watchpoint:
{
struct watchpoint *w = (struct watchpoint *) b;
/* Field 4, the address, is omitted (which makes the columns
not line up too nicely with the headers, but the effect
is relatively readable). */
if (opts.addressprint)
ui_out_field_skip (uiout, "addr");
annotate_field (5);
ui_out_field_string (uiout, "what", w->exp_string);
}
break;
case bp_breakpoint:
case bp_hardware_breakpoint:
case bp_until:
case bp_finish:
case bp_longjmp:
case bp_longjmp_resume:
case bp_longjmp_call_dummy:
case bp_exception:
case bp_exception_resume:
case bp_step_resume:
case bp_hp_step_resume:
case bp_watchpoint_scope:
case bp_call_dummy:
case bp_std_terminate:
case bp_shlib_event:
case bp_thread_event:
case bp_overlay_event:
case bp_longjmp_master:
case bp_std_terminate_master:
case bp_exception_master:
case bp_tracepoint:
case bp_fast_tracepoint:
case bp_static_tracepoint:
case bp_dprintf:
case bp_jit_event:
case bp_gnu_ifunc_resolver:
case bp_gnu_ifunc_resolver_return:
if (opts.addressprint)
{
annotate_field (4);
if (header_of_multiple)
ui_out_field_string (uiout, "addr", "");
else if (b->loc == NULL || loc->shlib_disabled)
ui_out_field_string (uiout, "addr", "");
else
ui_out_field_core_addr (uiout, "addr",
loc->gdbarch, loc->address);
}
annotate_field (5);
if (!header_of_multiple)
print_breakpoint_location (b, loc);
if (b->loc)
*last_loc = b->loc;
break;
}
if (loc != NULL && !header_of_multiple)
{
struct inferior *inf;
VEC(int) *inf_num = NULL;
int mi_only = 1;
ALL_INFERIORS (inf)
{
if (inf->pspace == loc->pspace)
VEC_safe_push (int, inf_num, inf->num);
}
/* For backward compatibility, don't display inferiors in CLI unless
there are several. Always display for MI. */
if (allflag
|| (!gdbarch_has_global_breakpoints (target_gdbarch ())
&& (number_of_program_spaces () > 1
|| number_of_inferiors () > 1)
/* LOC is for existing B, it cannot be in
moribund_locations and thus having NULL OWNER. */
&& loc->owner->type != bp_catchpoint))
mi_only = 0;
output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
VEC_free (int, inf_num);
}
if (!part_of_multiple)
{
if (b->thread != -1)
{
/* FIXME: This seems to be redundant and lost here; see the
"stop only in" line a little further down. */
ui_out_text (uiout, " thread ");
ui_out_field_int (uiout, "thread", b->thread);
}
else if (b->task != 0)
{
ui_out_text (uiout, " task ");
ui_out_field_int (uiout, "task", b->task);
}
}
ui_out_text (uiout, "\n");
if (!part_of_multiple)
b->ops->print_one_detail (b, uiout);
if (part_of_multiple && frame_id_p (b->frame_id))
{
annotate_field (6);
ui_out_text (uiout, "\tstop only in stack frame at ");
/* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
the frame ID. */
ui_out_field_core_addr (uiout, "frame",
b->gdbarch, b->frame_id.stack_addr);
ui_out_text (uiout, "\n");
}
if (!part_of_multiple && b->cond_string)
{
annotate_field (7);
if (is_tracepoint (b))
ui_out_text (uiout, "\ttrace only if ");
else
ui_out_text (uiout, "\tstop only if ");
ui_out_field_string (uiout, "cond", b->cond_string);
/* Print whether the target is doing the breakpoint's condition
evaluation. If GDB is doing the evaluation, don't print anything. */
if (is_breakpoint (b)
&& breakpoint_condition_evaluation_mode ()
== condition_evaluation_target)
{
ui_out_text (uiout, " (");
ui_out_field_string (uiout, "evaluated-by",
bp_condition_evaluator (b));
ui_out_text (uiout, " evals)");
}
ui_out_text (uiout, "\n");
}
if (!part_of_multiple && b->thread != -1)
{
/* FIXME should make an annotation for this. */
ui_out_text (uiout, "\tstop only in thread ");
ui_out_field_int (uiout, "thread", b->thread);
ui_out_text (uiout, "\n");
}
if (!part_of_multiple)
{
if (b->hit_count)
{
/* FIXME should make an annotation for this. */
if (is_catchpoint (b))
ui_out_text (uiout, "\tcatchpoint");
else if (is_tracepoint (b))
ui_out_text (uiout, "\ttracepoint");
else
ui_out_text (uiout, "\tbreakpoint");
ui_out_text (uiout, " already hit ");
ui_out_field_int (uiout, "times", b->hit_count);
if (b->hit_count == 1)
ui_out_text (uiout, " time\n");
else
ui_out_text (uiout, " times\n");
}
else
{
/* Output the count also if it is zero, but only if this is mi. */
if (ui_out_is_mi_like_p (uiout))
ui_out_field_int (uiout, "times", b->hit_count);
}
}
if (!part_of_multiple && b->ignore_count)
{
annotate_field (8);
ui_out_text (uiout, "\tignore next ");
ui_out_field_int (uiout, "ignore", b->ignore_count);
ui_out_text (uiout, " hits\n");
}
/* Note that an enable count of 1 corresponds to "enable once"
behavior, which is reported by the combination of enablement and
disposition, so we don't need to mention it here. */
if (!part_of_multiple && b->enable_count > 1)
{
annotate_field (8);
ui_out_text (uiout, "\tdisable after ");
/* Tweak the wording to clarify that ignore and enable counts
are distinct, and have additive effect. */
if (b->ignore_count)
ui_out_text (uiout, "additional ");
else
ui_out_text (uiout, "next ");
ui_out_field_int (uiout, "enable", b->enable_count);
ui_out_text (uiout, " hits\n");
}
if (!part_of_multiple && is_tracepoint (b))
{
struct tracepoint *tp = (struct tracepoint *) b;
if (tp->traceframe_usage)
{
ui_out_text (uiout, "\ttrace buffer usage ");
ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
ui_out_text (uiout, " bytes\n");
}
}
l = b->commands ? b->commands->commands : NULL;
if (!part_of_multiple && l)
{
struct cleanup *script_chain;
annotate_field (9);
script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
print_command_lines (uiout, l, 4);
do_cleanups (script_chain);
}
if (is_tracepoint (b))
{
struct tracepoint *t = (struct tracepoint *) b;
if (!part_of_multiple && t->pass_count)
{
annotate_field (10);
ui_out_text (uiout, "\tpass count ");
ui_out_field_int (uiout, "pass", t->pass_count);
ui_out_text (uiout, " \n");
}
/* Don't display it when tracepoint or tracepoint location is
pending. */
if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
{
annotate_field (11);
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string (uiout, "installed",
loc->inserted ? "y" : "n");
else
{
if (loc->inserted)
ui_out_text (uiout, "\t");
else
ui_out_text (uiout, "\tnot ");
ui_out_text (uiout, "installed on target\n");
}
}
}
if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
{
if (is_watchpoint (b))
{
struct watchpoint *w = (struct watchpoint *) b;
ui_out_field_string (uiout, "original-location", w->exp_string);
}
else if (b->addr_string)
ui_out_field_string (uiout, "original-location", b->addr_string);
}
}
static void
print_one_breakpoint (struct breakpoint *b,
struct bp_location **last_loc,
int allflag)
{
struct cleanup *bkpt_chain;
struct ui_out *uiout = current_uiout;
bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
do_cleanups (bkpt_chain);
/* If this breakpoint has custom print function,
it's already printed. Otherwise, print individual
locations, if any. */
if (b->ops == NULL || b->ops->print_one == NULL)
{
/* If breakpoint has a single location that is disabled, we
print it as if it had several locations, since otherwise it's
hard to represent "breakpoint enabled, location disabled"
situation.
Note that while hardware watchpoints have several locations
internally, that's not a property exposed to user. */
if (b->loc
&& !is_hardware_watchpoint (b)
&& (b->loc->next || !b->loc->enabled))
{
struct bp_location *loc;
int n = 1;
for (loc = b->loc; loc; loc = loc->next, ++n)
{
struct cleanup *inner2 =
make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
print_one_breakpoint_location (b, loc, n, last_loc, allflag);
do_cleanups (inner2);
}
}
}
}
static int
breakpoint_address_bits (struct breakpoint *b)
{
int print_address_bits = 0;
struct bp_location *loc;
for (loc = b->loc; loc; loc = loc->next)
{
int addr_bit;
/* Software watchpoints that aren't watching memory don't have
an address to print. */
if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
continue;
addr_bit = gdbarch_addr_bit (loc->gdbarch);
if (addr_bit > print_address_bits)
print_address_bits = addr_bit;
}
return print_address_bits;
}
struct captured_breakpoint_query_args
{
int bnum;
};
static int
do_captured_breakpoint_query (struct ui_out *uiout, void *data)
{
struct captured_breakpoint_query_args *args = data;
struct breakpoint *b;
struct bp_location *dummy_loc = NULL;
ALL_BREAKPOINTS (b)
{
if (args->bnum == b->number)
{
print_one_breakpoint (b, &dummy_loc, 0);
return GDB_RC_OK;
}
}
return GDB_RC_NONE;
}
enum gdb_rc
gdb_breakpoint_query (struct ui_out *uiout, int bnum,
char **error_message)
{
struct captured_breakpoint_query_args args;
args.bnum = bnum;
/* For the moment we don't trust print_one_breakpoint() to not throw
an error. */
if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
error_message, RETURN_MASK_ALL) < 0)
return GDB_RC_FAIL;
else
return GDB_RC_OK;
}
/* Return true if this breakpoint was set by the user, false if it is
internal or momentary. */
int
user_breakpoint_p (struct breakpoint *b)
{
return b->number > 0;
}
/* Print information on user settable breakpoint (watchpoint, etc)
number BNUM. If BNUM is -1 print all user-settable breakpoints.
If ALLFLAG is non-zero, include non-user-settable breakpoints. If
FILTER is non-NULL, call it on each breakpoint and only include the
ones for which it returns non-zero. Return the total number of
breakpoints listed. */
static int
breakpoint_1 (char *args, int allflag,
int (*filter) (const struct breakpoint *))
{
struct breakpoint *b;
struct bp_location *last_loc = NULL;
int nr_printable_breakpoints;
struct cleanup *bkpttbl_chain;
struct value_print_options opts;
int print_address_bits = 0;
int print_type_col_width = 14;
struct ui_out *uiout = current_uiout;
get_user_print_options (&opts);
/* Compute the number of rows in the table, as well as the size
required for address fields. */
nr_printable_breakpoints = 0;
ALL_BREAKPOINTS (b)
{
/* If we have a filter, only list the breakpoints it accepts. */
if (filter && !filter (b))
continue;
/* If we have an "args" string, it is a list of breakpoints to
accept. Skip the others. */
if (args != NULL && *args != '\0')
{
if (allflag && parse_and_eval_long (args) != b->number)
continue;
if (!allflag && !number_is_in_list (args, b->number))
continue;
}
if (allflag || user_breakpoint_p (b))
{
int addr_bit, type_len;
addr_bit = breakpoint_address_bits (b);
if (addr_bit > print_address_bits)
print_address_bits = addr_bit;
type_len = strlen (bptype_string (b->type));
if (type_len > print_type_col_width)
print_type_col_width = type_len;
nr_printable_breakpoints++;
}
}
if (opts.addressprint)
bkpttbl_chain
= make_cleanup_ui_out_table_begin_end (uiout, 6,
nr_printable_breakpoints,
"BreakpointTable");
else
bkpttbl_chain
= make_cleanup_ui_out_table_begin_end (uiout, 5,
nr_printable_breakpoints,
"BreakpointTable");
if (nr_printable_breakpoints > 0)
annotate_breakpoints_headers ();
if (nr_printable_breakpoints > 0)
annotate_field (0);
ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
if (nr_printable_breakpoints > 0)
annotate_field (1);
ui_out_table_header (uiout, print_type_col_width, ui_left,
"type", "Type"); /* 2 */
if (nr_printable_breakpoints > 0)
annotate_field (2);
ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
if (nr_printable_breakpoints > 0)
annotate_field (3);
ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
if (opts.addressprint)
{
if (nr_printable_breakpoints > 0)
annotate_field (4);
if (print_address_bits <= 32)
ui_out_table_header (uiout, 10, ui_left,
"addr", "Address"); /* 5 */
else
ui_out_table_header (uiout, 18, ui_left,
"addr", "Address"); /* 5 */
}
if (nr_printable_breakpoints > 0)
annotate_field (5);
ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
ui_out_table_body (uiout);
if (nr_printable_breakpoints > 0)
annotate_breakpoints_table ();
ALL_BREAKPOINTS (b)
{
QUIT;
/* If we have a filter, only list the breakpoints it accepts. */
if (filter && !filter (b))
continue;
/* If we have an "args" string, it is a list of breakpoints to
accept. Skip the others. */
if (args != NULL && *args != '\0')
{
if (allflag) /* maintenance info breakpoint */
{
if (parse_and_eval_long (args) != b->number)
continue;
}
else /* all others */
{
if (!number_is_in_list (args, b->number))
continue;
}
}
/* We only print out user settable breakpoints unless the
allflag is set. */
if (allflag || user_breakpoint_p (b))
print_one_breakpoint (b, &last_loc, allflag);
}
do_cleanups (bkpttbl_chain);
if (nr_printable_breakpoints == 0)
{
/* If there's a filter, let the caller decide how to report
empty list. */
if (!filter)
{
if (args == NULL || *args == '\0')
ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
else
ui_out_message (uiout, 0,
"No breakpoint or watchpoint matching '%s'.\n",
args);
}
}
else
{
if (last_loc && !server_command)
set_next_address (last_loc->gdbarch, last_loc->address);
}
/* FIXME? Should this be moved up so that it is only called when
there have been breakpoints? */
annotate_breakpoints_table_end ();
return nr_printable_breakpoints;
}
/* Display the value of default-collect in a way that is generally
compatible with the breakpoint list. */
static void
default_collect_info (void)
{
struct ui_out *uiout = current_uiout;
/* If it has no value (which is frequently the case), say nothing; a
message like "No default-collect." gets in user's face when it's
not wanted. */
if (!*default_collect)
return;
/* The following phrase lines up nicely with per-tracepoint collect
actions. */
ui_out_text (uiout, "default collect ");
ui_out_field_string (uiout, "default-collect", default_collect);
ui_out_text (uiout, " \n");
}
static void
breakpoints_info (char *args, int from_tty)
{
breakpoint_1 (args, 0, NULL);
default_collect_info ();
}
static void
watchpoints_info (char *args, int from_tty)
{
int num_printed = breakpoint_1 (args, 0, is_watchpoint);
struct ui_out *uiout = current_uiout;
if (num_printed == 0)
{
if (args == NULL || *args == '\0')
ui_out_message (uiout, 0, "No watchpoints.\n");
else
ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
}
}
static void
maintenance_info_breakpoints (char *args, int from_tty)
{
breakpoint_1 (args, 1, NULL);
default_collect_info ();
}
static int
breakpoint_has_pc (struct breakpoint *b,
struct program_space *pspace,
CORE_ADDR pc, struct obj_section *section)
{
struct bp_location *bl = b->loc;
for (; bl; bl = bl->next)
{
if (bl->pspace == pspace
&& bl->address == pc
&& (!overlay_debugging || bl->section == section))
return 1;
}
return 0;
}
/* Print a message describing any user-breakpoints set at PC. This
concerns with logical breakpoints, so we match program spaces, not
address spaces. */
static void
describe_other_breakpoints (struct gdbarch *gdbarch,
struct program_space *pspace, CORE_ADDR pc,
struct obj_section *section, int thread)
{
int others = 0;
struct breakpoint *b;
ALL_BREAKPOINTS (b)
others += (user_breakpoint_p (b)
&& breakpoint_has_pc (b, pspace, pc, section));
if (others > 0)
{
if (others == 1)
printf_filtered (_("Note: breakpoint "));
else /* if (others == ???) */
printf_filtered (_("Note: breakpoints "));
ALL_BREAKPOINTS (b)
if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
{
others--;
printf_filtered ("%d", b->number);
if (b->thread == -1 && thread != -1)
printf_filtered (" (all threads)");
else if (b->thread != -1)
printf_filtered (" (thread %d)", b->thread);
printf_filtered ("%s%s ",
((b->enable_state == bp_disabled
|| b->enable_state == bp_call_disabled)
? " (disabled)"
: b->enable_state == bp_permanent
? " (permanent)"
: ""),
(others > 1) ? ","
: ((others == 1) ? " and" : ""));
}
printf_filtered (_("also set at pc "));
fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
printf_filtered (".\n");
}
}
/* Return true iff it is meaningful to use the address member of
BPT. For some breakpoint types, the address member is irrelevant
and it makes no sense to attempt to compare it to other addresses
(or use it for any other purpose either).
More specifically, each of the following breakpoint types will
always have a zero valued address and we don't want to mark
breakpoints of any of these types to be a duplicate of an actual
breakpoint at address zero:
bp_watchpoint
bp_catchpoint
*/
static int
breakpoint_address_is_meaningful (struct breakpoint *bpt)
{
enum bptype type = bpt->type;
return (type != bp_watchpoint && type != bp_catchpoint);
}
/* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
true if LOC1 and LOC2 represent the same watchpoint location. */
static int
watchpoint_locations_match (struct bp_location *loc1,
struct bp_location *loc2)
{
struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
/* Both of them must exist. */
gdb_assert (w1 != NULL);
gdb_assert (w2 != NULL);
/* If the target can evaluate the condition expression in hardware,
then we we need to insert both watchpoints even if they are at
the same place. Otherwise the watchpoint will only trigger when
the condition of whichever watchpoint was inserted evaluates to
true, not giving a chance for GDB to check the condition of the
other watchpoint. */
if ((w1->cond_exp
&& target_can_accel_watchpoint_condition (loc1->address,
loc1->length,
loc1->watchpoint_type,
w1->cond_exp))
|| (w2->cond_exp
&& target_can_accel_watchpoint_condition (loc2->address,
loc2->length,
loc2->watchpoint_type,
w2->cond_exp)))
return 0;
/* Note that this checks the owner's type, not the location's. In
case the target does not support read watchpoints, but does
support access watchpoints, we'll have bp_read_watchpoint
watchpoints with hw_access locations. Those should be considered
duplicates of hw_read locations. The hw_read locations will
become hw_access locations later. */
return (loc1->owner->type == loc2->owner->type
&& loc1->pspace->aspace == loc2->pspace->aspace
&& loc1->address == loc2->address
&& loc1->length == loc2->length);
}
/* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
same breakpoint location. In most targets, this can only be true
if ASPACE1 matches ASPACE2. On targets that have global
breakpoints, the address space doesn't really matter. */
static int
breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
struct address_space *aspace2, CORE_ADDR addr2)
{
return ((gdbarch_has_global_breakpoints (target_gdbarch ())
|| aspace1 == aspace2)
&& addr1 == addr2);
}
/* Returns true if {ASPACE2,ADDR2} falls within the range determined by
{ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
matches ASPACE2. On targets that have global breakpoints, the address
space doesn't really matter. */
static int
breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
int len1, struct address_space *aspace2,
CORE_ADDR addr2)
{
return ((gdbarch_has_global_breakpoints (target_gdbarch ())
|| aspace1 == aspace2)
&& addr2 >= addr1 && addr2 < addr1 + len1);
}
/* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
a ranged breakpoint. In most targets, a match happens only if ASPACE
matches the breakpoint's address space. On targets that have global
breakpoints, the address space doesn't really matter. */
static int
breakpoint_location_address_match (struct bp_location *bl,
struct address_space *aspace,
CORE_ADDR addr)
{
return (breakpoint_address_match (bl->pspace->aspace, bl->address,
aspace, addr)
|| (bl->length
&& breakpoint_address_match_range (bl->pspace->aspace,
bl->address, bl->length,
aspace, addr)));
}
/* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
Then, if LOC1 and LOC2 represent the same tracepoint location, returns
true, otherwise returns false. */
static int
tracepoint_locations_match (struct bp_location *loc1,
struct bp_location *loc2)
{
if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
/* Since tracepoint locations are never duplicated with others', tracepoint
locations at the same address of different tracepoints are regarded as
different locations. */
return (loc1->address == loc2->address && loc1->owner == loc2->owner);
else
return 0;
}
/* Assuming LOC1 and LOC2's types' have meaningful target addresses
(breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
represent the same location. */
static int
breakpoint_locations_match (struct bp_location *loc1,
struct bp_location *loc2)
{
int hw_point1, hw_point2;
/* Both of them must not be in moribund_locations. */
gdb_assert (loc1->owner != NULL);
gdb_assert (loc2->owner != NULL);
hw_point1 = is_hardware_watchpoint (loc1->owner);
hw_point2 = is_hardware_watchpoint (loc2->owner);
if (hw_point1 != hw_point2)
return 0;
else if (hw_point1)
return watchpoint_locations_match (loc1, loc2);
else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
return tracepoint_locations_match (loc1, loc2);
else
/* We compare bp_location.length in order to cover ranged breakpoints. */
return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
loc2->pspace->aspace, loc2->address)
&& loc1->length == loc2->length);
}
static void
breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
int bnum, int have_bnum)
{
/* The longest string possibly returned by hex_string_custom
is 50 chars. These must be at least that big for safety. */
char astr1[64];
char astr2[64];
strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
if (have_bnum)
warning (_("Breakpoint %d address previously adjusted from %s to %s."),
bnum, astr1, astr2);
else
warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
}
/* Adjust a breakpoint's address to account for architectural
constraints on breakpoint placement. Return the adjusted address.
Note: Very few targets require this kind of adjustment. For most
targets, this function is simply the identity function. */
static CORE_ADDR
adjust_breakpoint_address (struct gdbarch *gdbarch,
CORE_ADDR bpaddr, enum bptype bptype)
{
if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
{
/* Very few targets need any kind of breakpoint adjustment. */
return bpaddr;
}
else if (bptype == bp_watchpoint
|| bptype == bp_hardware_watchpoint
|| bptype == bp_read_watchpoint
|| bptype == bp_access_watchpoint
|| bptype == bp_catchpoint)
{
/* Watchpoints and the various bp_catch_* eventpoints should not
have their addresses modified. */
return bpaddr;
}
else
{
CORE_ADDR adjusted_bpaddr;
/* Some targets have architectural constraints on the placement
of breakpoint instructions. Obtain the adjusted address. */
adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
/* An adjusted breakpoint address can significantly alter
a user's expectations. Print a warning if an adjustment
is required. */
if (adjusted_bpaddr != bpaddr)
breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
return adjusted_bpaddr;
}
}
void
init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
struct breakpoint *owner)
{
memset (loc, 0, sizeof (*loc));
gdb_assert (ops != NULL);
loc->ops = ops;
loc->owner = owner;
loc->cond = NULL;
loc->cond_bytecode = NULL;
loc->shlib_disabled = 0;
loc->enabled = 1;
switch (owner->type)
{
case bp_breakpoint:
case bp_until:
case bp_finish:
case bp_longjmp:
case bp_longjmp_resume:
case bp_longjmp_call_dummy:
case bp_exception:
case bp_exception_resume:
case bp_step_resume:
case bp_hp_step_resume:
case bp_watchpoint_scope:
case bp_call_dummy:
case bp_std_terminate:
case bp_shlib_event:
case bp_thread_event:
case bp_overlay_event:
case bp_jit_event:
case bp_longjmp_master:
case bp_std_terminate_master:
case bp_exception_master:
case bp_gnu_ifunc_resolver:
case bp_gnu_ifunc_resolver_return:
case bp_dprintf:
loc->loc_type = bp_loc_software_breakpoint;
mark_breakpoint_location_modified (loc);
break;
case bp_hardware_breakpoint:
loc->loc_type = bp_loc_hardware_breakpoint;
mark_breakpoint_location_modified (loc);
break;
case bp_hardware_watchpoint:
case bp_read_watchpoint:
case bp_access_watchpoint:
loc->loc_type = bp_loc_hardware_watchpoint;
break;
case bp_watchpoint:
case bp_catchpoint:
case bp_tracepoint:
case bp_fast_tracepoint:
case bp_static_tracepoint:
loc->loc_type = bp_loc_other;
break;
default:
internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
}
loc->refc = 1;
}
/* Allocate a struct bp_location. */
static struct bp_location *
allocate_bp_location (struct breakpoint *bpt)
{
return bpt->ops->allocate_location (bpt);
}
static void
free_bp_location (struct bp_location *loc)
{
loc->ops->dtor (loc);
xfree (loc);
}
/* Increment reference count. */
static void
incref_bp_location (struct bp_location *bl)
{
++bl->refc;
}
/* Decrement reference count. If the reference count reaches 0,
destroy the bp_location. Sets *BLP to NULL. */
static void
decref_bp_location (struct bp_location **blp)
{
gdb_assert ((*blp)->refc > 0);
if (--(*blp)->refc == 0)
free_bp_location (*blp);
*blp = NULL;
}
/* Add breakpoint B at the end of the global breakpoint chain. */
static void
add_to_breakpoint_chain (struct breakpoint *b)
{
struct breakpoint *b1;
/* Add this breakpoint to the end of the chain so that a list of
breakpoints will come out in order of increasing numbers. */
b1 = breakpoint_chain;
if (b1 == 0)
breakpoint_chain = b;
else
{
while (b1->next)
b1 = b1->next;
b1->next = b;
}
}
/* Initializes breakpoint B with type BPTYPE and no locations yet. */
static void
init_raw_breakpoint_without_location (struct breakpoint *b,
struct gdbarch *gdbarch,
enum bptype bptype,
const struct breakpoint_ops *ops)
{
memset (b, 0, sizeof (*b));
gdb_assert (ops != NULL);
b->ops = ops;
b->type = bptype;
b->gdbarch = gdbarch;
b->language = current_language->la_language;
b->input_radix = input_radix;
b->thread = -1;
b->enable_state = bp_enabled;
b->next = 0;
b->silent = 0;
b->ignore_count = 0;
b->commands = NULL;
b->frame_id = null_frame_id;
b->condition_not_parsed = 0;
b->py_bp_object = NULL;
b->related_breakpoint = b;
}
/* Helper to set_raw_breakpoint below. Creates a breakpoint
that has type BPTYPE and has no locations as yet. */
static struct breakpoint *
set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
enum bptype bptype,
const struct breakpoint_ops *ops)
{
struct breakpoint *b = XNEW (struct breakpoint);
init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
add_to_breakpoint_chain (b);
return b;
}
/* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
resolutions should be made as the user specified the location explicitly
enough. */
static void
set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
{
gdb_assert (loc->owner != NULL);
if (loc->owner->type == bp_breakpoint
|| loc->owner->type == bp_hardware_breakpoint
|| is_tracepoint (loc->owner))
{
int is_gnu_ifunc;
const char *function_name;
CORE_ADDR func_addr;
find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
&func_addr, NULL, &is_gnu_ifunc);
if (is_gnu_ifunc && !explicit_loc)
{
struct breakpoint *b = loc->owner;
gdb_assert (loc->pspace == current_program_space);
if (gnu_ifunc_resolve_name (function_name,
&loc->requested_address))
{
/* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
loc->address = adjust_breakpoint_address (loc->gdbarch,
loc->requested_address,
b->type);
}
else if (b->type == bp_breakpoint && b->loc == loc
&& loc->next == NULL && b->related_breakpoint == b)
{
/* Create only the whole new breakpoint of this type but do not
mess more complicated breakpoints with multiple locations. */
b->type = bp_gnu_ifunc_resolver;
/* Remember the resolver's address for use by the return
breakpoint. */
loc->related_address = func_addr;
}
}
if (function_name)
loc->function_name = xstrdup (function_name);
}
}
/* Attempt to determine architecture of location identified by SAL. */
struct gdbarch *
get_sal_arch (struct symtab_and_line sal)
{
if (sal.section)
return get_objfile_arch (sal.section->objfile);
if (sal.symtab)
return get_objfile_arch (sal.symtab->objfile);
return NULL;
}
/* Low level routine for partially initializing a breakpoint of type
BPTYPE. The newly created breakpoint's address, section, source
file name, and line number are provided by SAL.
It is expected that the caller will complete the initialization of
the newly created breakpoint struct as well as output any status
information regarding the creation of a new breakpoint. */
static void
init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
struct symtab_and_line sal, enum bptype bptype,
const struct breakpoint_ops *ops)
{
init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
add_location_to_breakpoint (b, &sal);
if (bptype != bp_catchpoint)
gdb_assert (sal.pspace != NULL);
/* Store the program space that was used to set the breakpoint,
except for ordinary breakpoints, which are independent of the
program space. */
if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
b->pspace = sal.pspace;
}
/* set_raw_breakpoint is a low level routine for allocating and
partially initializing a breakpoint of type BPTYPE. The newly
created breakpoint's address, section, source file name, and line
number are provided by SAL. The newly created and partially
initialized breakpoint is added to the breakpoint chain and
is also returned as the value of this function.
It is expected that the caller will complete the initialization of
the newly created breakpoint struct as well as output any status
information regarding the creation of a new breakpoint. In
particular, set_raw_breakpoint does NOT set the breakpoint
number! Care should be taken to not allow an error to occur
prior to completing the initialization of the breakpoint. If this
should happen, a bogus breakpoint will be left on the chain. */
struct breakpoint *
set_raw_breakpoint (struct gdbarch *gdbarch,
struct symtab_and_line sal, enum bptype bptype,
const struct breakpoint_ops *ops)
{
struct breakpoint *b = XNEW (struct breakpoint);
init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
add_to_breakpoint_chain (b);
return b;
}
/* Note that the breakpoint object B describes a permanent breakpoint
instruction, hard-wired into the inferior's code. */
void
make_breakpoint_permanent (struct breakpoint *b)
{
struct bp_location *bl;
b->enable_state = bp_permanent;
/* By definition, permanent breakpoints are already present in the
code. Mark all locations as inserted. For now,
make_breakpoint_permanent is called in just one place, so it's
hard to say if it's reasonable to have permanent breakpoint with
multiple locations or not, but it's easy to implement. */
for (bl = b->loc; bl; bl = bl->next)
bl->inserted = 1;
}
/* Call this routine when stepping and nexting to enable a breakpoint
if we do a longjmp() or 'throw' in TP. FRAME is the frame which
initiated the operation. */
void
set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
{
struct breakpoint *b, *b_tmp;
int thread = tp->num;
/* To avoid having to rescan all objfile symbols at every step,
we maintain a list of continually-inserted but always disabled
longjmp "master" breakpoints. Here, we simply create momentary
clones of those and enable them for the requested thread. */
ALL_BREAKPOINTS_SAFE (b, b_tmp)
if (b->pspace == current_program_space
&& (b->type == bp_longjmp_master
|| b->type == bp_exception_master))
{
enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
struct breakpoint *clone;
/* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
after their removal. */
clone = momentary_breakpoint_from_master (b, type,
&longjmp_breakpoint_ops);
clone->thread = thread;
}
tp->initiating_frame = frame;
}
/* Delete all longjmp breakpoints from THREAD. */
void
delete_longjmp_breakpoint (int thread)
{
struct breakpoint *b, *b_tmp;
ALL_BREAKPOINTS_SAFE (b, b_tmp)
if (b->type == bp_longjmp || b->type == bp_exception)
{
if (b->thread == thread)
delete_breakpoint (b);
}
}
void
delete_longjmp_breakpoint_at_next_stop (int thread)
{
struct breakpoint *b, *b_tmp;
ALL_BREAKPOINTS_SAFE (b, b_tmp)
if (b->type == bp_longjmp || b->type == bp_exception)
{
if (b->thread == thread)
b->disposition = disp_del_at_next_stop;
}
}
/* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
pointer to any of them. Return NULL if this system cannot place longjmp
breakpoints. */
struct breakpoint *
set_longjmp_breakpoint_for_call_dummy (void)
{
struct breakpoint *b, *retval = NULL;
ALL_BREAKPOINTS (b)
if (b->pspace == current_program_space && b->type == bp_longjmp_master)
{
struct breakpoint *new_b;
new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
&momentary_breakpoint_ops);
new_b->thread = pid_to_thread_id (inferior_ptid);
/* Link NEW_B into the chain of RETVAL breakpoints. */
gdb_assert (new_b->related_breakpoint == new_b);
if (retval == NULL)
retval = new_b;
new_b->related_breakpoint = retval;
while (retval->related_breakpoint != new_b->related_breakpoint)
retval = retval->related_breakpoint;
retval->related_breakpoint = new_b;
}
return retval;
}
/* Verify all existing dummy frames and their associated breakpoints for
THREAD. Remove those which can no longer be found in the current frame
stack.
You should call this function only at places where it is safe to currently
unwind the whole stack. Failed stack unwind would discard live dummy
frames. */
void
check_longjmp_breakpoint_for_call_dummy (int thread)
{
struct breakpoint *b, *b_tmp;
ALL_BREAKPOINTS_SAFE (b, b_tmp)
if (b->type == bp_longjmp_call_dummy && b->thread == thread)
{
struct breakpoint *dummy_b = b->related_breakpoint;
while (dummy_b != b && dummy_b->type != bp_call_dummy)
dummy_b = dummy_b->related_breakpoint;
if (dummy_b->type != bp_call_dummy
|| frame_find_by_id (dummy_b->frame_id) != NULL)
continue;
dummy_frame_discard (dummy_b->frame_id);
while (b->related_breakpoint != b)
{
if (b_tmp == b->related_breakpoint)
b_tmp = b->related_breakpoint->next;
delete_breakpoint (b->related_breakpoint);
}
delete_breakpoint (b);
}
}
void
enable_overlay_breakpoints (void)
{
struct breakpoint *b;
ALL_BREAKPOINTS (b)
if (b->type == bp_overlay_event)
{
b->enable_state = bp_enabled;
update_global_location_list (1);
overlay_events_enabled = 1;
}
}
void
disable_overlay_breakpoints (void)
{
struct breakpoint *b;
ALL_BREAKPOINTS (b)
if (b->type == bp_overlay_event)
{
b->enable_state = bp_disabled;
update_global_location_list (0);
overlay_events_enabled = 0;
}
}
/* Set an active std::terminate breakpoint for each std::terminate
master breakpoint. */
void
set_std_terminate_breakpoint (void)
{
struct breakpoint *b, *b_tmp;
ALL_BREAKPOINTS_SAFE (b, b_tmp)
if (b->pspace == current_program_space
&& b->type == bp_std_terminate_master)
{
momentary_breakpoint_from_master (b, bp_std_terminate,
&momentary_breakpoint_ops);
}
}
/* Delete all the std::terminate breakpoints. */
void
delete_std_terminate_breakpoint (void)
{
struct breakpoint *b, *b_tmp;
ALL_BREAKPOINTS_SAFE (b, b_tmp)
if (b->type == bp_std_terminate)
delete_breakpoint (b);
}
struct breakpoint *
create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
{
struct breakpoint *b;
b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
&internal_breakpoint_ops);
b->enable_state = bp_enabled;
/* addr_string has to be used or breakpoint_re_set will delete me. */
b->addr_string
= xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
update_global_location_list_nothrow (1);
return b;
}
void
remove_thread_event_breakpoints (void)
{
struct breakpoint *b, *b_tmp;
ALL_BREAKPOINTS_SAFE (b, b_tmp)
if (b->type == bp_thread_event
&& b->loc->pspace == current_program_space)
delete_breakpoint (b);
}
struct lang_and_radix
{
enum language lang;
int radix;
};
/* Create a breakpoint for JIT code registration and unregistration. */
struct breakpoint *
create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
{
struct breakpoint *b;
b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
&internal_breakpoint_ops);
update_global_location_list_nothrow (1);
return b;
}
/* Remove JIT code registration and unregistration breakpoint(s). */
void
remove_jit_event_breakpoints (void)
{
struct breakpoint *b, *b_tmp;
ALL_BREAKPOINTS_SAFE (b, b_tmp)
if (b->type == bp_jit_event
&& b->loc->pspace == current_program_space)
delete_breakpoint (b);
}
void
remove_solib_event_breakpoints (void)
{
struct breakpoint *b, *b_tmp;
ALL_BREAKPOINTS_SAFE (b, b_tmp)
if (b->type == bp_shlib_event
&& b->loc->pspace == current_program_space)
delete_breakpoint (b);
}
struct breakpoint *
create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
{
struct breakpoint *b;
b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
&internal_breakpoint_ops);
update_global_location_list_nothrow (1);
return b;
}
/* Disable any breakpoints that are on code in shared libraries. Only
apply to enabled breakpoints, disabled ones can just stay disabled. */
void
disable_breakpoints_in_shlibs (void)
{
struct bp_location *loc, **locp_tmp;
ALL_BP_LOCATIONS (loc, locp_tmp)
{
/* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
struct breakpoint *b = loc->owner;
/* We apply the check to all breakpoints, including disabled for
those with loc->duplicate set. This is so that when breakpoint
becomes enabled, or the duplicate is removed, gdb will try to
insert all breakpoints. If we don't set shlib_disabled here,
we'll try to insert those breakpoints and fail. */
if (((b->type == bp_breakpoint)
|| (b->type == bp_jit_event)
|| (b->type == bp_hardware_breakpoint)
|| (is_tracepoint (b)))
&& loc->pspace == current_program_space
&& !loc->shlib_disabled
&& solib_name_from_address (loc->pspace, loc->address)
)
{
loc->shlib_disabled = 1;
}
}
}
/* Disable any breakpoints and tracepoints that are in SOLIB upon
notification of unloaded_shlib. Only apply to enabled breakpoints,
disabled ones can just stay disabled. */
static void
disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
{
struct bp_location *loc, **locp_tmp;
int disabled_shlib_breaks = 0;
/* SunOS a.out shared libraries are always mapped, so do not
disable breakpoints; they will only be reported as unloaded
through clear_solib when GDB discards its shared library
list. See clear_solib for more information. */
if (exec_bfd != NULL
&& bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
return;
ALL_BP_LOCATIONS (loc, locp_tmp)
{
/* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
struct breakpoint *b = loc->owner;
if (solib->pspace == loc->pspace
&& !loc->shlib_disabled
&& (((b->type == bp_breakpoint
|| b->type == bp_jit_event
|| b->type == bp_hardware_breakpoint)
&& (loc->loc_type == bp_loc_hardware_breakpoint
|| loc->loc_type == bp_loc_software_breakpoint))
|| is_tracepoint (b))
&& solib_contains_address_p (solib, loc->address))
{
loc->shlib_disabled = 1;
/* At this point, we cannot rely on remove_breakpoint
succeeding so we must mark the breakpoint as not inserted
to prevent future errors occurring in remove_breakpoints. */
loc->inserted = 0;
/* This may cause duplicate notifications for the same breakpoint. */
observer_notify_breakpoint_modified (b);
if (!disabled_shlib_breaks)
{
target_terminal_ours_for_output ();
warning (_("Temporarily disabling breakpoints "
"for unloaded shared library \"%s\""),
solib->so_name);
}
disabled_shlib_breaks = 1;
}
}
}
/* Disable any breakpoints and tracepoints in OBJFILE upon
notification of free_objfile. Only apply to enabled breakpoints,
disabled ones can just stay disabled. */
static void
disable_breakpoints_in_freed_objfile (struct objfile *objfile)
{
struct breakpoint *b;
if (objfile == NULL)
return;
/* If the file is a shared library not loaded by the user then
solib_unloaded was notified and disable_breakpoints_in_unloaded_shlib
was called. In that case there is no need to take action again. */
if ((objfile->flags & OBJF_SHARED) && !(objfile->flags & OBJF_USERLOADED))
return;
ALL_BREAKPOINTS (b)
{
struct bp_location *loc;
int bp_modified = 0;
if (!is_breakpoint (b) && !is_tracepoint (b))
continue;
for (loc = b->loc; loc != NULL; loc = loc->next)
{
CORE_ADDR loc_addr = loc->address;
if (loc->loc_type != bp_loc_hardware_breakpoint
&& loc->loc_type != bp_loc_software_breakpoint)
continue;
if (loc->shlib_disabled != 0)
continue;
if (objfile->pspace != loc->pspace)
continue;
if (loc->loc_type != bp_loc_hardware_breakpoint
&& loc->loc_type != bp_loc_software_breakpoint)
continue;
if (is_addr_in_objfile (loc_addr, objfile))
{
loc->shlib_disabled = 1;
loc->inserted = 0;
mark_breakpoint_location_modified (loc);
bp_modified = 1;
}
}
if (bp_modified)
observer_notify_breakpoint_modified (b);
}
}
/* FORK & VFORK catchpoints. */
/* An instance of this type is used to represent a fork or vfork
catchpoint. It includes a "struct breakpoint" as a kind of base
class; users downcast to "struct breakpoint *" when needed. A
breakpoint is really of this type iff its ops pointer points to
CATCH_FORK_BREAKPOINT_OPS. */
struct fork_catchpoint
{
/* The base class. */
struct breakpoint base;
/* Process id of a child process whose forking triggered this
catchpoint. This field is only valid immediately after this
catchpoint has triggered. */
ptid_t forked_inferior_pid;
};
/* Implement the "insert" breakpoint_ops method for fork
catchpoints. */
static int
insert_catch_fork (struct bp_location *bl)
{
return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
}
/* Implement the "remove" breakpoint_ops method for fork
catchpoints. */
static int
remove_catch_fork (struct bp_location *bl)
{
return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
}
/* Implement the "breakpoint_hit" breakpoint_ops method for fork
catchpoints. */
static int
breakpoint_hit_catch_fork (const struct bp_location *bl,
struct address_space *aspace, CORE_ADDR bp_addr,
const struct target_waitstatus *ws)
{
struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
if (ws->kind != TARGET_WAITKIND_FORKED)
return 0;
c->forked_inferior_pid = ws->value.related_pid;
return 1;
}
/* Implement the "print_it" breakpoint_ops method for fork
catchpoints. */
static enum print_stop_action
print_it_catch_fork (bpstat bs)
{
struct ui_out *uiout = current_uiout;
struct breakpoint *b = bs->breakpoint_at;
struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
annotate_catchpoint (b->number);
if (b->disposition == disp_del)
ui_out_text (uiout, "\nTemporary catchpoint ");
else
ui_out_text (uiout, "\nCatchpoint ");
if (ui_out_is_mi_like_p (uiout))
{
ui_out_field_string (uiout, "reason",
async_reason_lookup (EXEC_ASYNC_FORK));
ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
}
ui_out_field_int (uiout, "bkptno", b->number);
ui_out_text (uiout, " (forked process ");
ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
ui_out_text (uiout, "), ");
return PRINT_SRC_AND_LOC;
}
/* Implement the "print_one" breakpoint_ops method for fork
catchpoints. */
static void
print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
{
struct fork_catchpoint *c = (struct fork_catchpoint *) b;
struct value_print_options opts;
struct ui_out *uiout = current_uiout;
get_user_print_options (&opts);
/* Field 4, the address, is omitted (which makes the columns not
line up too nicely with the headers, but the effect is relatively
readable). */
if (opts.addressprint)
ui_out_field_skip (uiout, "addr");
annotate_field (5);
ui_out_text (uiout, "fork");
if (!ptid_equal (c->forked_inferior_pid, null_ptid))
{
ui_out_text (uiout, ", process ");
ui_out_field_int (uiout, "what",
ptid_get_pid (c->forked_inferior_pid));
ui_out_spaces (uiout, 1);
}
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string (uiout, "catch-type", "fork");
}
/* Implement the "print_mention" breakpoint_ops method for fork
catchpoints. */
static void
print_mention_catch_fork (struct breakpoint *b)
{
printf_filtered (_("Catchpoint %d (fork)"), b->number);
}
/* Implement the "print_recreate" breakpoint_ops method for fork
catchpoints. */
static void
print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
{
fprintf_unfiltered (fp, "catch fork");
print_recreate_thread (b, fp);
}
/* The breakpoint_ops structure to be used in fork catchpoints. */
static struct breakpoint_ops catch_fork_breakpoint_ops;
/* Implement the "insert" breakpoint_ops method for vfork
catchpoints. */
static int
insert_catch_vfork (struct bp_location *bl)
{
return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
}
/* Implement the "remove" breakpoint_ops method for vfork
catchpoints. */
static int
remove_catch_vfork (struct bp_location *bl)
{
return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
}
/* Implement the "breakpoint_hit" breakpoint_ops method for vfork
catchpoints. */
static int
breakpoint_hit_catch_vfork (const struct bp_location *bl,
struct address_space *aspace, CORE_ADDR bp_addr,
const struct target_waitstatus *ws)
{
struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
if (ws->kind != TARGET_WAITKIND_VFORKED)
return 0;
c->forked_inferior_pid = ws->value.related_pid;
return 1;
}
/* Implement the "print_it" breakpoint_ops method for vfork
catchpoints. */
static enum print_stop_action
print_it_catch_vfork (bpstat bs)
{
struct ui_out *uiout = current_uiout;
struct breakpoint *b = bs->breakpoint_at;
struct fork_catchpoint *c = (struct fork_catchpoint *) b;
annotate_catchpoint (b->number);
if (b->disposition == disp_del)
ui_out_text (uiout, "\nTemporary catchpoint ");
else
ui_out_text (uiout, "\nCatchpoint ");
if (ui_out_is_mi_like_p (uiout))
{
ui_out_field_string (uiout, "reason",
async_reason_lookup (EXEC_ASYNC_VFORK));
ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
}
ui_out_field_int (uiout, "bkptno", b->number);
ui_out_text (uiout, " (vforked process ");
ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
ui_out_text (uiout, "), ");
return PRINT_SRC_AND_LOC;
}
/* Implement the "print_one" breakpoint_ops method for vfork
catchpoints. */
static void
print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
{
struct fork_catchpoint *c = (struct fork_catchpoint *) b;
struct value_print_options opts;
struct ui_out *uiout = current_uiout;
get_user_print_options (&opts);
/* Field 4, the address, is omitted (which makes the columns not
line up too nicely with the headers, but the effect is relatively
readable). */
if (opts.addressprint)
ui_out_field_skip (uiout, "addr");
annotate_field (5);
ui_out_text (uiout, "vfork");
if (!ptid_equal (c->forked_inferior_pid, null_ptid))
{
ui_out_text (uiout, ", process ");
ui_out_field_int (uiout, "what",
ptid_get_pid (c->forked_inferior_pid));
ui_out_spaces (uiout, 1);
}
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string (uiout, "catch-type", "vfork");
}
/* Implement the "print_mention" breakpoint_ops method for vfork
catchpoints. */
static void
print_mention_catch_vfork (struct breakpoint *b)
{
printf_filtered (_("Catchpoint %d (vfork)"), b->number);
}
/* Implement the "print_recreate" breakpoint_ops method for vfork
catchpoints. */
static void
print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
{
fprintf_unfiltered (fp, "catch vfork");
print_recreate_thread (b, fp);
}
/* The breakpoint_ops structure to be used in vfork catchpoints. */
static struct breakpoint_ops catch_vfork_breakpoint_ops;
/* An instance of this type is used to represent an solib catchpoint.
It includes a "struct breakpoint" as a kind of base class; users
downcast to "struct breakpoint *" when needed. A breakpoint is
really of this type iff its ops pointer points to
CATCH_SOLIB_BREAKPOINT_OPS. */
struct solib_catchpoint
{
/* The base class. */
struct breakpoint base;
/* True for "catch load", false for "catch unload". */
unsigned char is_load;
/* Regular expression to match, if any. COMPILED is only valid when
REGEX is non-NULL. */
char *regex;
regex_t compiled;
};
static void
dtor_catch_solib (struct breakpoint *b)
{
struct solib_catchpoint *self = (struct solib_catchpoint *) b;
if (self->regex)
regfree (&self->compiled);
xfree (self->regex);
base_breakpoint_ops.dtor (b);
}
static int
insert_catch_solib (struct bp_location *ignore)
{
return 0;
}
static int
remove_catch_solib (struct bp_location *ignore)
{
return 0;
}
static int
breakpoint_hit_catch_solib (const struct bp_location *bl,
struct address_space *aspace,
CORE_ADDR bp_addr,
const struct target_waitstatus *ws)
{
struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
struct breakpoint *other;
if (ws->kind == TARGET_WAITKIND_LOADED)
return 1;
ALL_BREAKPOINTS (other)
{
struct bp_location *other_bl;
if (other == bl->owner)
continue;
if (other->type != bp_shlib_event)
continue;
if (self->base.pspace != NULL && other->pspace != self->base.pspace)
continue;
for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
{
if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
return 1;
}
}
return 0;
}
static void
check_status_catch_solib (struct bpstats *bs)
{
struct solib_catchpoint *self
= (struct solib_catchpoint *) bs->breakpoint_at;
int ix;
if (self->is_load)
{
struct so_list *iter;
for (ix = 0;
VEC_iterate (so_list_ptr, current_program_space->added_solibs,
ix, iter);
++ix)
{
if (!self->regex
|| regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
return;
}
}
else
{
char *iter;
for (ix = 0;
VEC_iterate (char_ptr, current_program_space->deleted_solibs,
ix, iter);
++ix)
{
if (!self->regex
|| regexec (&self->compiled, iter, 0, NULL, 0) == 0)
return;
}
}
bs->stop = 0;
bs->print_it = print_it_noop;
}
static enum print_stop_action
print_it_catch_solib (bpstat bs)
{
struct breakpoint *b = bs->breakpoint_at;
struct ui_out *uiout = current_uiout;
annotate_catchpoint (b->number);
if (b->disposition == disp_del)
ui_out_text (uiout, "\nTemporary catchpoint ");
else
ui_out_text (uiout, "\nCatchpoint ");
ui_out_field_int (uiout, "bkptno", b->number);
ui_out_text (uiout, "\n");
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
print_solib_event (1);
return PRINT_SRC_AND_LOC;
}
static void
print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
{
struct solib_catchpoint *self = (struct solib_catchpoint *) b;
struct value_print_options opts;
struct ui_out *uiout = current_uiout;
char *msg;
get_user_print_options (&opts);
/* Field 4, the address, is omitted (which makes the columns not
line up too nicely with the headers, but the effect is relatively
readable). */
if (opts.addressprint)
{
annotate_field (4);
ui_out_field_skip (uiout, "addr");
}
annotate_field (5);
if (self->is_load)
{
if (self->regex)
msg = xstrprintf (_("load of library matching %s"), self->regex);
else
msg = xstrdup (_("load of library"));
}
else
{
if (self->regex)
msg = xstrprintf (_("unload of library matching %s"), self->regex);
else
msg = xstrdup (_("unload of library"));
}
ui_out_field_string (uiout, "what", msg);
xfree (msg);
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string (uiout, "catch-type",
self->is_load ? "load" : "unload");
}
static void
print_mention_catch_solib (struct breakpoint *b)
{
struct solib_catchpoint *self = (struct solib_catchpoint *) b;
printf_filtered (_("Catchpoint %d (%s)"), b->number,
self->is_load ? "load" : "unload");
}
static void
print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
{
struct solib_catchpoint *self = (struct solib_catchpoint *) b;
fprintf_unfiltered (fp, "%s %s",
b->disposition == disp_del ? "tcatch" : "catch",
self->is_load ? "load" : "unload");
if (self->regex)
fprintf_unfiltered (fp, " %s", self->regex);
fprintf_unfiltered (fp, "\n");
}
static struct breakpoint_ops catch_solib_breakpoint_ops;
/* Shared helper function (MI and CLI) for creating and installing
a shared object event catchpoint. If IS_LOAD is non-zero then
the events to be caught are load events, otherwise they are
unload events. If IS_TEMP is non-zero the catchpoint is a
temporary one. If ENABLED is non-zero the catchpoint is
created in an enabled state. */
void
add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
{
struct solib_catchpoint *c;
struct gdbarch *gdbarch = get_current_arch ();
struct cleanup *cleanup;
if (!arg)
arg = "";
arg = skip_spaces (arg);
c = XCNEW (struct solib_catchpoint);
cleanup = make_cleanup (xfree, c);
if (*arg != '\0')
{
int errcode;
errcode = regcomp (&c->compiled, arg, REG_NOSUB);
if (errcode != 0)
{
char *err = get_regcomp_error (errcode, &c->compiled);
make_cleanup (xfree, err);
error (_("Invalid regexp (%s): %s"), err, arg);
}
c->regex = xstrdup (arg);
}
c->is_load = is_load;
init_catchpoint (&c->base, gdbarch, is_temp, NULL,
&catch_solib_breakpoint_ops);
c->base.enable_state = enabled ? bp_enabled : bp_disabled;
discard_cleanups (cleanup);
install_breakpoint (0, &c->base, 1);
}
/* A helper function that does all the work for "catch load" and
"catch unload". */
static void
catch_load_or_unload (char *arg, int from_tty, int is_load,
struct cmd_list_element *command)
{
int tempflag;
const int enabled = 1;
tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
add_solib_catchpoint (arg, is_load, tempflag, enabled);
}
static void
catch_load_command_1 (char *arg, int from_tty,
struct cmd_list_element *command)
{
catch_load_or_unload (arg, from_tty, 1, command);
}
static void
catch_unload_command_1 (char *arg, int from_tty,
struct cmd_list_element *command)
{
catch_load_or_unload (arg, from_tty, 0, command);
}
/* An instance of this type is used to represent a syscall catchpoint.
It includes a "struct breakpoint" as a kind of base class; users
downcast to "struct breakpoint *" when needed. A breakpoint is
really of this type iff its ops pointer points to
CATCH_SYSCALL_BREAKPOINT_OPS. */
struct syscall_catchpoint
{
/* The base class. */
struct breakpoint base;
/* Syscall numbers used for the 'catch syscall' feature. If no
syscall has been specified for filtering, its value is NULL.
Otherwise, it holds a list of all syscalls to be caught. The
list elements are allocated with xmalloc. */
VEC(int) *syscalls_to_be_caught;
};
/* Implement the "dtor" breakpoint_ops method for syscall
catchpoints. */
static void
dtor_catch_syscall (struct breakpoint *b)
{
struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
VEC_free (int, c->syscalls_to_be_caught);
base_breakpoint_ops.dtor (b);
}
static const struct inferior_data *catch_syscall_inferior_data = NULL;
struct catch_syscall_inferior_data
{
/* We keep a count of the number of times the user has requested a
particular syscall to be tracked, and pass this information to the
target. This lets capable targets implement filtering directly. */
/* Number of times that "any" syscall is requested. */
int any_syscall_count;
/* Count of each system call. */
VEC(int) *syscalls_counts;
/* This counts all syscall catch requests, so we can readily determine
if any catching is necessary. */
int total_syscalls_count;
};
static struct catch_syscall_inferior_data*
get_catch_syscall_inferior_data (struct inferior *inf)
{
struct catch_syscall_inferior_data *inf_data;
inf_data = inferior_data (inf, catch_syscall_inferior_data);
if (inf_data == NULL)
{
inf_data = XCNEW (struct catch_syscall_inferior_data);
set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
}
return inf_data;
}
static void
catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
{
xfree (arg);
}
/* Implement the "insert" breakpoint_ops method for syscall
catchpoints. */
static int
insert_catch_syscall (struct bp_location *bl)
{
struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
struct inferior *inf = current_inferior ();
struct catch_syscall_inferior_data *inf_data
= get_catch_syscall_inferior_data (inf);
++inf_data->total_syscalls_count;
if (!c->syscalls_to_be_caught)
++inf_data->any_syscall_count;
else
{
int i, iter;
for (i = 0;
VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
i++)
{
int elem;
if (iter >= VEC_length (int, inf_data->syscalls_counts))
{
int old_size = VEC_length (int, inf_data->syscalls_counts);
uintptr_t vec_addr_offset
= old_size * ((uintptr_t) sizeof (int));
uintptr_t vec_addr;
VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
vec_addr = ((uintptr_t) VEC_address (int,
inf_data->syscalls_counts)
+ vec_addr_offset);
memset ((void *) vec_addr, 0,
(iter + 1 - old_size) * sizeof (int));
}
elem = VEC_index (int, inf_data->syscalls_counts, iter);
VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
}
}
return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
inf_data->total_syscalls_count != 0,
inf_data->any_syscall_count,
VEC_length (int,
inf_data->syscalls_counts),
VEC_address (int,
inf_data->syscalls_counts));
}
/* Implement the "remove" breakpoint_ops method for syscall
catchpoints. */
static int
remove_catch_syscall (struct bp_location *bl)
{
struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
struct inferior *inf = current_inferior ();
struct catch_syscall_inferior_data *inf_data
= get_catch_syscall_inferior_data (inf);
--inf_data->total_syscalls_count;
if (!c->syscalls_to_be_caught)
--inf_data->any_syscall_count;
else
{
int i, iter;
for (i = 0;
VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
i++)
{
int elem;
if (iter >= VEC_length (int, inf_data->syscalls_counts))
/* Shouldn't happen. */
continue;
elem = VEC_index (int, inf_data->syscalls_counts, iter);
VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
}
}
return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
inf_data->total_syscalls_count != 0,
inf_data->any_syscall_count,
VEC_length (int,
inf_data->syscalls_counts),
VEC_address (int,
inf_data->syscalls_counts));
}
/* Implement the "breakpoint_hit" breakpoint_ops method for syscall
catchpoints. */
static int
breakpoint_hit_catch_syscall (const struct bp_location *bl,
struct address_space *aspace, CORE_ADDR bp_addr,
const struct target_waitstatus *ws)
{
/* We must check if we are catching specific syscalls in this
breakpoint. If we are, then we must guarantee that the called
syscall is the same syscall we are catching. */
int syscall_number = 0;
const struct syscall_catchpoint *c
= (const struct syscall_catchpoint *) bl->owner;
if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
&& ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
return 0;
syscall_number = ws->value.syscall_number;
/* Now, checking if the syscall is the same. */
if (c->syscalls_to_be_caught)
{
int i, iter;
for (i = 0;
VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
i++)
if (syscall_number == iter)
return 1;
return 0;
}
return 1;
}
/* Implement the "print_it" breakpoint_ops method for syscall
catchpoints. */
static enum print_stop_action
print_it_catch_syscall (bpstat bs)
{
struct ui_out *uiout = current_uiout;
struct breakpoint *b = bs->breakpoint_at;
/* These are needed because we want to know in which state a
syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
must print "called syscall" or "returned from syscall". */
ptid_t ptid;
struct target_waitstatus last;
struct syscall s;
get_last_target_status (&ptid, &last);
get_syscall_by_number (last.value.syscall_number, &s);
annotate_catchpoint (b->number);
if (b->disposition == disp_del)
ui_out_text (uiout, "\nTemporary catchpoint ");
else
ui_out_text (uiout, "\nCatchpoint ");
if (ui_out_is_mi_like_p (uiout))
{
ui_out_field_string (uiout, "reason",
async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
? EXEC_ASYNC_SYSCALL_ENTRY
: EXEC_ASYNC_SYSCALL_RETURN));
ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
}
ui_out_field_int (uiout, "bkptno", b->number);
if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
ui_out_text (uiout, " (call to syscall ");
else
ui_out_text (uiout, " (returned from syscall ");
if (s.name == NULL || ui_out_is_mi_like_p (uiout))
ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
if (s.name != NULL)
ui_out_field_string (uiout, "syscall-name", s.name);
ui_out_text (uiout, "), ");
return PRINT_SRC_AND_LOC;
}
/* Implement the "print_one" breakpoint_ops method for syscall
catchpoints. */
static void
print_one_catch_syscall (struct breakpoint *b,
struct bp_location **last_loc)
{
struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
struct value_print_options opts;
struct ui_out *uiout = current_uiout;
get_user_print_options (&opts);
/* Field 4, the address, is omitted (which makes the columns not
line up too nicely with the headers, but the effect is relatively
readable). */
if (opts.addressprint)
ui_out_field_skip (uiout, "addr");
annotate_field (5);
if (c->syscalls_to_be_caught
&& VEC_length (int, c->syscalls_to_be_caught) > 1)
ui_out_text (uiout, "syscalls \"");
else
ui_out_text (uiout, "syscall \"");
if (c->syscalls_to_be_caught)
{
int i, iter;
char *text = xstrprintf ("%s", "");
for (i = 0;
VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
i++)
{
char *x = text;
struct syscall s;
get_syscall_by_number (iter, &s);
if (s.name != NULL)
text = xstrprintf ("%s%s, ", text, s.name);
else
text = xstrprintf ("%s%d, ", text, iter);
/* We have to xfree the last 'text' (now stored at 'x')
because xstrprintf dynamically allocates new space for it
on every call. */
xfree (x);
}
/* Remove the last comma. */
text[strlen (text) - 2] = '\0';
ui_out_field_string (uiout, "what", text);
}
else
ui_out_field_string (uiout, "what", "");
ui_out_text (uiout, "\" ");
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string (uiout, "catch-type", "syscall");
}
/* Implement the "print_mention" breakpoint_ops method for syscall
catchpoints. */
static void
print_mention_catch_syscall (struct breakpoint *b)
{
struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
if (c->syscalls_to_be_caught)
{
int i, iter;
if (VEC_length (int, c->syscalls_to_be_caught) > 1)
printf_filtered (_("Catchpoint %d (syscalls"), b->number);
else
printf_filtered (_("Catchpoint %d (syscall"), b->number);
for (i = 0;
VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
i++)
{
struct syscall s;
get_syscall_by_number (iter, &s);
if (s.name)
printf_filtered (" '%s' [%d]", s.name, s.number);
else
printf_filtered (" %d", s.number);
}
printf_filtered (")");
}
else
printf_filtered (_("Catchpoint %d (any syscall)"),
b->number);
}
/* Implement the "print_recreate" breakpoint_ops method for syscall
catchpoints. */
static void
print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
{
struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
fprintf_unfiltered (fp, "catch syscall");
if (c->syscalls_to_be_caught)
{
int i, iter;
for (i = 0;
VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
i++)
{
struct syscall s;
get_syscall_by_number (iter, &s);
if (s.name)
fprintf_unfiltered (fp, " %s", s.name);
else
fprintf_unfiltered (fp, " %d", s.number);
}
}
print_recreate_thread (b, fp);
}
/* The breakpoint_ops structure to be used in syscall catchpoints. */
static struct breakpoint_ops catch_syscall_breakpoint_ops;
/* Returns non-zero if 'b' is a syscall catchpoint. */
static int
syscall_catchpoint_p (struct breakpoint *b)
{
return (b->ops == &catch_syscall_breakpoint_ops);
}
/* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
is non-zero, then make the breakpoint temporary. If COND_STRING is
not NULL, then store it in the breakpoint. OPS, if not NULL, is
the breakpoint_ops structure associated to the catchpoint. */
void
init_catchpoint (struct breakpoint *b,
struct gdbarch *gdbarch, int tempflag,
char *cond_string,
const struct breakpoint_ops *ops)
{
struct symtab_and_line sal;
init_sal (&sal);
sal.pspace = current_program_space;
init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
b->disposition = tempflag ? disp_del : disp_donttouch;
}
void
install_breakpoint (int internal, struct breakpoint *b, int update_gll)
{
add_to_breakpoint_chain (b);
set_breakpoint_number (internal, b);
if (is_tracepoint (b))
set_tracepoint_count (breakpoint_count);
if (!internal)
mention (b);
observer_notify_breakpoint_created (b);
if (update_gll)
update_global_location_list (1);
}
static void
create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
int tempflag, char *cond_string,
const struct breakpoint_ops *ops)
{
struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
c->forked_inferior_pid = null_ptid;
install_breakpoint (0, &c->base, 1);
}
/* Exec catchpoints. */
/* An instance of this type is used to represent an exec catchpoint.
It includes a "struct breakpoint" as a kind of base class; users
downcast to "struct breakpoint *" when needed. A breakpoint is
really of this type iff its ops pointer points to
CATCH_EXEC_BREAKPOINT_OPS. */
struct exec_catchpoint
{
/* The base class. */
struct breakpoint base;
/* Filename of a program whose exec triggered this catchpoint.
This field is only valid immediately after this catchpoint has
triggered. */
char *exec_pathname;
};
/* Implement the "dtor" breakpoint_ops method for exec
catchpoints. */
static void
dtor_catch_exec (struct breakpoint *b)
{
struct exec_catchpoint *c = (struct exec_catchpoint *) b;
xfree (c->exec_pathname);
base_breakpoint_ops.dtor (b);
}
static int
insert_catch_exec (struct bp_location *bl)
{
return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
}
static int
remove_catch_exec (struct bp_location *bl)
{
return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
}
static int
breakpoint_hit_catch_exec (const struct bp_location *bl,
struct address_space *aspace, CORE_ADDR bp_addr,
const struct target_waitstatus *ws)
{
struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
if (ws->kind != TARGET_WAITKIND_EXECD)
return 0;
c->exec_pathname = xstrdup (ws->value.execd_pathname);
return 1;
}
static enum print_stop_action
print_it_catch_exec (bpstat bs)
{
struct ui_out *uiout = current_uiout;
struct breakpoint *b = bs->breakpoint_at;
struct exec_catchpoint *c = (struct exec_catchpoint *) b;
annotate_catchpoint (b->number);
if (b->disposition == disp_del)
ui_out_text (uiout, "\nTemporary catchpoint ");
else
ui_out_text (uiout, "\nCatchpoint ");
if (ui_out_is_mi_like_p (uiout))
{
ui_out_field_string (uiout, "reason",
async_reason_lookup (EXEC_ASYNC_EXEC));
ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
}
ui_out_field_int (uiout, "bkptno", b->number);
ui_out_text (uiout, " (exec'd ");
ui_out_field_string (uiout, "new-exec", c->exec_pathname);
ui_out_text (uiout, "), ");
return PRINT_SRC_AND_LOC;
}
static void
print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
{
struct exec_catchpoint *c = (struct exec_catchpoint *) b;
struct value_print_options opts;
struct ui_out *uiout = current_uiout;
get_user_print_options (&opts);
/* Field 4, the address, is omitted (which makes the columns
not line up too nicely with the headers, but the effect
is relatively readable). */
if (opts.addressprint)
ui_out_field_skip (uiout, "addr");
annotate_field (5);
ui_out_text (uiout, "exec");
if (c->exec_pathname != NULL)
{
ui_out_text (uiout, ", program \"");
ui_out_field_string (uiout, "what", c->exec_pathname);
ui_out_text (uiout, "\" ");
}
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string (uiout, "catch-type", "exec");
}
static void
print_mention_catch_exec (struct breakpoint *b)
{
printf_filtered (_("Catchpoint %d (exec)"), b->number);
}
/* Implement the "print_recreate" breakpoint_ops method for exec
catchpoints. */
static void
print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
{
fprintf_unfiltered (fp, "catch exec");
print_recreate_thread (b, fp);
}
static struct breakpoint_ops catch_exec_breakpoint_ops;
static void
create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
const struct breakpoint_ops *ops)
{
struct syscall_catchpoint *c;
struct gdbarch *gdbarch = get_current_arch ();
c = XNEW (struct syscall_catchpoint);
init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
c->syscalls_to_be_caught = filter;
install_breakpoint (0, &c->base, 1);
}
static int
hw_breakpoint_used_count (void)
{
int i = 0;
struct breakpoint *b;
struct bp_location *bl;
ALL_BREAKPOINTS (b)
{
if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
for (bl = b->loc; bl; bl = bl->next)
{
/* Special types of hardware breakpoints may use more than
one register. */
i += b->ops->resources_needed (bl);
}
}
return i;
}
/* Returns the resources B would use if it were a hardware
watchpoint. */
static int
hw_watchpoint_use_count (struct breakpoint *b)
{
int i = 0;
struct bp_location *bl;
if (!breakpoint_enabled (b))
return 0;
for (bl = b->loc; bl; bl = bl->next)
{
/* Special types of hardware watchpoints may use more than
one register. */
i += b->ops->resources_needed (bl);
}
return i;
}
/* Returns the sum the used resources of all hardware watchpoints of
type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
the sum of the used resources of all hardware watchpoints of other
types _not_ TYPE. */
static int
hw_watchpoint_used_count_others (struct breakpoint *except,
enum bptype type, int *other_type_used)
{
int i = 0;
struct breakpoint *b;
*other_type_used = 0;
ALL_BREAKPOINTS (b)
{
if (b == except)
continue;
if (!breakpoint_enabled (b))
continue;
if (b->type == type)
i += hw_watchpoint_use_count (b);
else if (is_hardware_watchpoint (b))
*other_type_used = 1;
}
return i;
}
void
disable_watchpoints_before_interactive_call_start (void)
{
struct breakpoint *b;
ALL_BREAKPOINTS (b)
{
if (is_watchpoint (b) && breakpoint_enabled (b))
{
b->enable_state = bp_call_disabled;
update_global_location_list (0);
}
}
}
void
enable_watchpoints_after_interactive_call_stop (void)
{
struct breakpoint *b;
ALL_BREAKPOINTS (b)
{
if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
{
b->enable_state = bp_enabled;
update_global_location_list (1);
}
}
}
void
disable_breakpoints_before_startup (void)
{
current_program_space->executing_startup = 1;
update_global_location_list (0);
}
void
enable_breakpoints_after_startup (void)
{
current_program_space->executing_startup = 0;
breakpoint_re_set ();
}
/* Set a breakpoint that will evaporate an end of command
at address specified by SAL.
Restrict it to frame FRAME if FRAME is nonzero. */
struct breakpoint *
set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
struct frame_id frame_id, enum bptype type)
{
struct breakpoint *b;
/* If FRAME_ID is valid, it should be a real frame, not an inlined or
tail-called one. */
gdb_assert (!frame_id_artificial_p (frame_id));
b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
b->enable_state = bp_enabled;
b->disposition = disp_donttouch;
b->frame_id = frame_id;
/* If we're debugging a multi-threaded program, then we want
momentary breakpoints to be active in only a single thread of
control. */
if (in_thread_list (inferior_ptid))
b->thread = pid_to_thread_id (inferior_ptid);
update_global_location_list_nothrow (1);
return b;
}
/* Make a momentary breakpoint based on the master breakpoint ORIG.
The new breakpoint will have type TYPE, and use OPS as it
breakpoint_ops. */
static struct breakpoint *
momentary_breakpoint_from_master (struct breakpoint *orig,
enum bptype type,
const struct breakpoint_ops *ops)
{
struct breakpoint *copy;
copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
copy->loc = allocate_bp_location (copy);
set_breakpoint_location_function (copy->loc, 1);
copy->loc->gdbarch = orig->loc->gdbarch;
copy->loc->requested_address = orig->loc->requested_address;
copy->loc->address = orig->loc->address;
copy->loc->section = orig->loc->section;
copy->loc->pspace = orig->loc->pspace;
copy->loc->probe = orig->loc->probe;
copy->loc->line_number = orig->loc->line_number;
copy->loc->symtab = orig->loc->symtab;
copy->frame_id = orig->frame_id;
copy->thread = orig->thread;
copy->pspace = orig->pspace;
copy->enable_state = bp_enabled;
copy->disposition = disp_donttouch;
copy->number = internal_breakpoint_number--;
update_global_location_list_nothrow (0);
return copy;
}
/* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
ORIG is NULL. */
struct breakpoint *
clone_momentary_breakpoint (struct breakpoint *orig)
{
/* If there's nothing to clone, then return nothing. */
if (orig == NULL)
return NULL;
return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
}
struct breakpoint *
set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
enum bptype type)
{
struct symtab_and_line sal;
sal = find_pc_line (pc, 0);
sal.pc = pc;
sal.section = find_pc_overlay (pc);
sal.explicit_pc = 1;
return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
}
/* Tell the user we have just set a breakpoint B. */
static void
mention (struct breakpoint *b)
{
b->ops->print_mention (b);
if (ui_out_is_mi_like_p (current_uiout))
return;
printf_filtered ("\n");
}
static struct bp_location *
add_location_to_breakpoint (struct breakpoint *b,
const struct symtab_and_line *sal)
{
struct bp_location *loc, **tmp;
CORE_ADDR adjusted_address;
struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
if (loc_gdbarch == NULL)
loc_gdbarch = b->gdbarch;
/* Adjust the breakpoint's address prior to allocating a location.
Once we call allocate_bp_location(), that mostly uninitialized
location will be placed on the location chain. Adjustment of the
breakpoint may cause target_read_memory() to be called and we do
not want its scan of the location chain to find a breakpoint and
location that's only been partially initialized. */
adjusted_address = adjust_breakpoint_address (loc_gdbarch,
sal->pc, b->type);
/* Sort the locations by their ADDRESS. */
loc = allocate_bp_location (b);
for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
tmp = &((*tmp)->next))
;
loc->next = *tmp;
*tmp = loc;
loc->requested_address = sal->pc;
loc->address = adjusted_address;
loc->pspace = sal->pspace;
loc->probe = sal->probe;
gdb_assert (loc->pspace != NULL);
loc->section = sal->section;
loc->gdbarch = loc_gdbarch;
loc->line_number = sal->line;
loc->symtab = sal->symtab;
set_breakpoint_location_function (loc,
sal->explicit_pc || sal->explicit_line);
return loc;
}
/* Return 1 if LOC is pointing to a permanent breakpoint,
return 0 otherwise. */
static int
bp_loc_is_permanent (struct bp_location *loc)
{
int len;
CORE_ADDR addr;
const gdb_byte *bpoint;
gdb_byte *target_mem;
struct cleanup *cleanup;
int retval = 0;
gdb_assert (loc != NULL);
addr = loc->address;
bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
/* Software breakpoints unsupported? */
if (bpoint == NULL)
return 0;
target_mem = alloca (len);
/* Enable the automatic memory restoration from breakpoints while
we read the memory. Otherwise we could say about our temporary
breakpoints they are permanent. */
cleanup = save_current_space_and_thread ();
switch_to_program_space_and_thread (loc->pspace);
make_show_memory_breakpoints_cleanup (0);
if (target_read_memory (loc->address, target_mem, len) == 0
&& memcmp (target_mem, bpoint, len) == 0)
retval = 1;
do_cleanups (cleanup);
return retval;
}
/* Build a command list for the dprintf corresponding to the current
settings of the dprintf style options. */
static void
update_dprintf_command_list (struct breakpoint *b)
{
char *dprintf_args = b->extra_string;
char *printf_line = NULL;
if (!dprintf_args)
return;
dprintf_args = skip_spaces (dprintf_args);
/* Allow a comma, as it may have terminated a location, but don't
insist on it. */
if (*dprintf_args == ',')
++dprintf_args;
dprintf_args = skip_spaces (dprintf_args);
if (*dprintf_args != '"')
error (_("Bad format string, missing '\"'."));
if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
printf_line = xstrprintf ("printf %s", dprintf_args);
else if (strcmp (dprintf_style, dprintf_style_call) == 0)
{
if (!dprintf_function)
error (_("No function supplied for dprintf call"));
if (dprintf_channel && strlen (dprintf_channel) > 0)
printf_line = xstrprintf ("call (void) %s (%s,%s)",
dprintf_function,
dprintf_channel,
dprintf_args);
else
printf_line = xstrprintf ("call (void) %s (%s)",
dprintf_function,
dprintf_args);
}
else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
{
if (target_can_run_breakpoint_commands ())
printf_line = xstrprintf ("agent-printf %s", dprintf_args);
else
{
warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
printf_line = xstrprintf ("printf %s", dprintf_args);
}
}
else
internal_error (__FILE__, __LINE__,
_("Invalid dprintf style."));
gdb_assert (printf_line != NULL);
/* Manufacture a printf sequence. */
{
struct command_line *printf_cmd_line
= xmalloc (sizeof (struct command_line));
printf_cmd_line = xmalloc (sizeof (struct command_line));
printf_cmd_line->control_type = simple_control;
printf_cmd_line->body_count = 0;
printf_cmd_line->body_list = NULL;
printf_cmd_line->next = NULL;
printf_cmd_line->line = printf_line;
breakpoint_set_commands (b, printf_cmd_line);
}
}
/* Update all dprintf commands, making their command lists reflect
current style settings. */
static void
update_dprintf_commands (char *args, int from_tty,
struct cmd_list_element *c)
{
struct breakpoint *b;
ALL_BREAKPOINTS (b)
{
if (b->type == bp_dprintf)
update_dprintf_command_list (b);
}
}
/* Create a breakpoint with SAL as location. Use ADDR_STRING
as textual description of the location, and COND_STRING
as condition expression. */
static void
init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
struct symtabs_and_lines sals, char *addr_string,
char *filter, char *cond_string,
char *extra_string,
enum bptype type, enum bpdisp disposition,
int thread, int task, int ignore_count,
const struct breakpoint_ops *ops, int from_tty,
int enabled, int internal, unsigned flags,
int display_canonical)
{
int i;
if (type == bp_hardware_breakpoint)
{
int target_resources_ok;
i = hw_breakpoint_used_count ();
target_resources_ok =
target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
i + 1, 0);
if (target_resources_ok == 0)
error (_("No hardware breakpoint support in the target."));
else if (target_resources_ok < 0)
error (_("Hardware breakpoints used exceeds limit."));
}
gdb_assert (sals.nelts > 0);
for (i = 0; i < sals.nelts; ++i)
{
struct symtab_and_line sal = sals.sals[i];
struct bp_location *loc;
if (from_tty)
{
struct gdbarch *loc_gdbarch = get_sal_arch (sal);
if (!loc_gdbarch)
loc_gdbarch = gdbarch;
describe_other_breakpoints (loc_gdbarch,
sal.pspace, sal.pc, sal.section, thread);
}
if (i == 0)
{
init_raw_breakpoint (b, gdbarch, sal, type, ops);
b->thread = thread;
b->task = task;
b->cond_string = cond_string;
b->extra_string = extra_string;
b->ignore_count = ignore_count;
b->enable_state = enabled ? bp_enabled : bp_disabled;
b->disposition = disposition;
if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
b->loc->inserted = 1;
if (type == bp_static_tracepoint)
{
struct tracepoint *t = (struct tracepoint *) b;
struct static_tracepoint_marker marker;
if (strace_marker_p (b))
{
/* We already know the marker exists, otherwise, we
wouldn't see a sal for it. */
char *p = &addr_string[3];
char *endp;
char *marker_str;
p = skip_spaces (p);
endp = skip_to_space (p);
marker_str = savestring (p, endp - p);
t->static_trace_marker_id = marker_str;
printf_filtered (_("Probed static tracepoint "
"marker \"%s\"\n"),
t->static_trace_marker_id);
}
else if (target_static_tracepoint_marker_at (sal.pc, &marker))
{
t->static_trace_marker_id = xstrdup (marker.str_id);
release_static_tracepoint_marker (&marker);
printf_filtered (_("Probed static tracepoint "
"marker \"%s\"\n"),
t->static_trace_marker_id);
}
else
warning (_("Couldn't determine the static "
"tracepoint marker to probe"));
}
loc = b->loc;
}
else
{
loc = add_location_to_breakpoint (b, &sal);
if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
loc->inserted = 1;
}
if (bp_loc_is_permanent (loc))
make_breakpoint_permanent (b);
if (b->cond_string)
{
const char *arg = b->cond_string;
loc->cond = parse_exp_1 (&arg, loc->address,
block_for_pc (loc->address), 0);
if (*arg)
error (_("Garbage '%s' follows condition"), arg);
}
/* Dynamic printf requires and uses additional arguments on the
command line, otherwise it's an error. */
if (type == bp_dprintf)
{
if (b->extra_string)
update_dprintf_command_list (b);
else
error (_("Format string required"));
}
else if (b->extra_string)
error (_("Garbage '%s' at end of command"), b->extra_string);
}
b->display_canonical = display_canonical;
if (addr_string)
b->addr_string = addr_string;
else
/* addr_string has to be used or breakpoint_re_set will delete
me. */
b->addr_string
= xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
b->filter = filter;
}
static void
create_breakpoint_sal (struct gdbarch *gdbarch,
struct symtabs_and_lines sals, char *addr_string,
char *filter, char *cond_string,
char *extra_string,
enum bptype type, enum bpdisp disposition,
int thread, int task, int ignore_count,
const struct breakpoint_ops *ops, int from_tty,
int enabled, int internal, unsigned flags,
int display_canonical)
{
struct breakpoint *b;
struct cleanup *old_chain;
if (is_tracepoint_type (type))
{
struct tracepoint *t;
t = XCNEW (struct tracepoint);
b = &t->base;
}
else
b = XNEW (struct breakpoint);
old_chain = make_cleanup (xfree, b);
init_breakpoint_sal (b, gdbarch,
sals, addr_string,
filter, cond_string, extra_string,
type, disposition,
thread, task, ignore_count,
ops, from_tty,
enabled, internal, flags,
display_canonical);
discard_cleanups (old_chain);
install_breakpoint (internal, b, 0);
}
/* Add SALS.nelts breakpoints to the breakpoint table. For each
SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
value. COND_STRING, if not NULL, specified the condition to be
used for all breakpoints. Essentially the only case where
SALS.nelts is not 1 is when we set a breakpoint on an overloaded
function. In that case, it's still not possible to specify
separate conditions for different overloaded functions, so
we take just a single condition string.
NOTE: If the function succeeds, the caller is expected to cleanup
the arrays ADDR_STRING, COND_STRING, and SALS (but not the
array contents). If the function fails (error() is called), the
caller is expected to cleanups both the ADDR_STRING, COND_STRING,
COND and SALS arrays and each of those arrays contents. */
static void
create_breakpoints_sal (struct gdbarch *gdbarch,
struct linespec_result *canonical,
char *cond_string, char *extra_string,
enum bptype type, enum bpdisp disposition,
int thread, int task, int ignore_count,
const struct breakpoint_ops *ops, int from_tty,
int enabled, int internal, unsigned flags)
{
int i;
struct linespec_sals *lsal;
if (canonical->pre_expanded)
gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
{
/* Note that 'addr_string' can be NULL in the case of a plain
'break', without arguments. */
char *addr_string = (canonical->addr_string
? xstrdup (canonical->addr_string)
: NULL);
char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
struct cleanup *inner = make_cleanup (xfree, addr_string);
make_cleanup (xfree, filter_string);
create_breakpoint_sal (gdbarch, lsal->sals,
addr_string,
filter_string,
cond_string, extra_string,
type, disposition,
thread, task, ignore_count, ops,
from_tty, enabled, internal, flags,
canonical->special_display);
discard_cleanups (inner);
}
}
/* Parse ADDRESS which is assumed to be a SAL specification possibly
followed by conditionals. On return, SALS contains an array of SAL
addresses found. ADDR_STRING contains a vector of (canonical)
address strings. ADDRESS points to the end of the SAL.
The array and the line spec strings are allocated on the heap, it is
the caller's responsibility to free them. */
static void
parse_breakpoint_sals (char **address,
struct linespec_result *canonical)
{
/* If no arg given, or if first arg is 'if ', use the default
breakpoint. */
if ((*address) == NULL
|| (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
{
/* The last displayed codepoint, if it's valid, is our default breakpoint
address. */
if (last_displayed_sal_is_valid ())
{
struct linespec_sals lsal;
struct symtab_and_line sal;
CORE_ADDR pc;
init_sal (&sal); /* Initialize to zeroes. */
lsal.sals.sals = (struct symtab_and_line *)
xmalloc (sizeof (struct symtab_and_line));
/* Set sal's pspace, pc, symtab, and line to the values
corresponding to the last call to print_frame_info.
Be sure to reinitialize LINE with NOTCURRENT == 0
as the breakpoint line number is inappropriate otherwise.
find_pc_line would adjust PC, re-set it back. */
get_last_displayed_sal (&sal);
pc = sal.pc;
sal = find_pc_line (pc, 0);
/* "break" without arguments is equivalent to "break *PC"
where PC is the last displayed codepoint's address. So
make sure to set sal.explicit_pc to prevent GDB from
trying to expand the list of sals to include all other
instances with the same symtab and line. */
sal.pc = pc;
sal.explicit_pc = 1;
lsal.sals.sals[0] = sal;
lsal.sals.nelts = 1;
lsal.canonical = NULL;
VEC_safe_push (linespec_sals, canonical->sals, &lsal);
}
else
error (_("No default breakpoint address now."));
}
else
{
struct symtab_and_line cursal = get_current_source_symtab_and_line ();
/* Force almost all breakpoints to be in terms of the
current_source_symtab (which is decode_line_1's default).
This should produce the results we want almost all of the
time while leaving default_breakpoint_* alone.
ObjC: However, don't match an Objective-C method name which
may have a '+' or '-' succeeded by a '['. */
if (last_displayed_sal_is_valid ()
&& (!cursal.symtab
|| ((strchr ("+-", (*address)[0]) != NULL)
&& ((*address)[1] != '['))))
decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
get_last_displayed_symtab (),
get_last_displayed_line (),
canonical, NULL, NULL);
else
decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
cursal.symtab, cursal.line, canonical, NULL, NULL);
}
}
/* Convert each SAL into a real PC. Verify that the PC can be
inserted as a breakpoint. If it can't throw an error. */
static void
breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
{
int i;
for (i = 0; i < sals->nelts; i++)
resolve_sal_pc (&sals->sals[i]);
}
/* Fast tracepoints may have restrictions on valid locations. For
instance, a fast tracepoint using a jump instead of a trap will
likely have to overwrite more bytes than a trap would, and so can
only be placed where the instruction is longer than the jump, or a
multi-instruction sequence does not have a jump into the middle of
it, etc. */
static void
check_fast_tracepoint_sals (struct gdbarch *gdbarch,
struct symtabs_and_lines *sals)
{
int i, rslt;
struct symtab_and_line *sal;
char *msg;
struct cleanup *old_chain;
for (i = 0; i < sals->nelts; i++)
{
struct gdbarch *sarch;
sal = &sals->sals[i];
sarch = get_sal_arch (*sal);
/* We fall back to GDBARCH if there is no architecture
associated with SAL. */
if (sarch == NULL)
sarch = gdbarch;
rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
NULL, &msg);
old_chain = make_cleanup (xfree, msg);
if (!rslt)
error (_("May not have a fast tracepoint at 0x%s%s"),
paddress (sarch, sal->pc), (msg ? msg : ""));
do_cleanups (old_chain);
}
}
/* Issue an invalid thread ID error. */
static void ATTRIBUTE_NORETURN
invalid_thread_id_error (int id)
{
error (_("Unknown thread %d."), id);
}
/* Given TOK, a string specification of condition and thread, as
accepted by the 'break' command, extract the condition
string and thread number and set *COND_STRING and *THREAD.
PC identifies the context at which the condition should be parsed.
If no condition is found, *COND_STRING is set to NULL.
If no thread is found, *THREAD is set to -1. */
static void
find_condition_and_thread (const char *tok, CORE_ADDR pc,
char **cond_string, int *thread, int *task,
char **rest)
{
*cond_string = NULL;
*thread = -1;
*task = 0;
*rest = NULL;
while (tok && *tok)
{
const char *end_tok;
int toklen;
const char *cond_start = NULL;
const char *cond_end = NULL;
tok = skip_spaces_const (tok);
if ((*tok == '"' || *tok == ',') && rest)
{
*rest = savestring (tok, strlen (tok));
return;
}
end_tok = skip_to_space_const (tok);
toklen = end_tok - tok;
if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
{
struct expression *expr;
tok = cond_start = end_tok + 1;
expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
xfree (expr);
cond_end = tok;
*cond_string = savestring (cond_start, cond_end - cond_start);
}
else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
{
char *tmptok;
tok = end_tok + 1;
*thread = strtol (tok, &tmptok, 0);
if (tok == tmptok)
error (_("Junk after thread keyword."));
if (!valid_thread_id (*thread))
invalid_thread_id_error (*thread);
tok = tmptok;
}
else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
{
char *tmptok;
tok = end_tok + 1;
*task = strtol (tok, &tmptok, 0);
if (tok == tmptok)
error (_("Junk after task keyword."));
if (!valid_task_id (*task))
error (_("Unknown task %d."), *task);
tok = tmptok;
}
else if (rest)
{
*rest = savestring (tok, strlen (tok));
return;
}
else
error (_("Junk at end of arguments."));
}
}
/* Decode a static tracepoint marker spec. */
static struct symtabs_and_lines
decode_static_tracepoint_spec (char **arg_p)
{
VEC(static_tracepoint_marker_p) *markers = NULL;
struct symtabs_and_lines sals;
struct cleanup *old_chain;
char *p = &(*arg_p)[3];
char *endp;
char *marker_str;
int i;
p = skip_spaces (p);
endp = skip_to_space (p);
marker_str = savestring (p, endp - p);
old_chain = make_cleanup (xfree, marker_str);
markers = target_static_tracepoint_markers_by_strid (marker_str);
if (VEC_empty(static_tracepoint_marker_p, markers))
error (_("No known static tracepoint marker named %s"), marker_str);
sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
for (i = 0; i < sals.nelts; i++)
{
struct static_tracepoint_marker *marker;
marker = VEC_index (static_tracepoint_marker_p, markers, i);
init_sal (&sals.sals[i]);
sals.sals[i] = find_pc_line (marker->address, 0);
sals.sals[i].pc = marker->address;
release_static_tracepoint_marker (marker);
}
do_cleanups (old_chain);
*arg_p = endp;
return sals;
}
/* Set a breakpoint. This function is shared between CLI and MI
functions for setting a breakpoint. This function has two major
modes of operations, selected by the PARSE_ARG parameter. If
non-zero, the function will parse ARG, extracting location,
condition, thread and extra string. Otherwise, ARG is just the
breakpoint's location, with condition, thread, and extra string
specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
If INTERNAL is non-zero, the breakpoint number will be allocated
from the internal breakpoint count. Returns true if any breakpoint
was created; false otherwise. */
int
create_breakpoint (struct gdbarch *gdbarch,
char *arg, char *cond_string,
int thread, char *extra_string,
int parse_arg,
int tempflag, enum bptype type_wanted,
int ignore_count,
enum auto_boolean pending_break_support,
const struct breakpoint_ops *ops,
int from_tty, int enabled, int internal,
unsigned flags)
{
volatile struct gdb_exception e;
char *copy_arg = NULL;
char *addr_start = arg;
struct linespec_result canonical;
struct cleanup *old_chain;
struct cleanup *bkpt_chain = NULL;
int pending = 0;
int task = 0;
int prev_bkpt_count = breakpoint_count;
gdb_assert (ops != NULL);
init_linespec_result (&canonical);
TRY_CATCH (e, RETURN_MASK_ALL)
{
ops->create_sals_from_address (&arg, &canonical, type_wanted,
addr_start, ©_arg);
}
/* If caller is interested in rc value from parse, set value. */
switch (e.reason)
{
case GDB_NO_ERROR:
if (VEC_empty (linespec_sals, canonical.sals))
return 0;
break;
case RETURN_ERROR:
switch (e.error)
{
case NOT_FOUND_ERROR:
/* If pending breakpoint support is turned off, throw
error. */
if (pending_break_support == AUTO_BOOLEAN_FALSE)
throw_exception (e);
exception_print (gdb_stderr, e);
/* If pending breakpoint support is auto query and the user
selects no, then simply return the error code. */
if (pending_break_support == AUTO_BOOLEAN_AUTO
&& !nquery (_("Make %s pending on future shared library load? "),
bptype_string (type_wanted)))
return 0;
/* At this point, either the user was queried about setting
a pending breakpoint and selected yes, or pending
breakpoint behavior is on and thus a pending breakpoint
is defaulted on behalf of the user. */
{
struct linespec_sals lsal;
copy_arg = xstrdup (addr_start);
lsal.canonical = xstrdup (copy_arg);
lsal.sals.nelts = 1;
lsal.sals.sals = XNEW (struct symtab_and_line);
init_sal (&lsal.sals.sals[0]);
pending = 1;
VEC_safe_push (linespec_sals, canonical.sals, &lsal);
}
break;
default:
throw_exception (e);
}
break;
default:
throw_exception (e);
}
/* Create a chain of things that always need to be cleaned up. */
old_chain = make_cleanup_destroy_linespec_result (&canonical);
/* ----------------------------- SNIP -----------------------------
Anything added to the cleanup chain beyond this point is assumed
to be part of a breakpoint. If the breakpoint create succeeds
then the memory is not reclaimed. */
bkpt_chain = make_cleanup (null_cleanup, 0);
/* Resolve all line numbers to PC's and verify that the addresses
are ok for the target. */
if (!pending)
{
int ix;
struct linespec_sals *iter;
for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
breakpoint_sals_to_pc (&iter->sals);
}
/* Fast tracepoints may have additional restrictions on location. */
if (!pending && type_wanted == bp_fast_tracepoint)
{
int ix;
struct linespec_sals *iter;
for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
check_fast_tracepoint_sals (gdbarch, &iter->sals);
}
/* Verify that condition can be parsed, before setting any
breakpoints. Allocate a separate condition expression for each
breakpoint. */
if (!pending)
{
if (parse_arg)
{
char *rest;
struct linespec_sals *lsal;
lsal = VEC_index (linespec_sals, canonical.sals, 0);
/* Here we only parse 'arg' to separate condition
from thread number, so parsing in context of first
sal is OK. When setting the breakpoint we'll
re-parse it in context of each sal. */
find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
&thread, &task, &rest);
if (cond_string)
make_cleanup (xfree, cond_string);
if (rest)
make_cleanup (xfree, rest);
if (rest)
extra_string = rest;
}
else
{
if (*arg != '\0')
error (_("Garbage '%s' at end of location"), arg);
/* Create a private copy of condition string. */
if (cond_string)
{
cond_string = xstrdup (cond_string);
make_cleanup (xfree, cond_string);
}
/* Create a private copy of any extra string. */
if (extra_string)
{
extra_string = xstrdup (extra_string);
make_cleanup (xfree, extra_string);
}
}
ops->create_breakpoints_sal (gdbarch, &canonical,
cond_string, extra_string, type_wanted,
tempflag ? disp_del : disp_donttouch,
thread, task, ignore_count, ops,
from_tty, enabled, internal, flags);
}
else
{
struct breakpoint *b;
make_cleanup (xfree, copy_arg);
if (is_tracepoint_type (type_wanted))
{
struct tracepoint *t;
t = XCNEW (struct tracepoint);
b = &t->base;
}
else
b = XNEW (struct breakpoint);
init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
b->addr_string = copy_arg;
if (parse_arg)
b->cond_string = NULL;
else
{
/* Create a private copy of condition string. */
if (cond_string)
{
cond_string = xstrdup (cond_string);
make_cleanup (xfree, cond_string);
}
b->cond_string = cond_string;
}
b->extra_string = NULL;
b->ignore_count = ignore_count;
b->disposition = tempflag ? disp_del : disp_donttouch;
b->condition_not_parsed = 1;
b->enable_state = enabled ? bp_enabled : bp_disabled;
if ((type_wanted != bp_breakpoint
&& type_wanted != bp_hardware_breakpoint) || thread != -1)
b->pspace = current_program_space;
install_breakpoint (internal, b, 0);
}
if (VEC_length (linespec_sals, canonical.sals) > 1)
{
warning (_("Multiple breakpoints were set.\nUse the "
"\"delete\" command to delete unwanted breakpoints."));
prev_breakpoint_count = prev_bkpt_count;
}
/* That's it. Discard the cleanups for data inserted into the
breakpoint. */
discard_cleanups (bkpt_chain);
/* But cleanup everything else. */
do_cleanups (old_chain);
/* error call may happen here - have BKPT_CHAIN already discarded. */
update_global_location_list (1);
return 1;
}
/* Set a breakpoint.
ARG is a string describing breakpoint address,
condition, and thread.
FLAG specifies if a breakpoint is hardware on,
and if breakpoint is temporary, using BP_HARDWARE_FLAG
and BP_TEMPFLAG. */
static void
break_command_1 (char *arg, int flag, int from_tty)
{
int tempflag = flag & BP_TEMPFLAG;
enum bptype type_wanted = (flag & BP_HARDWAREFLAG
? bp_hardware_breakpoint
: bp_breakpoint);
struct breakpoint_ops *ops;
const char *arg_cp = arg;
/* Matching breakpoints on probes. */
if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
ops = &bkpt_probe_breakpoint_ops;
else
ops = &bkpt_breakpoint_ops;
create_breakpoint (get_current_arch (),
arg,
NULL, 0, NULL, 1 /* parse arg */,
tempflag, type_wanted,
0 /* Ignore count */,
pending_break_support,
ops,
from_tty,
1 /* enabled */,
0 /* internal */,
0);
}
/* Helper function for break_command_1 and disassemble_command. */
void
resolve_sal_pc (struct symtab_and_line *sal)
{
CORE_ADDR pc;
if (sal->pc == 0 && sal->symtab != NULL)
{
if (!find_line_pc (sal->symtab, sal->line, &pc))
error (_("No line %d in file \"%s\"."),
sal->line, symtab_to_filename_for_display (sal->symtab));
sal->pc = pc;
/* If this SAL corresponds to a breakpoint inserted using a line
number, then skip the function prologue if necessary. */
if (sal->explicit_line)
skip_prologue_sal (sal);
}
if (sal->section == 0 && sal->symtab != NULL)
{
struct blockvector *bv;
struct block *b;
struct symbol *sym;
bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
if (bv != NULL)
{
sym = block_linkage_function (b);
if (sym != NULL)
{
fixup_symbol_section (sym, sal->symtab->objfile);
sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
}
else
{
/* It really is worthwhile to have the section, so we'll
just have to look harder. This case can be executed
if we have line numbers but no functions (as can
happen in assembly source). */
struct bound_minimal_symbol msym;
struct cleanup *old_chain = save_current_space_and_thread ();
switch_to_program_space_and_thread (sal->pspace);
msym = lookup_minimal_symbol_by_pc (sal->pc);
if (msym.minsym)
sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
do_cleanups (old_chain);
}
}
}
}
void
break_command (char *arg, int from_tty)
{
break_command_1 (arg, 0, from_tty);
}
void
tbreak_command (char *arg, int from_tty)
{
break_command_1 (arg, BP_TEMPFLAG, from_tty);
}
static void
hbreak_command (char *arg, int from_tty)
{
break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
}
static void
thbreak_command (char *arg, int from_tty)
{
break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
}
static void
stop_command (char *arg, int from_tty)
{
printf_filtered (_("Specify the type of breakpoint to set.\n\
Usage: stop in \n\
stop at \n"));
}
static void
stopin_command (char *arg, int from_tty)
{
int badInput = 0;
if (arg == (char *) NULL)
badInput = 1;
else if (*arg != '*')
{
char *argptr = arg;
int hasColon = 0;
/* Look for a ':'. If this is a line number specification, then
say it is bad, otherwise, it should be an address or
function/method name. */
while (*argptr && !hasColon)
{
hasColon = (*argptr == ':');
argptr++;
}
if (hasColon)
badInput = (*argptr != ':'); /* Not a class::method */
else
badInput = isdigit (*arg); /* a simple line number */
}
if (badInput)
printf_filtered (_("Usage: stop in \n"));
else
break_command_1 (arg, 0, from_tty);
}
static void
stopat_command (char *arg, int from_tty)
{
int badInput = 0;
if (arg == (char *) NULL || *arg == '*') /* no line number */
badInput = 1;
else
{
char *argptr = arg;
int hasColon = 0;
/* Look for a ':'. If there is a '::' then get out, otherwise
it is probably a line number. */
while (*argptr && !hasColon)
{
hasColon = (*argptr == ':');
argptr++;
}
if (hasColon)
badInput = (*argptr == ':'); /* we have class::method */
else
badInput = !isdigit (*arg); /* not a line number */
}
if (badInput)
printf_filtered (_("Usage: stop at \n"));
else
break_command_1 (arg, 0, from_tty);
}
/* The dynamic printf command is mostly like a regular breakpoint, but
with a prewired command list consisting of a single output command,
built from extra arguments supplied on the dprintf command
line. */
static void
dprintf_command (char *arg, int from_tty)
{
create_breakpoint (get_current_arch (),
arg,
NULL, 0, NULL, 1 /* parse arg */,
0, bp_dprintf,
0 /* Ignore count */,
pending_break_support,
&dprintf_breakpoint_ops,
from_tty,
1 /* enabled */,
0 /* internal */,
0);
}
static void
agent_printf_command (char *arg, int from_tty)
{
error (_("May only run agent-printf on the target"));
}
/* Implement the "breakpoint_hit" breakpoint_ops method for
ranged breakpoints. */
static int
breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
struct address_space *aspace,
CORE_ADDR bp_addr,
const struct target_waitstatus *ws)
{
if (ws->kind != TARGET_WAITKIND_STOPPED
|| ws->value.sig != GDB_SIGNAL_TRAP)
return 0;
return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
bl->length, aspace, bp_addr);
}
/* Implement the "resources_needed" breakpoint_ops method for
ranged breakpoints. */
static int
resources_needed_ranged_breakpoint (const struct bp_location *bl)
{
return target_ranged_break_num_registers ();
}
/* Implement the "print_it" breakpoint_ops method for
ranged breakpoints. */
static enum print_stop_action
print_it_ranged_breakpoint (bpstat bs)
{
struct breakpoint *b = bs->breakpoint_at;
struct bp_location *bl = b->loc;
struct ui_out *uiout = current_uiout;
gdb_assert (b->type == bp_hardware_breakpoint);
/* Ranged breakpoints have only one location. */
gdb_assert (bl && bl->next == NULL);
annotate_breakpoint (b->number);
if (b->disposition == disp_del)
ui_out_text (uiout, "\nTemporary ranged breakpoint ");
else
ui_out_text (uiout, "\nRanged breakpoint ");
if (ui_out_is_mi_like_p (uiout))
{
ui_out_field_string (uiout, "reason",
async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
}
ui_out_field_int (uiout, "bkptno", b->number);
ui_out_text (uiout, ", ");
return PRINT_SRC_AND_LOC;
}
/* Implement the "print_one" breakpoint_ops method for
ranged breakpoints. */
static void
print_one_ranged_breakpoint (struct breakpoint *b,
struct bp_location **last_loc)
{
struct bp_location *bl = b->loc;
struct value_print_options opts;
struct ui_out *uiout = current_uiout;
/* Ranged breakpoints have only one location. */
gdb_assert (bl && bl->next == NULL);
get_user_print_options (&opts);
if (opts.addressprint)
/* We don't print the address range here, it will be printed later
by print_one_detail_ranged_breakpoint. */
ui_out_field_skip (uiout, "addr");
annotate_field (5);
print_breakpoint_location (b, bl);
*last_loc = bl;
}
/* Implement the "print_one_detail" breakpoint_ops method for
ranged breakpoints. */
static void
print_one_detail_ranged_breakpoint (const struct breakpoint *b,
struct ui_out *uiout)
{
CORE_ADDR address_start, address_end;
struct bp_location *bl = b->loc;
struct ui_file *stb = mem_fileopen ();
struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
gdb_assert (bl);
address_start = bl->address;
address_end = address_start + bl->length - 1;
ui_out_text (uiout, "\taddress range: ");
fprintf_unfiltered (stb, "[%s, %s]",
print_core_address (bl->gdbarch, address_start),
print_core_address (bl->gdbarch, address_end));
ui_out_field_stream (uiout, "addr", stb);
ui_out_text (uiout, "\n");
do_cleanups (cleanup);
}
/* Implement the "print_mention" breakpoint_ops method for
ranged breakpoints. */
static void
print_mention_ranged_breakpoint (struct breakpoint *b)
{
struct bp_location *bl = b->loc;
struct ui_out *uiout = current_uiout;
gdb_assert (bl);
gdb_assert (b->type == bp_hardware_breakpoint);
if (ui_out_is_mi_like_p (uiout))
return;
printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
b->number, paddress (bl->gdbarch, bl->address),
paddress (bl->gdbarch, bl->address + bl->length - 1));
}
/* Implement the "print_recreate" breakpoint_ops method for
ranged breakpoints. */
static void
print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
{
fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
b->addr_string_range_end);
print_recreate_thread (b, fp);
}
/* The breakpoint_ops structure to be used in ranged breakpoints. */
static struct breakpoint_ops ranged_breakpoint_ops;
/* Find the address where the end of the breakpoint range should be
placed, given the SAL of the end of the range. This is so that if
the user provides a line number, the end of the range is set to the
last instruction of the given line. */
static CORE_ADDR
find_breakpoint_range_end (struct symtab_and_line sal)
{
CORE_ADDR end;
/* If the user provided a PC value, use it. Otherwise,
find the address of the end of the given location. */
if (sal.explicit_pc)
end = sal.pc;
else
{
int ret;
CORE_ADDR start;
ret = find_line_pc_range (sal, &start, &end);
if (!ret)
error (_("Could not find location of the end of the range."));
/* find_line_pc_range returns the start of the next line. */
end--;
}
return end;
}
/* Implement the "break-range" CLI command. */
static void
break_range_command (char *arg, int from_tty)
{
char *arg_start, *addr_string_start, *addr_string_end;
struct linespec_result canonical_start, canonical_end;
int bp_count, can_use_bp, length;
CORE_ADDR end;
struct breakpoint *b;
struct symtab_and_line sal_start, sal_end;
struct cleanup *cleanup_bkpt;
struct linespec_sals *lsal_start, *lsal_end;
/* We don't support software ranged breakpoints. */
if (target_ranged_break_num_registers () < 0)
error (_("This target does not support hardware ranged breakpoints."));
bp_count = hw_breakpoint_used_count ();
bp_count += target_ranged_break_num_registers ();
can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
bp_count, 0);
if (can_use_bp < 0)
error (_("Hardware breakpoints used exceeds limit."));
arg = skip_spaces (arg);
if (arg == NULL || arg[0] == '\0')
error(_("No address range specified."));
init_linespec_result (&canonical_start);
arg_start = arg;
parse_breakpoint_sals (&arg, &canonical_start);
cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
if (arg[0] != ',')
error (_("Too few arguments."));
else if (VEC_empty (linespec_sals, canonical_start.sals))
error (_("Could not find location of the beginning of the range."));
lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
if (VEC_length (linespec_sals, canonical_start.sals) > 1
|| lsal_start->sals.nelts != 1)
error (_("Cannot create a ranged breakpoint with multiple locations."));
sal_start = lsal_start->sals.sals[0];
addr_string_start = savestring (arg_start, arg - arg_start);
make_cleanup (xfree, addr_string_start);
arg++; /* Skip the comma. */
arg = skip_spaces (arg);
/* Parse the end location. */
init_linespec_result (&canonical_end);
arg_start = arg;
/* We call decode_line_full directly here instead of using
parse_breakpoint_sals because we need to specify the start location's
symtab and line as the default symtab and line for the end of the
range. This makes it possible to have ranges like "foo.c:27, +14",
where +14 means 14 lines from the start location. */
decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
sal_start.symtab, sal_start.line,
&canonical_end, NULL, NULL);
make_cleanup_destroy_linespec_result (&canonical_end);
if (VEC_empty (linespec_sals, canonical_end.sals))
error (_("Could not find location of the end of the range."));
lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
if (VEC_length (linespec_sals, canonical_end.sals) > 1
|| lsal_end->sals.nelts != 1)
error (_("Cannot create a ranged breakpoint with multiple locations."));
sal_end = lsal_end->sals.sals[0];
addr_string_end = savestring (arg_start, arg - arg_start);
make_cleanup (xfree, addr_string_end);
end = find_breakpoint_range_end (sal_end);
if (sal_start.pc > end)
error (_("Invalid address range, end precedes start."));
length = end - sal_start.pc + 1;
if (length < 0)
/* Length overflowed. */
error (_("Address range too large."));
else if (length == 1)
{
/* This range is simple enough to be handled by
the `hbreak' command. */
hbreak_command (addr_string_start, 1);
do_cleanups (cleanup_bkpt);
return;
}
/* Now set up the breakpoint. */
b = set_raw_breakpoint (get_current_arch (), sal_start,
bp_hardware_breakpoint, &ranged_breakpoint_ops);
set_breakpoint_count (breakpoint_count + 1);
b->number = breakpoint_count;
b->disposition = disp_donttouch;
b->addr_string = xstrdup (addr_string_start);
b->addr_string_range_end = xstrdup (addr_string_end);
b->loc->length = length;
do_cleanups (cleanup_bkpt);
mention (b);
observer_notify_breakpoint_created (b);
update_global_location_list (1);
}
/* Return non-zero if EXP is verified as constant. Returned zero
means EXP is variable. Also the constant detection may fail for
some constant expressions and in such case still falsely return
zero. */
static int
watchpoint_exp_is_const (const struct expression *exp)
{
int i = exp->nelts;
while (i > 0)
{
int oplenp, argsp;
/* We are only interested in the descriptor of each element. */
operator_length (exp, i, &oplenp, &argsp);
i -= oplenp;
switch (exp->elts[i].opcode)
{
case BINOP_ADD:
case BINOP_SUB:
case BINOP_MUL:
case BINOP_DIV:
case BINOP_REM:
case BINOP_MOD:
case BINOP_LSH:
case BINOP_RSH:
case BINOP_LOGICAL_AND:
case BINOP_LOGICAL_OR:
case BINOP_BITWISE_AND:
case BINOP_BITWISE_IOR:
case BINOP_BITWISE_XOR:
case BINOP_EQUAL:
case BINOP_NOTEQUAL:
case BINOP_LESS:
case BINOP_GTR:
case BINOP_LEQ:
case BINOP_GEQ:
case BINOP_REPEAT:
case BINOP_COMMA:
case BINOP_EXP:
case BINOP_MIN:
case BINOP_MAX:
case BINOP_INTDIV:
case BINOP_CONCAT:
case BINOP_IN:
case BINOP_RANGE:
case TERNOP_COND:
case TERNOP_SLICE:
case OP_LONG:
case OP_DOUBLE:
case OP_DECFLOAT:
case OP_LAST:
case OP_COMPLEX:
case OP_STRING:
case OP_ARRAY:
case OP_TYPE:
case OP_TYPEOF:
case OP_DECLTYPE:
case OP_TYPEID:
case OP_NAME:
case OP_OBJC_NSSTRING:
case UNOP_NEG:
case UNOP_LOGICAL_NOT:
case UNOP_COMPLEMENT:
case UNOP_ADDR:
case UNOP_HIGH:
case UNOP_CAST:
case UNOP_CAST_TYPE:
case UNOP_REINTERPRET_CAST:
case UNOP_DYNAMIC_CAST:
/* Unary, binary and ternary operators: We have to check
their operands. If they are constant, then so is the
result of that operation. For instance, if A and B are
determined to be constants, then so is "A + B".
UNOP_IND is one exception to the rule above, because the
value of *ADDR is not necessarily a constant, even when
ADDR is. */
break;
case OP_VAR_VALUE:
/* Check whether the associated symbol is a constant.
We use SYMBOL_CLASS rather than TYPE_CONST because it's
possible that a buggy compiler could mark a variable as
constant even when it is not, and TYPE_CONST would return
true in this case, while SYMBOL_CLASS wouldn't.
We also have to check for function symbols because they
are always constant. */
{
struct symbol *s = exp->elts[i + 2].symbol;
if (SYMBOL_CLASS (s) != LOC_BLOCK
&& SYMBOL_CLASS (s) != LOC_CONST
&& SYMBOL_CLASS (s) != LOC_CONST_BYTES)
return 0;
break;
}
/* The default action is to return 0 because we are using
the optimistic approach here: If we don't know something,
then it is not a constant. */
default:
return 0;
}
}
return 1;
}
/* Implement the "dtor" breakpoint_ops method for watchpoints. */
static void
dtor_watchpoint (struct breakpoint *self)
{
struct watchpoint *w = (struct watchpoint *) self;
xfree (w->cond_exp);
xfree (w->exp);
xfree (w->exp_string);
xfree (w->exp_string_reparse);
value_free (w->val);
base_breakpoint_ops.dtor (self);
}
/* Implement the "re_set" breakpoint_ops method for watchpoints. */
static void
re_set_watchpoint (struct breakpoint *b)
{
struct watchpoint *w = (struct watchpoint *) b;
/* Watchpoint can be either on expression using entirely global
variables, or it can be on local variables.
Watchpoints of the first kind are never auto-deleted, and even
persist across program restarts. Since they can use variables
from shared libraries, we need to reparse expression as libraries
are loaded and unloaded.
Watchpoints on local variables can also change meaning as result
of solib event. For example, if a watchpoint uses both a local
and a global variables in expression, it's a local watchpoint,
but unloading of a shared library will make the expression
invalid. This is not a very common use case, but we still
re-evaluate expression, to avoid surprises to the user.
Note that for local watchpoints, we re-evaluate it only if
watchpoints frame id is still valid. If it's not, it means the
watchpoint is out of scope and will be deleted soon. In fact,
I'm not sure we'll ever be called in this case.
If a local watchpoint's frame id is still valid, then
w->exp_valid_block is likewise valid, and we can safely use it.
Don't do anything about disabled watchpoints, since they will be
reevaluated again when enabled. */
update_watchpoint (w, 1 /* reparse */);
}
/* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
static int
insert_watchpoint (struct bp_location *bl)
{
struct watchpoint *w = (struct watchpoint *) bl->owner;
int length = w->exact ? 1 : bl->length;
return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
w->cond_exp);
}
/* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
static int
remove_watchpoint (struct bp_location *bl)
{
struct watchpoint *w = (struct watchpoint *) bl->owner;
int length = w->exact ? 1 : bl->length;
return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
w->cond_exp);
}
static int
breakpoint_hit_watchpoint (const struct bp_location *bl,
struct address_space *aspace, CORE_ADDR bp_addr,
const struct target_waitstatus *ws)
{
struct breakpoint *b = bl->owner;
struct watchpoint *w = (struct watchpoint *) b;
/* Continuable hardware watchpoints are treated as non-existent if the
reason we stopped wasn't a hardware watchpoint (we didn't stop on
some data address). Otherwise gdb won't stop on a break instruction
in the code (not from a breakpoint) when a hardware watchpoint has
been defined. Also skip watchpoints which we know did not trigger
(did not match the data address). */
if (is_hardware_watchpoint (b)
&& w->watchpoint_triggered == watch_triggered_no)
return 0;
return 1;
}
static void
check_status_watchpoint (bpstat bs)
{
gdb_assert (is_watchpoint (bs->breakpoint_at));
bpstat_check_watchpoint (bs);
}
/* Implement the "resources_needed" breakpoint_ops method for
hardware watchpoints. */
static int
resources_needed_watchpoint (const struct bp_location *bl)
{
struct watchpoint *w = (struct watchpoint *) bl->owner;
int length = w->exact? 1 : bl->length;
return target_region_ok_for_hw_watchpoint (bl->address, length);
}
/* Implement the "works_in_software_mode" breakpoint_ops method for
hardware watchpoints. */
static int
works_in_software_mode_watchpoint (const struct breakpoint *b)
{
/* Read and access watchpoints only work with hardware support. */
return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
}
static enum print_stop_action
print_it_watchpoint (bpstat bs)
{
struct cleanup *old_chain;
struct breakpoint *b;
struct ui_file *stb;
enum print_stop_action result;
struct watchpoint *w;
struct ui_out *uiout = current_uiout;
gdb_assert (bs->bp_location_at != NULL);
b = bs->breakpoint_at;
w = (struct watchpoint *) b;
stb = mem_fileopen ();
old_chain = make_cleanup_ui_file_delete (stb);
switch (b->type)
{
case bp_watchpoint:
case bp_hardware_watchpoint:
annotate_watchpoint (b->number);
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string
(uiout, "reason",
async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
mention (b);
make_cleanup_ui_out_tuple_begin_end (uiout, "value");
ui_out_text (uiout, "\nOld value = ");
watchpoint_value_print (bs->old_val, stb);
ui_out_field_stream (uiout, "old", stb);
ui_out_text (uiout, "\nNew value = ");
watchpoint_value_print (w->val, stb);
ui_out_field_stream (uiout, "new", stb);
ui_out_text (uiout, "\n");
/* More than one watchpoint may have been triggered. */
result = PRINT_UNKNOWN;
break;
case bp_read_watchpoint:
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string
(uiout, "reason",
async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
mention (b);
make_cleanup_ui_out_tuple_begin_end (uiout, "value");
ui_out_text (uiout, "\nValue = ");
watchpoint_value_print (w->val, stb);
ui_out_field_stream (uiout, "value", stb);
ui_out_text (uiout, "\n");
result = PRINT_UNKNOWN;
break;
case bp_access_watchpoint:
if (bs->old_val != NULL)
{
annotate_watchpoint (b->number);
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string
(uiout, "reason",
async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
mention (b);
make_cleanup_ui_out_tuple_begin_end (uiout, "value");
ui_out_text (uiout, "\nOld value = ");
watchpoint_value_print (bs->old_val, stb);
ui_out_field_stream (uiout, "old", stb);
ui_out_text (uiout, "\nNew value = ");
}
else
{
mention (b);
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string
(uiout, "reason",
async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
make_cleanup_ui_out_tuple_begin_end (uiout, "value");
ui_out_text (uiout, "\nValue = ");
}
watchpoint_value_print (w->val, stb);
ui_out_field_stream (uiout, "new", stb);
ui_out_text (uiout, "\n");
result = PRINT_UNKNOWN;
break;
default:
result = PRINT_UNKNOWN;
}
do_cleanups (old_chain);
return result;
}
/* Implement the "print_mention" breakpoint_ops method for hardware
watchpoints. */
static void
print_mention_watchpoint (struct breakpoint *b)
{
struct cleanup *ui_out_chain;
struct watchpoint *w = (struct watchpoint *) b;
struct ui_out *uiout = current_uiout;
switch (b->type)
{
case bp_watchpoint:
ui_out_text (uiout, "Watchpoint ");
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
break;
case bp_hardware_watchpoint:
ui_out_text (uiout, "Hardware watchpoint ");
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
break;
case bp_read_watchpoint:
ui_out_text (uiout, "Hardware read watchpoint ");
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
break;
case bp_access_watchpoint:
ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
break;
default:
internal_error (__FILE__, __LINE__,
_("Invalid hardware watchpoint type."));
}
ui_out_field_int (uiout, "number", b->number);
ui_out_text (uiout, ": ");
ui_out_field_string (uiout, "exp", w->exp_string);
do_cleanups (ui_out_chain);
}
/* Implement the "print_recreate" breakpoint_ops method for
watchpoints. */
static void
print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
{
struct watchpoint *w = (struct watchpoint *) b;
switch (b->type)
{
case bp_watchpoint:
case bp_hardware_watchpoint:
fprintf_unfiltered (fp, "watch");
break;
case bp_read_watchpoint:
fprintf_unfiltered (fp, "rwatch");
break;
case bp_access_watchpoint:
fprintf_unfiltered (fp, "awatch");
break;
default:
internal_error (__FILE__, __LINE__,
_("Invalid watchpoint type."));
}
fprintf_unfiltered (fp, " %s", w->exp_string);
print_recreate_thread (b, fp);
}
/* Implement the "explains_signal" breakpoint_ops method for
watchpoints. */
static int
explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
{
/* A software watchpoint cannot cause a signal other than
GDB_SIGNAL_TRAP. */
if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
return 0;
return 1;
}
/* The breakpoint_ops structure to be used in hardware watchpoints. */
static struct breakpoint_ops watchpoint_breakpoint_ops;
/* Implement the "insert" breakpoint_ops method for
masked hardware watchpoints. */
static int
insert_masked_watchpoint (struct bp_location *bl)
{
struct watchpoint *w = (struct watchpoint *) bl->owner;
return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
bl->watchpoint_type);
}
/* Implement the "remove" breakpoint_ops method for
masked hardware watchpoints. */
static int
remove_masked_watchpoint (struct bp_location *bl)
{
struct watchpoint *w = (struct watchpoint *) bl->owner;
return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
bl->watchpoint_type);
}
/* Implement the "resources_needed" breakpoint_ops method for
masked hardware watchpoints. */
static int
resources_needed_masked_watchpoint (const struct bp_location *bl)
{
struct watchpoint *w = (struct watchpoint *) bl->owner;
return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
}
/* Implement the "works_in_software_mode" breakpoint_ops method for
masked hardware watchpoints. */
static int
works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
{
return 0;
}
/* Implement the "print_it" breakpoint_ops method for
masked hardware watchpoints. */
static enum print_stop_action
print_it_masked_watchpoint (bpstat bs)
{
struct breakpoint *b = bs->breakpoint_at;
struct ui_out *uiout = current_uiout;
/* Masked watchpoints have only one location. */
gdb_assert (b->loc && b->loc->next == NULL);
switch (b->type)
{
case bp_hardware_watchpoint:
annotate_watchpoint (b->number);
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string
(uiout, "reason",
async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
break;
case bp_read_watchpoint:
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string
(uiout, "reason",
async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
break;
case bp_access_watchpoint:
if (ui_out_is_mi_like_p (uiout))
ui_out_field_string
(uiout, "reason",
async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
break;
default:
internal_error (__FILE__, __LINE__,
_("Invalid hardware watchpoint type."));
}
mention (b);
ui_out_text (uiout, _("\n\
Check the underlying instruction at PC for the memory\n\
address and value which triggered this watchpoint.\n"));
ui_out_text (uiout, "\n");
/* More than one watchpoint may have been triggered. */
return PRINT_UNKNOWN;
}
/* Implement the "print_one_detail" breakpoint_ops method for
masked hardware watchpoints. */
static void
print_one_detail_masked_watchpoint (const struct breakpoint *b,
struct ui_out *uiout)
{
struct watchpoint *w = (struct watchpoint *) b;
/* Masked watchpoints have only one location. */
gdb_assert (b->loc && b->loc->next == NULL);
ui_out_text (uiout, "\tmask ");
ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
ui_out_text (uiout, "\n");
}
/* Implement the "print_mention" breakpoint_ops method for
masked hardware watchpoints. */
static void
print_mention_masked_watchpoint (struct breakpoint *b)
{
struct watchpoint *w = (struct watchpoint *) b;
struct ui_out *uiout = current_uiout;
struct cleanup *ui_out_chain;
switch (b->type)
{
case bp_hardware_watchpoint:
ui_out_text (uiout, "Masked hardware watchpoint ");
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
break;
case bp_read_watchpoint:
ui_out_text (uiout, "Masked hardware read watchpoint ");
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
break;
case bp_access_watchpoint:
ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
break;
default:
internal_error (__FILE__, __LINE__,
_("Invalid hardware watchpoint type."));
}
ui_out_field_int (uiout, "number", b->number);
ui_out_text (uiout, ": ");
ui_out_field_string (uiout, "exp", w->exp_string);
do_cleanups (ui_out_chain);
}
/* Implement the "print_recreate" breakpoint_ops method for
masked hardware watchpoints. */
static void
print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
{
struct watchpoint *w = (struct watchpoint *) b;
char tmp[40];
switch (b->type)
{
case bp_hardware_watchpoint:
fprintf_unfiltered (fp, "watch");
break;
case bp_read_watchpoint:
fprintf_unfiltered (fp, "rwatch");
break;
case bp_access_watchpoint:
fprintf_unfiltered (fp, "awatch");
break;
default:
internal_error (__FILE__, __LINE__,
_("Invalid hardware watchpoint type."));
}
sprintf_vma (tmp, w->hw_wp_mask);
fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
print_recreate_thread (b, fp);
}
/* The breakpoint_ops structure to be used in masked hardware watchpoints. */
static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
/* Tell whether the given watchpoint is a masked hardware watchpoint. */
static int
is_masked_watchpoint (const struct breakpoint *b)
{
return b->ops == &masked_watchpoint_breakpoint_ops;
}
/* accessflag: hw_write: watch write,
hw_read: watch read,
hw_access: watch access (read or write) */
static void
watch_command_1 (const char *arg, int accessflag, int from_tty,
int just_location, int internal)
{
volatile struct gdb_exception e;
struct breakpoint *b, *scope_breakpoint = NULL;
struct expression *exp;
const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
struct value *val, *mark, *result;
struct frame_info *frame;
const char *exp_start = NULL;
const char *exp_end = NULL;
const char *tok, *end_tok;
int toklen = -1;
const char *cond_start = NULL;
const char *cond_end = NULL;
enum bptype bp_type;
int thread = -1;
int pc = 0;
/* Flag to indicate whether we are going to use masks for
the hardware watchpoint. */
int use_mask = 0;
CORE_ADDR mask = 0;
struct watchpoint *w;
char *expression;
struct cleanup *back_to;
/* Make sure that we actually have parameters to parse. */
if (arg != NULL && arg[0] != '\0')
{
const char *value_start;
exp_end = arg + strlen (arg);
/* Look for "parameter value" pairs at the end
of the arguments string. */
for (tok = exp_end - 1; tok > arg; tok--)
{
/* Skip whitespace at the end of the argument list. */
while (tok > arg && (*tok == ' ' || *tok == '\t'))
tok--;
/* Find the beginning of the last token.
This is the value of the parameter. */
while (tok > arg && (*tok != ' ' && *tok != '\t'))
tok--;
value_start = tok + 1;
/* Skip whitespace. */
while (tok > arg && (*tok == ' ' || *tok == '\t'))
tok--;
end_tok = tok;
/* Find the beginning of the second to last token.
This is the parameter itself. */
while (tok > arg && (*tok != ' ' && *tok != '\t'))
tok--;
tok++;
toklen = end_tok - tok + 1;
if (toklen == 6 && !strncmp (tok, "thread", 6))
{
/* At this point we've found a "thread" token, which means
the user is trying to set a watchpoint that triggers
only in a specific thread. */
char *endp;
if (thread != -1)
error(_("You can specify only one thread."));
/* Extract the thread ID from the next token. */
thread = strtol (value_start, &endp, 0);
/* Check if the user provided a valid numeric value for the
thread ID. */
if (*endp != ' ' && *endp != '\t' && *endp != '\0')
error (_("Invalid thread ID specification %s."), value_start);
/* Check if the thread actually exists. */
if (!valid_thread_id (thread))
invalid_thread_id_error (thread);
}
else if (toklen == 4 && !strncmp (tok, "mask", 4))
{
/* We've found a "mask" token, which means the user wants to
create a hardware watchpoint that is going to have the mask
facility. */
struct value *mask_value, *mark;
if (use_mask)
error(_("You can specify only one mask."));
use_mask = just_location = 1;
mark = value_mark ();
mask_value = parse_to_comma_and_eval (&value_start);
mask = value_as_address (mask_value);
value_free_to_mark (mark);
}
else
/* We didn't recognize what we found. We should stop here. */
break;
/* Truncate the string and get rid of the "parameter value" pair before
the arguments string is parsed by the parse_exp_1 function. */
exp_end = tok;
}
}
else
exp_end = arg;
/* Parse the rest of the arguments. From here on out, everything
is in terms of a newly allocated string instead of the original
ARG. */
innermost_block = NULL;
expression = savestring (arg, exp_end - arg);
back_to = make_cleanup (xfree, expression);
exp_start = arg = expression;
exp = parse_exp_1 (&arg, 0, 0, 0);
exp_end = arg;
/* Remove trailing whitespace from the expression before saving it.
This makes the eventual display of the expression string a bit
prettier. */
while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
--exp_end;
/* Checking if the expression is not constant. */
if (watchpoint_exp_is_const (exp))
{
int len;
len = exp_end - exp_start;
while (len > 0 && isspace (exp_start[len - 1]))
len--;
error (_("Cannot watch constant value `%.*s'."), len, exp_start);
}
exp_valid_block = innermost_block;
mark = value_mark ();
fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
if (just_location)
{
int ret;
exp_valid_block = NULL;
val = value_addr (result);
release_value (val);
value_free_to_mark (mark);
if (use_mask)
{
ret = target_masked_watch_num_registers (value_as_address (val),
mask);
if (ret == -1)
error (_("This target does not support masked watchpoints."));
else if (ret == -2)
error (_("Invalid mask or memory region."));
}
}
else if (val != NULL)
release_value (val);
tok = skip_spaces_const (arg);
end_tok = skip_to_space_const (tok);
toklen = end_tok - tok;
if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
{
struct expression *cond;
innermost_block = NULL;
tok = cond_start = end_tok + 1;
cond = parse_exp_1 (&tok, 0, 0, 0);
/* The watchpoint expression may not be local, but the condition
may still be. E.g.: `watch global if local > 0'. */
cond_exp_valid_block = innermost_block;
xfree (cond);
cond_end = tok;
}
if (*tok)
error (_("Junk at end of command."));
frame = block_innermost_frame (exp_valid_block);
/* If the expression is "local", then set up a "watchpoint scope"
breakpoint at the point where we've left the scope of the watchpoint
expression. Create the scope breakpoint before the watchpoint, so
that we will encounter it first in bpstat_stop_status. */
if (exp_valid_block && frame)
{
if (frame_id_p (frame_unwind_caller_id (frame)))
{
scope_breakpoint
= create_internal_breakpoint (frame_unwind_caller_arch (frame),
frame_unwind_caller_pc (frame),
bp_watchpoint_scope,
&momentary_breakpoint_ops);
scope_breakpoint->enable_state = bp_enabled;
/* Automatically delete the breakpoint when it hits. */
scope_breakpoint->disposition = disp_del;
/* Only break in the proper frame (help with recursion). */
scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
/* Set the address at which we will stop. */
scope_breakpoint->loc->gdbarch
= frame_unwind_caller_arch (frame);
scope_breakpoint->loc->requested_address
= frame_unwind_caller_pc (frame);
scope_breakpoint->loc->address
= adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
scope_breakpoint->loc->requested_address,
scope_breakpoint->type);
}
}
/* Now set up the breakpoint. We create all watchpoints as hardware
watchpoints here even if hardware watchpoints are turned off, a call
to update_watchpoint later in this function will cause the type to
drop back to bp_watchpoint (software watchpoint) if required. */
if (accessflag == hw_read)
bp_type = bp_read_watchpoint;
else if (accessflag == hw_access)
bp_type = bp_access_watchpoint;
else
bp_type = bp_hardware_watchpoint;
w = XCNEW (struct watchpoint);
b = &w->base;
if (use_mask)
init_raw_breakpoint_without_location (b, NULL, bp_type,
&masked_watchpoint_breakpoint_ops);
else
init_raw_breakpoint_without_location (b, NULL, bp_type,
&watchpoint_breakpoint_ops);
b->thread = thread;
b->disposition = disp_donttouch;
b->pspace = current_program_space;
w->exp = exp;
w->exp_valid_block = exp_valid_block;
w->cond_exp_valid_block = cond_exp_valid_block;
if (just_location)
{
struct type *t = value_type (val);
CORE_ADDR addr = value_as_address (val);
char *name;
t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
name = type_to_string (t);
w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
core_addr_to_string (addr));
xfree (name);
w->exp_string = xstrprintf ("-location %.*s",
(int) (exp_end - exp_start), exp_start);
/* The above expression is in C. */
b->language = language_c;
}
else
w->exp_string = savestring (exp_start, exp_end - exp_start);
if (use_mask)
{
w->hw_wp_mask = mask;
}
else
{
w->val = val;
w->val_valid = 1;
}
if (cond_start)
b->cond_string = savestring (cond_start, cond_end - cond_start);
else
b->cond_string = 0;
if (frame)
{
w->watchpoint_frame = get_frame_id (frame);
w->watchpoint_thread = inferior_ptid;
}
else
{
w->watchpoint_frame = null_frame_id;
w->watchpoint_thread = null_ptid;
}
if (scope_breakpoint != NULL)
{
/* The scope breakpoint is related to the watchpoint. We will
need to act on them together. */
b->related_breakpoint = scope_breakpoint;
scope_breakpoint->related_breakpoint = b;
}
if (!just_location)
value_free_to_mark (mark);
TRY_CATCH (e, RETURN_MASK_ALL)
{
/* Finally update the new watchpoint. This creates the locations
that should be inserted. */
update_watchpoint (w, 1);
}
if (e.reason < 0)
{
delete_breakpoint (b);
throw_exception (e);
}
install_breakpoint (internal, b, 1);
do_cleanups (back_to);
}
/* Return count of debug registers needed to watch the given expression.
If the watchpoint cannot be handled in hardware return zero. */
static int
can_use_hardware_watchpoint (struct value *v)
{
int found_memory_cnt = 0;
struct value *head = v;
/* Did the user specifically forbid us to use hardware watchpoints? */
if (!can_use_hw_watchpoints)
return 0;
/* Make sure that the value of the expression depends only upon
memory contents, and values computed from them within GDB. If we
find any register references or function calls, we can't use a
hardware watchpoint.
The idea here is that evaluating an expression generates a series
of values, one holding the value of every subexpression. (The
expression a*b+c has five subexpressions: a, b, a*b, c, and
a*b+c.) GDB's values hold almost enough information to establish
the criteria given above --- they identify memory lvalues,
register lvalues, computed values, etcetera. So we can evaluate
the expression, and then scan the chain of values that leaves
behind to decide whether we can detect any possible change to the
expression's final value using only hardware watchpoints.
However, I don't think that the values returned by inferior
function calls are special in any way. So this function may not
notice that an expression involving an inferior function call
can't be watched with hardware watchpoints. FIXME. */
for (; v; v = value_next (v))
{
if (VALUE_LVAL (v) == lval_memory)
{
if (v != head && value_lazy (v))
/* A lazy memory lvalue in the chain is one that GDB never
needed to fetch; we either just used its address (e.g.,
`a' in `a.b') or we never needed it at all (e.g., `a'
in `a,b'). This doesn't apply to HEAD; if that is
lazy then it was not readable, but watch it anyway. */
;
else
{
/* Ahh, memory we actually used! Check if we can cover
it with hardware watchpoints. */
struct type *vtype = check_typedef (value_type (v));
/* We only watch structs and arrays if user asked for it
explicitly, never if they just happen to appear in a
middle of some value chain. */
if (v == head
|| (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
&& TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
{
CORE_ADDR vaddr = value_address (v);
int len;
int num_regs;
len = (target_exact_watchpoints
&& is_scalar_type_recursive (vtype))?
1 : TYPE_LENGTH (value_type (v));
num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
if (!num_regs)
return 0;
else
found_memory_cnt += num_regs;
}
}
}
else if (VALUE_LVAL (v) != not_lval
&& deprecated_value_modifiable (v) == 0)
return 0; /* These are values from the history (e.g., $1). */
else if (VALUE_LVAL (v) == lval_register)
return 0; /* Cannot watch a register with a HW watchpoint. */
}
/* The expression itself looks suitable for using a hardware
watchpoint, but give the target machine a chance to reject it. */
return found_memory_cnt;
}
void
watch_command_wrapper (char *arg, int from_tty, int internal)
{
watch_command_1 (arg, hw_write, from_tty, 0, internal);
}
/* A helper function that looks for the "-location" argument and then
calls watch_command_1. */
static void
watch_maybe_just_location (char *arg, int accessflag, int from_tty)
{
int just_location = 0;
if (arg
&& (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
|| check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
{
arg = skip_spaces (arg);
just_location = 1;
}
watch_command_1 (arg, accessflag, from_tty, just_location, 0);
}
static void
watch_command (char *arg, int from_tty)
{
watch_maybe_just_location (arg, hw_write, from_tty);
}
void
rwatch_command_wrapper (char *arg, int from_tty, int internal)
{
watch_command_1 (arg, hw_read, from_tty, 0, internal);
}
static void
rwatch_command (char *arg, int from_tty)
{
watch_maybe_just_location (arg, hw_read, from_tty);
}
void
awatch_command_wrapper (char *arg, int from_tty, int internal)
{
watch_command_1 (arg, hw_access, from_tty, 0, internal);
}
static void
awatch_command (char *arg, int from_tty)
{
watch_maybe_just_location (arg, hw_access, from_tty);
}
/* Helper routines for the until_command routine in infcmd.c. Here
because it uses the mechanisms of breakpoints. */
struct until_break_command_continuation_args
{
struct breakpoint *breakpoint;
struct breakpoint *breakpoint2;
int thread_num;
};
/* This function is called by fetch_inferior_event via the
cmd_continuation pointer, to complete the until command. It takes
care of cleaning up the temporary breakpoints set up by the until
command. */
static void
until_break_command_continuation (void *arg, int err)
{
struct until_break_command_continuation_args *a = arg;
delete_breakpoint (a->breakpoint);
if (a->breakpoint2)
delete_breakpoint (a->breakpoint2);
delete_longjmp_breakpoint (a->thread_num);
}
void
until_break_command (char *arg, int from_tty, int anywhere)
{
struct symtabs_and_lines sals;
struct symtab_and_line sal;
struct frame_info *frame;
struct gdbarch *frame_gdbarch;
struct frame_id stack_frame_id;
struct frame_id caller_frame_id;
struct breakpoint *breakpoint;
struct breakpoint *breakpoint2 = NULL;
struct cleanup *old_chain;
int thread;
struct thread_info *tp;
clear_proceed_status ();
/* Set a breakpoint where the user wants it and at return from
this function. */
if (last_displayed_sal_is_valid ())
sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
get_last_displayed_symtab (),
get_last_displayed_line ());
else
sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
(struct symtab *) NULL, 0);
if (sals.nelts != 1)
error (_("Couldn't get information on specified line."));
sal = sals.sals[0];
xfree (sals.sals); /* malloc'd, so freed. */
if (*arg)
error (_("Junk at end of arguments."));
resolve_sal_pc (&sal);
tp = inferior_thread ();
thread = tp->num;
old_chain = make_cleanup (null_cleanup, NULL);
/* Note linespec handling above invalidates the frame chain.
Installing a breakpoint also invalidates the frame chain (as it
may need to switch threads), so do any frame handling before
that. */
frame = get_selected_frame (NULL);
frame_gdbarch = get_frame_arch (frame);
stack_frame_id = get_stack_frame_id (frame);
caller_frame_id = frame_unwind_caller_id (frame);
/* Keep within the current frame, or in frames called by the current
one. */
if (frame_id_p (caller_frame_id))
{
struct symtab_and_line sal2;
sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
sal2.pc = frame_unwind_caller_pc (frame);
breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
sal2,
caller_frame_id,
bp_until);
make_cleanup_delete_breakpoint (breakpoint2);
set_longjmp_breakpoint (tp, caller_frame_id);
make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
}
/* set_momentary_breakpoint could invalidate FRAME. */
frame = NULL;
if (anywhere)
/* If the user told us to continue until a specified location,
we don't specify a frame at which we need to stop. */
breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
null_frame_id, bp_until);
else
/* Otherwise, specify the selected frame, because we want to stop
only at the very same frame. */
breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
stack_frame_id, bp_until);
make_cleanup_delete_breakpoint (breakpoint);
proceed (-1, GDB_SIGNAL_DEFAULT, 0);
/* If we are running asynchronously, and proceed call above has
actually managed to start the target, arrange for breakpoints to
be deleted when the target stops. Otherwise, we're already
stopped and delete breakpoints via cleanup chain. */
if (target_can_async_p () && is_running (inferior_ptid))
{
struct until_break_command_continuation_args *args;
args = xmalloc (sizeof (*args));
args->breakpoint = breakpoint;
args->breakpoint2 = breakpoint2;
args->thread_num = thread;
discard_cleanups (old_chain);
add_continuation (inferior_thread (),
until_break_command_continuation, args,
xfree);
}
else
do_cleanups (old_chain);
}
/* This function attempts to parse an optional "if " clause
from the arg string. If one is not found, it returns NULL.
Else, it returns a pointer to the condition string. (It does not
attempt to evaluate the string against a particular block.) And,
it updates arg to point to the first character following the parsed
if clause in the arg string. */
char *
ep_parse_optional_if_clause (char **arg)
{
char *cond_string;
if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
return NULL;
/* Skip the "if" keyword. */
(*arg) += 2;
/* Skip any extra leading whitespace, and record the start of the
condition string. */
*arg = skip_spaces (*arg);
cond_string = *arg;
/* Assume that the condition occupies the remainder of the arg
string. */
(*arg) += strlen (cond_string);
return cond_string;
}
/* Commands to deal with catching events, such as signals, exceptions,
process start/exit, etc. */
typedef enum
{
catch_fork_temporary, catch_vfork_temporary,
catch_fork_permanent, catch_vfork_permanent
}
catch_fork_kind;
static void
catch_fork_command_1 (char *arg, int from_tty,
struct cmd_list_element *command)
{
struct gdbarch *gdbarch = get_current_arch ();
char *cond_string = NULL;
catch_fork_kind fork_kind;
int tempflag;
fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
tempflag = (fork_kind == catch_fork_temporary
|| fork_kind == catch_vfork_temporary);
if (!arg)
arg = "";
arg = skip_spaces (arg);
/* The allowed syntax is:
catch [v]fork
catch [v]fork if
First, check if there's an if clause. */
cond_string = ep_parse_optional_if_clause (&arg);
if ((*arg != '\0') && !isspace (*arg))
error (_("Junk at end of arguments."));
/* If this target supports it, create a fork or vfork catchpoint
and enable reporting of such events. */
switch (fork_kind)
{
case catch_fork_temporary:
case catch_fork_permanent:
create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
&catch_fork_breakpoint_ops);
break;
case catch_vfork_temporary:
case catch_vfork_permanent:
create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
&catch_vfork_breakpoint_ops);
break;
default:
error (_("unsupported or unknown fork kind; cannot catch it"));
break;
}
}
static void
catch_exec_command_1 (char *arg, int from_tty,
struct cmd_list_element *command)
{
struct exec_catchpoint *c;
struct gdbarch *gdbarch = get_current_arch ();
int tempflag;
char *cond_string = NULL;
tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
if (!arg)
arg = "";
arg = skip_spaces (arg);
/* The allowed syntax is:
catch exec
catch exec if
First, check if there's an if clause. */
cond_string = ep_parse_optional_if_clause (&arg);
if ((*arg != '\0') && !isspace (*arg))
error (_("Junk at end of arguments."));
c = XNEW (struct exec_catchpoint);
init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
&catch_exec_breakpoint_ops);
c->exec_pathname = NULL;
install_breakpoint (0, &c->base, 1);
}
void
init_ada_exception_breakpoint (struct breakpoint *b,
struct gdbarch *gdbarch,
struct symtab_and_line sal,
char *addr_string,
const struct breakpoint_ops *ops,
int tempflag,
int enabled,
int from_tty)
{
if (from_tty)
{
struct gdbarch *loc_gdbarch = get_sal_arch (sal);
if (!loc_gdbarch)
loc_gdbarch = gdbarch;
describe_other_breakpoints (loc_gdbarch,
sal.pspace, sal.pc, sal.section, -1);
/* FIXME: brobecker/2006-12-28: Actually, re-implement a special
version for exception catchpoints, because two catchpoints
used for different exception names will use the same address.
In this case, a "breakpoint ... also set at..." warning is
unproductive. Besides, the warning phrasing is also a bit
inappropriate, we should use the word catchpoint, and tell
the user what type of catchpoint it is. The above is good
enough for now, though. */
}
init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
b->enable_state = enabled ? bp_enabled : bp_disabled;
b->disposition = tempflag ? disp_del : disp_donttouch;
b->addr_string = addr_string;
b->language = language_ada;
}
/* Splits the argument using space as delimiter. Returns an xmalloc'd
filter list, or NULL if no filtering is required. */
static VEC(int) *
catch_syscall_split_args (char *arg)
{
VEC(int) *result = NULL;
struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
while (*arg != '\0')
{
int i, syscall_number;
char *endptr;
char cur_name[128];
struct syscall s;
/* Skip whitespace. */
arg = skip_spaces (arg);
for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
cur_name[i] = arg[i];
cur_name[i] = '\0';
arg += i;
/* Check if the user provided a syscall name or a number. */
syscall_number = (int) strtol (cur_name, &endptr, 0);
if (*endptr == '\0')
get_syscall_by_number (syscall_number, &s);
else
{
/* We have a name. Let's check if it's valid and convert it
to a number. */
get_syscall_by_name (cur_name, &s);
if (s.number == UNKNOWN_SYSCALL)
/* Here we have to issue an error instead of a warning,
because GDB cannot do anything useful if there's no
syscall number to be caught. */
error (_("Unknown syscall name '%s'."), cur_name);
}
/* Ok, it's valid. */
VEC_safe_push (int, result, s.number);
}
discard_cleanups (cleanup);
return result;
}
/* Implement the "catch syscall" command. */
static void
catch_syscall_command_1 (char *arg, int from_tty,
struct cmd_list_element *command)
{
int tempflag;
VEC(int) *filter;
struct syscall s;
struct gdbarch *gdbarch = get_current_arch ();
/* Checking if the feature if supported. */
if (gdbarch_get_syscall_number_p (gdbarch) == 0)
error (_("The feature 'catch syscall' is not supported on \
this architecture yet."));
tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
arg = skip_spaces (arg);
/* We need to do this first "dummy" translation in order
to get the syscall XML file loaded or, most important,
to display a warning to the user if there's no XML file
for his/her architecture. */
get_syscall_by_number (0, &s);
/* The allowed syntax is:
catch syscall
catch syscall [ ... ]
Let's check if there's a syscall name. */
if (arg != NULL)
filter = catch_syscall_split_args (arg);
else
filter = NULL;
create_syscall_event_catchpoint (tempflag, filter,
&catch_syscall_breakpoint_ops);
}
static void
catch_command (char *arg, int from_tty)
{
error (_("Catch requires an event name."));
}
static void
tcatch_command (char *arg, int from_tty)
{
error (_("Catch requires an event name."));
}
/* A qsort comparison function that sorts breakpoints in order. */
static int
compare_breakpoints (const void *a, const void *b)
{
const breakpoint_p *ba = a;
uintptr_t ua = (uintptr_t) *ba;
const breakpoint_p *bb = b;
uintptr_t ub = (uintptr_t) *bb;
if ((*ba)->number < (*bb)->number)
return -1;
else if ((*ba)->number > (*bb)->number)
return 1;
/* Now sort by address, in case we see, e..g, two breakpoints with
the number 0. */
if (ua < ub)
return -1;
return ua > ub ? 1 : 0;
}
/* Delete breakpoints by address or line. */
static void
clear_command (char *arg, int from_tty)
{
struct breakpoint *b, *prev;
VEC(breakpoint_p) *found = 0;
int ix;
int default_match;
struct symtabs_and_lines sals;
struct symtab_and_line sal;
int i;
struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
if (arg)
{
sals = decode_line_with_current_source (arg,
(DECODE_LINE_FUNFIRSTLINE
| DECODE_LINE_LIST_MODE));
make_cleanup (xfree, sals.sals);
default_match = 0;
}
else
{
sals.sals = (struct symtab_and_line *)
xmalloc (sizeof (struct symtab_and_line));
make_cleanup (xfree, sals.sals);
init_sal (&sal); /* Initialize to zeroes. */
/* Set sal's line, symtab, pc, and pspace to the values
corresponding to the last call to print_frame_info. If the
codepoint is not valid, this will set all the fields to 0. */
get_last_displayed_sal (&sal);
if (sal.symtab == 0)
error (_("No source file specified."));
sals.sals[0] = sal;
sals.nelts = 1;
default_match = 1;
}
/* We don't call resolve_sal_pc here. That's not as bad as it
seems, because all existing breakpoints typically have both
file/line and pc set. So, if clear is given file/line, we can
match this to existing breakpoint without obtaining pc at all.
We only support clearing given the address explicitly
present in breakpoint table. Say, we've set breakpoint
at file:line. There were several PC values for that file:line,
due to optimization, all in one block.
We've picked one PC value. If "clear" is issued with another
PC corresponding to the same file:line, the breakpoint won't
be cleared. We probably can still clear the breakpoint, but
since the other PC value is never presented to user, user
can only find it by guessing, and it does not seem important
to support that. */
/* For each line spec given, delete bps which correspond to it. Do
it in two passes, solely to preserve the current behavior that
from_tty is forced true if we delete more than one
breakpoint. */
found = NULL;
make_cleanup (VEC_cleanup (breakpoint_p), &found);
for (i = 0; i < sals.nelts; i++)
{
const char *sal_fullname;
/* If exact pc given, clear bpts at that pc.
If line given (pc == 0), clear all bpts on specified line.
If defaulting, clear all bpts on default line
or at default pc.
defaulting sal.pc != 0 tests to do
0 1 pc
1 1 pc _and_ line
0 0 line
1 0 */
sal = sals.sals[i];
sal_fullname = (sal.symtab == NULL
? NULL : symtab_to_fullname (sal.symtab));
/* Find all matching breakpoints and add them to 'found'. */
ALL_BREAKPOINTS (b)
{
int match = 0;
/* Are we going to delete b? */
if (b->type != bp_none && !is_watchpoint (b))
{
struct bp_location *loc = b->loc;
for (; loc; loc = loc->next)
{
/* If the user specified file:line, don't allow a PC
match. This matches historical gdb behavior. */
int pc_match = (!sal.explicit_line
&& sal.pc
&& (loc->pspace == sal.pspace)
&& (loc->address == sal.pc)
&& (!section_is_overlay (loc->section)
|| loc->section == sal.section));
int line_match = 0;
if ((default_match || sal.explicit_line)
&& loc->symtab != NULL
&& sal_fullname != NULL
&& sal.pspace == loc->pspace
&& loc->line_number == sal.line
&& filename_cmp (symtab_to_fullname (loc->symtab),
sal_fullname) == 0)
line_match = 1;
if (pc_match || line_match)
{
match = 1;
break;
}
}
}
if (match)
VEC_safe_push(breakpoint_p, found, b);
}
}
/* Now go thru the 'found' chain and delete them. */
if (VEC_empty(breakpoint_p, found))
{
if (arg)
error (_("No breakpoint at %s."), arg);
else
error (_("No breakpoint at this line."));
}
/* Remove duplicates from the vec. */
qsort (VEC_address (breakpoint_p, found),
VEC_length (breakpoint_p, found),
sizeof (breakpoint_p),
compare_breakpoints);
prev = VEC_index (breakpoint_p, found, 0);
for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
{
if (b == prev)
{
VEC_ordered_remove (breakpoint_p, found, ix);
--ix;
}
}
if (VEC_length(breakpoint_p, found) > 1)
from_tty = 1; /* Always report if deleted more than one. */
if (from_tty)
{
if (VEC_length(breakpoint_p, found) == 1)
printf_unfiltered (_("Deleted breakpoint "));
else
printf_unfiltered (_("Deleted breakpoints "));
}
for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
{
if (from_tty)
printf_unfiltered ("%d ", b->number);
delete_breakpoint (b);
}
if (from_tty)
putchar_unfiltered ('\n');
do_cleanups (cleanups);
}
/* Delete breakpoint in BS if they are `delete' breakpoints and
all breakpoints that are marked for deletion, whether hit or not.
This is called after any breakpoint is hit, or after errors. */
void
breakpoint_auto_delete (bpstat bs)
{
struct breakpoint *b, *b_tmp;
for (; bs; bs = bs->next)
if (bs->breakpoint_at
&& bs->breakpoint_at->disposition == disp_del
&& bs->stop)
delete_breakpoint (bs->breakpoint_at);
ALL_BREAKPOINTS_SAFE (b, b_tmp)
{
if (b->disposition == disp_del_at_next_stop)
delete_breakpoint (b);
}
}
/* A comparison function for bp_location AP and BP being interfaced to
qsort. Sort elements primarily by their ADDRESS (no matter what
does breakpoint_address_is_meaningful say for its OWNER),
secondarily by ordering first bp_permanent OWNERed elements and
terciarily just ensuring the array is sorted stable way despite
qsort being an unstable algorithm. */
static int
bp_location_compare (const void *ap, const void *bp)
{
struct bp_location *a = *(void **) ap;
struct bp_location *b = *(void **) bp;
/* A and B come from existing breakpoints having non-NULL OWNER. */
int a_perm = a->owner->enable_state == bp_permanent;
int b_perm = b->owner->enable_state == bp_permanent;
if (a->address != b->address)
return (a->address > b->address) - (a->address < b->address);
/* Sort locations at the same address by their pspace number, keeping
locations of the same inferior (in a multi-inferior environment)
grouped. */
if (a->pspace->num != b->pspace->num)
return ((a->pspace->num > b->pspace->num)
- (a->pspace->num < b->pspace->num));
/* Sort permanent breakpoints first. */
if (a_perm != b_perm)
return (a_perm < b_perm) - (a_perm > b_perm);
/* Make the internal GDB representation stable across GDB runs
where A and B memory inside GDB can differ. Breakpoint locations of
the same type at the same address can be sorted in arbitrary order. */
if (a->owner->number != b->owner->number)
return ((a->owner->number > b->owner->number)
- (a->owner->number < b->owner->number));
return (a > b) - (a < b);
}
/* Set bp_location_placed_address_before_address_max and
bp_location_shadow_len_after_address_max according to the current
content of the bp_location array. */
static void
bp_location_target_extensions_update (void)
{
struct bp_location *bl, **blp_tmp;
bp_location_placed_address_before_address_max = 0;
bp_location_shadow_len_after_address_max = 0;
ALL_BP_LOCATIONS (bl, blp_tmp)
{
CORE_ADDR start, end, addr;
if (!bp_location_has_shadow (bl))
continue;
start = bl->target_info.placed_address;
end = start + bl->target_info.shadow_len;
gdb_assert (bl->address >= start);
addr = bl->address - start;
if (addr > bp_location_placed_address_before_address_max)
bp_location_placed_address_before_address_max = addr;
/* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
gdb_assert (bl->address < end);
addr = end - bl->address;
if (addr > bp_location_shadow_len_after_address_max)
bp_location_shadow_len_after_address_max = addr;
}
}
/* Download tracepoint locations if they haven't been. */
static void
download_tracepoint_locations (void)
{
struct breakpoint *b;
struct cleanup *old_chain;
if (!target_can_download_tracepoint ())
return;
old_chain = save_current_space_and_thread ();
ALL_TRACEPOINTS (b)
{
struct bp_location *bl;
struct tracepoint *t;
int bp_location_downloaded = 0;
if ((b->type == bp_fast_tracepoint
? !may_insert_fast_tracepoints
: !may_insert_tracepoints))
continue;
for (bl = b->loc; bl; bl = bl->next)
{
/* In tracepoint, locations are _never_ duplicated, so
should_be_inserted is equivalent to
unduplicated_should_be_inserted. */
if (!should_be_inserted (bl) || bl->inserted)
continue;
switch_to_program_space_and_thread (bl->pspace);
target_download_tracepoint (bl);
bl->inserted = 1;
bp_location_downloaded = 1;
}
t = (struct tracepoint *) b;
t->number_on_target = b->number;
if (bp_location_downloaded)
observer_notify_breakpoint_modified (b);
}
do_cleanups (old_chain);
}
/* Swap the insertion/duplication state between two locations. */
static void
swap_insertion (struct bp_location *left, struct bp_location *right)
{
const int left_inserted = left->inserted;
const int left_duplicate = left->duplicate;
const int left_needs_update = left->needs_update;
const struct bp_target_info left_target_info = left->target_info;
/* Locations of tracepoints can never be duplicated. */
if (is_tracepoint (left->owner))
gdb_assert (!left->duplicate);
if (is_tracepoint (right->owner))
gdb_assert (!right->duplicate);
left->inserted = right->inserted;
left->duplicate = right->duplicate;
left->needs_update = right->needs_update;
left->target_info = right->target_info;
right->inserted = left_inserted;
right->duplicate = left_duplicate;
right->needs_update = left_needs_update;
right->target_info = left_target_info;
}
/* Force the re-insertion of the locations at ADDRESS. This is called
once a new/deleted/modified duplicate location is found and we are evaluating
conditions on the target's side. Such conditions need to be updated on
the target. */
static void
force_breakpoint_reinsertion (struct bp_location *bl)
{
struct bp_location **locp = NULL, **loc2p;
struct bp_location *loc;
CORE_ADDR address = 0;
int pspace_num;
address = bl->address;
pspace_num = bl->pspace->num;
/* This is only meaningful if the target is
evaluating conditions and if the user has
opted for condition evaluation on the target's
side. */
if (gdb_evaluates_breakpoint_condition_p ()
|| !target_supports_evaluation_of_breakpoint_conditions ())
return;
/* Flag all breakpoint locations with this address and
the same program space as the location
as "its condition has changed". We need to
update the conditions on the target's side. */
ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
{
loc = *loc2p;
if (!is_breakpoint (loc->owner)
|| pspace_num != loc->pspace->num)
continue;
/* Flag the location appropriately. We use a different state to
let everyone know that we already updated the set of locations
with addr bl->address and program space bl->pspace. This is so
we don't have to keep calling these functions just to mark locations
that have already been marked. */
loc->condition_changed = condition_updated;
/* Free the agent expression bytecode as well. We will compute
it later on. */
if (loc->cond_bytecode)
{
free_agent_expr (loc->cond_bytecode);
loc->cond_bytecode = NULL;
}
}
}
/* If SHOULD_INSERT is false, do not insert any breakpoint locations
into the inferior, only remove already-inserted locations that no
longer should be inserted. Functions that delete a breakpoint or
breakpoints should pass false, so that deleting a breakpoint
doesn't have the side effect of inserting the locations of other
breakpoints that are marked not-inserted, but should_be_inserted
returns true on them.
This behaviour is useful is situations close to tear-down -- e.g.,
after an exec, while the target still has execution, but breakpoint
shadows of the previous executable image should *NOT* be restored
to the new image; or before detaching, where the target still has
execution and wants to delete breakpoints from GDB's lists, and all
breakpoints had already been removed from the inferior. */
static void
update_global_location_list (int should_insert)
{
struct breakpoint *b;
struct bp_location **locp, *loc;
struct cleanup *cleanups;
/* Last breakpoint location address that was marked for update. */
CORE_ADDR last_addr = 0;
/* Last breakpoint location program space that was marked for update. */
int last_pspace_num = -1;
/* Used in the duplicates detection below. When iterating over all
bp_locations, points to the first bp_location of a given address.
Breakpoints and watchpoints of different types are never
duplicates of each other. Keep one pointer for each type of
breakpoint/watchpoint, so we only need to loop over all locations
once. */
struct bp_location *bp_loc_first; /* breakpoint */
struct bp_location *wp_loc_first; /* hardware watchpoint */
struct bp_location *awp_loc_first; /* access watchpoint */
struct bp_location *rwp_loc_first; /* read watchpoint */
/* Saved former bp_location array which we compare against the newly
built bp_location from the current state of ALL_BREAKPOINTS. */
struct bp_location **old_location, **old_locp;
unsigned old_location_count;
old_location = bp_location;
old_location_count = bp_location_count;
bp_location = NULL;
bp_location_count = 0;
cleanups = make_cleanup (xfree, old_location);
ALL_BREAKPOINTS (b)
for (loc = b->loc; loc; loc = loc->next)
bp_location_count++;
bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
locp = bp_location;
ALL_BREAKPOINTS (b)
for (loc = b->loc; loc; loc = loc->next)
*locp++ = loc;
qsort (bp_location, bp_location_count, sizeof (*bp_location),
bp_location_compare);
bp_location_target_extensions_update ();
/* Identify bp_location instances that are no longer present in the
new list, and therefore should be freed. Note that it's not
necessary that those locations should be removed from inferior --
if there's another location at the same address (previously
marked as duplicate), we don't need to remove/insert the
location.
LOCP is kept in sync with OLD_LOCP, each pointing to the current
and former bp_location array state respectively. */
locp = bp_location;
for (old_locp = old_location; old_locp < old_location + old_location_count;
old_locp++)
{
struct bp_location *old_loc = *old_locp;
struct bp_location **loc2p;
/* Tells if 'old_loc' is found among the new locations. If
not, we have to free it. */
int found_object = 0;
/* Tells if the location should remain inserted in the target. */
int keep_in_target = 0;
int removed = 0;
/* Skip LOCP entries which will definitely never be needed.
Stop either at or being the one matching OLD_LOC. */
while (locp < bp_location + bp_location_count
&& (*locp)->address < old_loc->address)
locp++;
for (loc2p = locp;
(loc2p < bp_location + bp_location_count
&& (*loc2p)->address == old_loc->address);
loc2p++)
{
/* Check if this is a new/duplicated location or a duplicated
location that had its condition modified. If so, we want to send
its condition to the target if evaluation of conditions is taking
place there. */
if ((*loc2p)->condition_changed == condition_modified
&& (last_addr != old_loc->address
|| last_pspace_num != old_loc->pspace->num))
{
force_breakpoint_reinsertion (*loc2p);
last_pspace_num = old_loc->pspace->num;
}
if (*loc2p == old_loc)
found_object = 1;
}
/* We have already handled this address, update it so that we don't
have to go through updates again. */
last_addr = old_loc->address;
/* Target-side condition evaluation: Handle deleted locations. */
if (!found_object)
force_breakpoint_reinsertion (old_loc);
/* If this location is no longer present, and inserted, look if
there's maybe a new location at the same address. If so,
mark that one inserted, and don't remove this one. This is
needed so that we don't have a time window where a breakpoint
at certain location is not inserted. */
if (old_loc->inserted)
{
/* If the location is inserted now, we might have to remove
it. */
if (found_object && should_be_inserted (old_loc))
{
/* The location is still present in the location list,
and still should be inserted. Don't do anything. */
keep_in_target = 1;
}
else
{
/* This location still exists, but it won't be kept in the
target since it may have been disabled. We proceed to
remove its target-side condition. */
/* The location is either no longer present, or got
disabled. See if there's another location at the
same address, in which case we don't need to remove
this one from the target. */
/* OLD_LOC comes from existing struct breakpoint. */
if (breakpoint_address_is_meaningful (old_loc->owner))
{
for (loc2p = locp;
(loc2p < bp_location + bp_location_count
&& (*loc2p)->address == old_loc->address);
loc2p++)
{
struct bp_location *loc2 = *loc2p;
if (breakpoint_locations_match (loc2, old_loc))
{
/* Read watchpoint locations are switched to
access watchpoints, if the former are not
supported, but the latter are. */
if (is_hardware_watchpoint (old_loc->owner))
{
gdb_assert (is_hardware_watchpoint (loc2->owner));
loc2->watchpoint_type = old_loc->watchpoint_type;
}
/* loc2 is a duplicated location. We need to check
if it should be inserted in case it will be
unduplicated. */
if (loc2 != old_loc
&& unduplicated_should_be_inserted (loc2))
{
swap_insertion (old_loc, loc2);
keep_in_target = 1;
break;
}
}
}
}
}
if (!keep_in_target)
{
if (remove_breakpoint (old_loc, mark_uninserted))
{
/* This is just about all we can do. We could keep
this location on the global list, and try to
remove it next time, but there's no particular
reason why we will succeed next time.
Note that at this point, old_loc->owner is still
valid, as delete_breakpoint frees the breakpoint
only after calling us. */
printf_filtered (_("warning: Error removing "
"breakpoint %d\n"),
old_loc->owner->number);
}
removed = 1;
}
}
if (!found_object)
{
if (removed && non_stop
&& breakpoint_address_is_meaningful (old_loc->owner)
&& !is_hardware_watchpoint (old_loc->owner))
{
/* This location was removed from the target. In
non-stop mode, a race condition is possible where
we've removed a breakpoint, but stop events for that
breakpoint are already queued and will arrive later.
We apply an heuristic to be able to distinguish such
SIGTRAPs from other random SIGTRAPs: we keep this
breakpoint location for a bit, and will retire it
after we see some number of events. The theory here
is that reporting of events should, "on the average",
be fair, so after a while we'll see events from all
threads that have anything of interest, and no longer
need to keep this breakpoint location around. We
don't hold locations forever so to reduce chances of
mistaking a non-breakpoint SIGTRAP for a breakpoint
SIGTRAP.
The heuristic failing can be disastrous on
decr_pc_after_break targets.
On decr_pc_after_break targets, like e.g., x86-linux,
if we fail to recognize a late breakpoint SIGTRAP,
because events_till_retirement has reached 0 too
soon, we'll fail to do the PC adjustment, and report
a random SIGTRAP to the user. When the user resumes
the inferior, it will most likely immediately crash
with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
corrupted, because of being resumed e.g., in the
middle of a multi-byte instruction, or skipped a
one-byte instruction. This was actually seen happen
on native x86-linux, and should be less rare on
targets that do not support new thread events, like
remote, due to the heuristic depending on
thread_count.
Mistaking a random SIGTRAP for a breakpoint trap
causes similar symptoms (PC adjustment applied when
it shouldn't), but then again, playing with SIGTRAPs
behind the debugger's back is asking for trouble.
Since hardware watchpoint traps are always
distinguishable from other traps, so we don't need to
apply keep hardware watchpoint moribund locations
around. We simply always ignore hardware watchpoint
traps we can no longer explain. */
old_loc->events_till_retirement = 3 * (thread_count () + 1);
old_loc->owner = NULL;
VEC_safe_push (bp_location_p, moribund_locations, old_loc);
}
else
{
old_loc->owner = NULL;
decref_bp_location (&old_loc);
}
}
}
/* Rescan breakpoints at the same address and section, marking the
first one as "first" and any others as "duplicates". This is so
that the bpt instruction is only inserted once. If we have a
permanent breakpoint at the same place as BPT, make that one the
official one, and the rest as duplicates. Permanent breakpoints
are sorted first for the same address.
Do the same for hardware watchpoints, but also considering the
watchpoint's type (regular/access/read) and length. */
bp_loc_first = NULL;
wp_loc_first = NULL;
awp_loc_first = NULL;
rwp_loc_first = NULL;
ALL_BP_LOCATIONS (loc, locp)
{
/* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
non-NULL. */
struct bp_location **loc_first_p;
b = loc->owner;
if (!unduplicated_should_be_inserted (loc)
|| !breakpoint_address_is_meaningful (b)
/* Don't detect duplicate for tracepoint locations because they are
never duplicated. See the comments in field `duplicate' of
`struct bp_location'. */
|| is_tracepoint (b))
{
/* Clear the condition modification flag. */
loc->condition_changed = condition_unchanged;
continue;
}
/* Permanent breakpoint should always be inserted. */
if (b->enable_state == bp_permanent && ! loc->inserted)
internal_error (__FILE__, __LINE__,
_("allegedly permanent breakpoint is not "
"actually inserted"));
if (b->type == bp_hardware_watchpoint)
loc_first_p = &wp_loc_first;
else if (b->type == bp_read_watchpoint)
loc_first_p = &rwp_loc_first;
else if (b->type == bp_access_watchpoint)
loc_first_p = &awp_loc_first;
else
loc_first_p = &bp_loc_first;
if (*loc_first_p == NULL
|| (overlay_debugging && loc->section != (*loc_first_p)->section)
|| !breakpoint_locations_match (loc, *loc_first_p))
{
*loc_first_p = loc;
loc->duplicate = 0;
if (is_breakpoint (loc->owner) && loc->condition_changed)
{
loc->needs_update = 1;
/* Clear the condition modification flag. */
loc->condition_changed = condition_unchanged;
}
continue;
}
/* This and the above ensure the invariant that the first location
is not duplicated, and is the inserted one.
All following are marked as duplicated, and are not inserted. */
if (loc->inserted)
swap_insertion (loc, *loc_first_p);
loc->duplicate = 1;
/* Clear the condition modification flag. */
loc->condition_changed = condition_unchanged;
if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
&& b->enable_state != bp_permanent)
internal_error (__FILE__, __LINE__,
_("another breakpoint was inserted on top of "
"a permanent breakpoint"));
}
if (breakpoints_always_inserted_mode ()
&& (have_live_inferiors ()
|| (gdbarch_has_global_breakpoints (target_gdbarch ()))))
{
if (should_insert)
insert_breakpoint_locations ();
else
{
/* Though should_insert is false, we may need to update conditions
on the target's side if it is evaluating such conditions. We
only update conditions for locations that are marked
"needs_update". */
update_inserted_breakpoint_locations ();
}
}
if (should_insert)
download_tracepoint_locations ();
do_cleanups (cleanups);
}
void
breakpoint_retire_moribund (void)
{
struct bp_location *loc;
int ix;
for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
if (--(loc->events_till_retirement) == 0)
{
decref_bp_location (&loc);
VEC_unordered_remove (bp_location_p, moribund_locations, ix);
--ix;
}
}
static void
update_global_location_list_nothrow (int inserting)
{
volatile struct gdb_exception e;
TRY_CATCH (e, RETURN_MASK_ERROR)
update_global_location_list (inserting);
}
/* Clear BKP from a BPS. */
static void
bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
{
bpstat bs;
for (bs = bps; bs; bs = bs->next)
if (bs->breakpoint_at == bpt)
{
bs->breakpoint_at = NULL;
bs->old_val = NULL;
/* bs->commands will be freed later. */
}
}
/* Callback for iterate_over_threads. */
static int
bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
{
struct breakpoint *bpt = data;
bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
return 0;
}
/* Helper for breakpoint and tracepoint breakpoint_ops->mention
callbacks. */
static void
say_where (struct breakpoint *b)
{
struct value_print_options opts;
get_user_print_options (&opts);
/* i18n: cagney/2005-02-11: Below needs to be merged into a
single string. */
if (b->loc == NULL)
{
printf_filtered (_(" (%s) pending."), b->addr_string);
}
else
{
if (opts.addressprint || b->loc->symtab == NULL)
{
printf_filtered (" at ");
fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
gdb_stdout);
}
if (b->loc->symtab != NULL)
{
/* If there is a single location, we can print the location
more nicely. */
if (b->loc->next == NULL)
printf_filtered (": file %s, line %d.",
symtab_to_filename_for_display (b->loc->symtab),
b->loc->line_number);
else
/* This is not ideal, but each location may have a
different file name, and this at least reflects the
real situation somewhat. */
printf_filtered (": %s.", b->addr_string);
}
if (b->loc->next)
{
struct bp_location *loc = b->loc;
int n = 0;
for (; loc; loc = loc->next)
++n;
printf_filtered (" (%d locations)", n);
}
}
}
/* Default bp_location_ops methods. */
static void
bp_location_dtor (struct bp_location *self)
{
xfree (self->cond);
if (self->cond_bytecode)
free_agent_expr (self->cond_bytecode);
xfree (self->function_name);
VEC_free (agent_expr_p, self->target_info.conditions);
VEC_free (agent_expr_p, self->target_info.tcommands);
}
static const struct bp_location_ops bp_location_ops =
{
bp_location_dtor
};
/* Default breakpoint_ops methods all breakpoint_ops ultimately
inherit from. */
static void
base_breakpoint_dtor (struct breakpoint *self)
{
decref_counted_command_line (&self->commands);
xfree (self->cond_string);
xfree (self->extra_string);
xfree (self->addr_string);
xfree (self->filter);
xfree (self->addr_string_range_end);
}
static struct bp_location *
base_breakpoint_allocate_location (struct breakpoint *self)
{
struct bp_location *loc;
loc = XNEW (struct bp_location);
init_bp_location (loc, &bp_location_ops, self);
return loc;
}
static void
base_breakpoint_re_set (struct breakpoint *b)
{
/* Nothing to re-set. */
}
#define internal_error_pure_virtual_called() \
gdb_assert_not_reached ("pure virtual function called")
static int
base_breakpoint_insert_location (struct bp_location *bl)
{
internal_error_pure_virtual_called ();
}
static int
base_breakpoint_remove_location (struct bp_location *bl)
{
internal_error_pure_virtual_called ();
}
static int
base_breakpoint_breakpoint_hit (const struct bp_location *bl,
struct address_space *aspace,
CORE_ADDR bp_addr,
const struct target_waitstatus *ws)
{
internal_error_pure_virtual_called ();
}
static void
base_breakpoint_check_status (bpstat bs)
{
/* Always stop. */
}
/* A "works_in_software_mode" breakpoint_ops method that just internal
errors. */
static int
base_breakpoint_works_in_software_mode (const struct breakpoint *b)
{
internal_error_pure_virtual_called ();
}
/* A "resources_needed" breakpoint_ops method that just internal
errors. */
static int
base_breakpoint_resources_needed (const struct bp_location *bl)
{
internal_error_pure_virtual_called ();
}
static enum print_stop_action
base_breakpoint_print_it (bpstat bs)
{
internal_error_pure_virtual_called ();
}
static void
base_breakpoint_print_one_detail (const struct breakpoint *self,
struct ui_out *uiout)
{
/* nothing */
}
static void
base_breakpoint_print_mention (struct breakpoint *b)
{
internal_error_pure_virtual_called ();
}
static void
base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
{
internal_error_pure_virtual_called ();
}
static void
base_breakpoint_create_sals_from_address (char **arg,
struct linespec_result *canonical,
enum bptype type_wanted,
char *addr_start,
char **copy_arg)
{
internal_error_pure_virtual_called ();
}
static void
base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
struct linespec_result *c,
char *cond_string,
char *extra_string,
enum bptype type_wanted,
enum bpdisp disposition,
int thread,
int task, int ignore_count,
const struct breakpoint_ops *o,
int from_tty, int enabled,
int internal, unsigned flags)
{
internal_error_pure_virtual_called ();
}
static void
base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
struct symtabs_and_lines *sals)
{
internal_error_pure_virtual_called ();
}
/* The default 'explains_signal' method. */
static int
base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
{
return 1;
}
/* The default "after_condition_true" method. */
static void
base_breakpoint_after_condition_true (struct bpstats *bs)
{
/* Nothing to do. */
}
struct breakpoint_ops base_breakpoint_ops =
{
base_breakpoint_dtor,
base_breakpoint_allocate_location,
base_breakpoint_re_set,
base_breakpoint_insert_location,
base_breakpoint_remove_location,
base_breakpoint_breakpoint_hit,
base_breakpoint_check_status,
base_breakpoint_resources_needed,
base_breakpoint_works_in_software_mode,
base_breakpoint_print_it,
NULL,
base_breakpoint_print_one_detail,
base_breakpoint_print_mention,
base_breakpoint_print_recreate,
base_breakpoint_create_sals_from_address,
base_breakpoint_create_breakpoints_sal,
base_breakpoint_decode_linespec,
base_breakpoint_explains_signal,
base_breakpoint_after_condition_true,
};
/* Default breakpoint_ops methods. */
static void
bkpt_re_set (struct breakpoint *b)
{
/* FIXME: is this still reachable? */
if (b->addr_string == NULL)
{
/* Anything without a string can't be re-set. */
delete_breakpoint (b);
return;
}
breakpoint_re_set_default (b);
}
static int
bkpt_insert_location (struct bp_location *bl)
{
if (bl->loc_type == bp_loc_hardware_breakpoint)
return target_insert_hw_breakpoint (bl->gdbarch,
&bl->target_info);
else
return target_insert_breakpoint (bl->gdbarch,
&bl->target_info);
}
static int
bkpt_remove_location (struct bp_location *bl)
{
if (bl->loc_type == bp_loc_hardware_breakpoint)
return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
else
return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
}
static int
bkpt_breakpoint_hit (const struct bp_location *bl,
struct address_space *aspace, CORE_ADDR bp_addr,
const struct target_waitstatus *ws)
{
if (ws->kind != TARGET_WAITKIND_STOPPED
|| ws->value.sig != GDB_SIGNAL_TRAP)
return 0;
if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
aspace, bp_addr))
return 0;
if (overlay_debugging /* unmapped overlay section */
&& section_is_overlay (bl->section)
&& !section_is_mapped (bl->section))
return 0;
return 1;
}
static int
bkpt_resources_needed (const struct bp_location *bl)
{
gdb_assert (bl->owner->type == bp_hardware_breakpoint);
return 1;
}
static enum print_stop_action
bkpt_print_it (bpstat bs)
{
struct breakpoint *b;
const struct bp_location *bl;
int bp_temp;
struct ui_out *uiout = current_uiout;
gdb_assert (bs->bp_location_at != NULL);
bl = bs->bp_location_at;
b = bs->breakpoint_at;
bp_temp = b->disposition == disp_del;
if (bl->address != bl->requested_address)
breakpoint_adjustment_warning (bl->requested_address,
bl->address,
b->number, 1);
annotate_breakpoint (b->number);
if (bp_temp)
ui_out_text (uiout, "\nTemporary breakpoint ");
else
ui_out_text (uiout, "\nBreakpoint ");
if (ui_out_is_mi_like_p (uiout))
{
ui_out_field_string (uiout, "reason",
async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
}
ui_out_field_int (uiout, "bkptno", b->number);
ui_out_text (uiout, ", ");
return PRINT_SRC_AND_LOC;
}
static void
bkpt_print_mention (struct breakpoint *b)
{
if (ui_out_is_mi_like_p (current_uiout))
return;
switch (b->type)
{
case bp_breakpoint:
case bp_gnu_ifunc_resolver:
if (b->disposition == disp_del)
printf_filtered (_("Temporary breakpoint"));
else
printf_filtered (_("Breakpoint"));
printf_filtered (_(" %d"), b->number);
if (b->type == bp_gnu_ifunc_resolver)
printf_filtered (_(" at gnu-indirect-function resolver"));
break;
case bp_hardware_breakpoint:
printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
break;
case bp_dprintf:
printf_filtered (_("Dprintf %d"), b->number);
break;
}
say_where (b);
}
static void
bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
{
if (tp->type == bp_breakpoint && tp->disposition == disp_del)
fprintf_unfiltered (fp, "tbreak");
else if (tp->type == bp_breakpoint)
fprintf_unfiltered (fp, "break");
else if (tp->type == bp_hardware_breakpoint
&& tp->disposition == disp_del)
fprintf_unfiltered (fp, "thbreak");
else if (tp->type == bp_hardware_breakpoint)
fprintf_unfiltered (fp, "hbreak");
else
internal_error (__FILE__, __LINE__,
_("unhandled breakpoint type %d"), (int) tp->type);
fprintf_unfiltered (fp, " %s", tp->addr_string);
print_recreate_thread (tp, fp);
}
static void
bkpt_create_sals_from_address (char **arg,
struct linespec_result *canonical,
enum bptype type_wanted,
char *addr_start, char **copy_arg)
{
create_sals_from_address_default (arg, canonical, type_wanted,
addr_start, copy_arg);
}
static void
bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
struct linespec_result *canonical,
char *cond_string,
char *extra_string,
enum bptype type_wanted,
enum bpdisp disposition,
int thread,
int task, int ignore_count,
const struct breakpoint_ops *ops,
int from_tty, int enabled,
int internal, unsigned flags)
{
create_breakpoints_sal_default (gdbarch, canonical,
cond_string, extra_string,
type_wanted,
disposition, thread, task,
ignore_count, ops, from_tty,
enabled, internal, flags);
}
static void
bkpt_decode_linespec (struct breakpoint *b, char **s,
struct symtabs_and_lines *sals)
{
decode_linespec_default (b, s, sals);
}
/* Virtual table for internal breakpoints. */
static void
internal_bkpt_re_set (struct breakpoint *b)
{
switch (b->type)
{
/* Delete overlay event and longjmp master breakpoints; they
will be reset later by breakpoint_re_set. */
case bp_overlay_event:
case bp_longjmp_master:
case bp_std_terminate_master:
case bp_exception_master:
delete_breakpoint (b);
break;
/* This breakpoint is special, it's set up when the inferior
starts and we really don't want to touch it. */
case bp_shlib_event:
/* Like bp_shlib_event, this breakpoint type is special. Once
it is set up, we do not want to touch it. */
case bp_thread_event:
break;
}
}
static void
internal_bkpt_check_status (bpstat bs)
{
if (bs->breakpoint_at->type == bp_shlib_event)
{
/* If requested, stop when the dynamic linker notifies GDB of
events. This allows the user to get control and place
breakpoints in initializer routines for dynamically loaded
objects (among other things). */
bs->stop = stop_on_solib_events;
bs->print = stop_on_solib_events;
}
else
bs->stop = 0;
}
static enum print_stop_action
internal_bkpt_print_it (bpstat bs)
{
struct breakpoint *b;
b = bs->breakpoint_at;
switch (b->type)
{
case bp_shlib_event:
/* Did we stop because the user set the stop_on_solib_events
variable? (If so, we report this as a generic, "Stopped due
to shlib event" message.) */
print_solib_event (0);
break;
case bp_thread_event:
/* Not sure how we will get here.
GDB should not stop for these breakpoints. */
printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
break;
case bp_overlay_event:
/* By analogy with the thread event, GDB should not stop for these. */
printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
break;
case bp_longjmp_master:
/* These should never be enabled. */
printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
break;
case bp_std_terminate_master:
/* These should never be enabled. */
printf_filtered (_("std::terminate Master Breakpoint: "
"gdb should not stop!\n"));
break;
case bp_exception_master:
/* These should never be enabled. */
printf_filtered (_("Exception Master Breakpoint: "
"gdb should not stop!\n"));
break;
}
return PRINT_NOTHING;
}
static void
internal_bkpt_print_mention (struct breakpoint *b)
{
/* Nothing to mention. These breakpoints are internal. */
}
/* Virtual table for momentary breakpoints */
static void
momentary_bkpt_re_set (struct breakpoint *b)
{
/* Keep temporary breakpoints, which can be encountered when we step
over a dlopen call and solib_add is resetting the breakpoints.
Otherwise these should have been blown away via the cleanup chain
or by breakpoint_init_inferior when we rerun the executable. */
}
static void
momentary_bkpt_check_status (bpstat bs)
{
/* Nothing. The point of these breakpoints is causing a stop. */
}
static enum print_stop_action
momentary_bkpt_print_it (bpstat bs)
{
struct ui_out *uiout = current_uiout;
if (ui_out_is_mi_like_p (uiout))
{
struct breakpoint *b = bs->breakpoint_at;
switch (b->type)
{
case bp_finish:
ui_out_field_string
(uiout, "reason",
async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
break;
case bp_until:
ui_out_field_string
(uiout, "reason",
async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
break;
}
}
return PRINT_UNKNOWN;
}
static void
momentary_bkpt_print_mention (struct breakpoint *b)
{
/* Nothing to mention. These breakpoints are internal. */
}
/* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
It gets cleared already on the removal of the first one of such placed
breakpoints. This is OK as they get all removed altogether. */
static void
longjmp_bkpt_dtor (struct breakpoint *self)
{
struct thread_info *tp = find_thread_id (self->thread);
if (tp)
tp->initiating_frame = null_frame_id;
momentary_breakpoint_ops.dtor (self);
}
/* Specific methods for probe breakpoints. */
static int
bkpt_probe_insert_location (struct bp_location *bl)
{
int v = bkpt_insert_location (bl);
if (v == 0)
{
/* The insertion was successful, now let's set the probe's semaphore
if needed. */
bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
}
return v;
}
static int
bkpt_probe_remove_location (struct bp_location *bl)
{
/* Let's clear the semaphore before removing the location. */
bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
return bkpt_remove_location (bl);
}
static void
bkpt_probe_create_sals_from_address (char **arg,
struct linespec_result *canonical,
enum bptype type_wanted,
char *addr_start, char **copy_arg)
{
struct linespec_sals lsal;
lsal.sals = parse_probes (arg, canonical);
*copy_arg = xstrdup (canonical->addr_string);
lsal.canonical = xstrdup (*copy_arg);
VEC_safe_push (linespec_sals, canonical->sals, &lsal);
}
static void
bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
struct symtabs_and_lines *sals)
{
*sals = parse_probes (s, NULL);
if (!sals->sals)
error (_("probe not found"));
}
/* The breakpoint_ops structure to be used in tracepoints. */
static void
tracepoint_re_set (struct breakpoint *b)
{
breakpoint_re_set_default (b);
}
static int
tracepoint_breakpoint_hit (const struct bp_location *bl,
struct address_space *aspace, CORE_ADDR bp_addr,
const struct target_waitstatus *ws)
{
/* By definition, the inferior does not report stops at
tracepoints. */
return 0;
}
static void
tracepoint_print_one_detail (const struct breakpoint *self,
struct ui_out *uiout)
{
struct tracepoint *tp = (struct tracepoint *) self;
if (tp->static_trace_marker_id)
{
gdb_assert (self->type == bp_static_tracepoint);
ui_out_text (uiout, "\tmarker id is ");
ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
tp->static_trace_marker_id);
ui_out_text (uiout, "\n");
}
}
static void
tracepoint_print_mention (struct breakpoint *b)
{
if (ui_out_is_mi_like_p (current_uiout))
return;
switch (b->type)
{
case bp_tracepoint:
printf_filtered (_("Tracepoint"));
printf_filtered (_(" %d"), b->number);
break;
case bp_fast_tracepoint:
printf_filtered (_("Fast tracepoint"));
printf_filtered (_(" %d"), b->number);
break;
case bp_static_tracepoint:
printf_filtered (_("Static tracepoint"));
printf_filtered (_(" %d"), b->number);
break;
default:
internal_error (__FILE__, __LINE__,
_("unhandled tracepoint type %d"), (int) b->type);
}
say_where (b);
}
static void
tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
{
struct tracepoint *tp = (struct tracepoint *) self;
if (self->type == bp_fast_tracepoint)
fprintf_unfiltered (fp, "ftrace");
if (self->type == bp_static_tracepoint)
fprintf_unfiltered (fp, "strace");
else if (self->type == bp_tracepoint)
fprintf_unfiltered (fp, "trace");
else
internal_error (__FILE__, __LINE__,
_("unhandled tracepoint type %d"), (int) self->type);
fprintf_unfiltered (fp, " %s", self->addr_string);
print_recreate_thread (self, fp);
if (tp->pass_count)
fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
}
static void
tracepoint_create_sals_from_address (char **arg,
struct linespec_result *canonical,
enum bptype type_wanted,
char *addr_start, char **copy_arg)
{
create_sals_from_address_default (arg, canonical, type_wanted,
addr_start, copy_arg);
}
static void
tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
struct linespec_result *canonical,
char *cond_string,
char *extra_string,
enum bptype type_wanted,
enum bpdisp disposition,
int thread,
int task, int ignore_count,
const struct breakpoint_ops *ops,
int from_tty, int enabled,
int internal, unsigned flags)
{
create_breakpoints_sal_default (gdbarch, canonical,
cond_string, extra_string,
type_wanted,
disposition, thread, task,
ignore_count, ops, from_tty,
enabled, internal, flags);
}
static void
tracepoint_decode_linespec (struct breakpoint *b, char **s,
struct symtabs_and_lines *sals)
{
decode_linespec_default (b, s, sals);
}
struct breakpoint_ops tracepoint_breakpoint_ops;
/* The breakpoint_ops structure to be use on tracepoints placed in a
static probe. */
static void
tracepoint_probe_create_sals_from_address (char **arg,
struct linespec_result *canonical,
enum bptype type_wanted,
char *addr_start, char **copy_arg)
{
/* We use the same method for breakpoint on probes. */
bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
addr_start, copy_arg);
}
static void
tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
struct symtabs_and_lines *sals)
{
/* We use the same method for breakpoint on probes. */
bkpt_probe_decode_linespec (b, s, sals);
}
static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
/* Dprintf breakpoint_ops methods. */
static void
dprintf_re_set (struct breakpoint *b)
{
breakpoint_re_set_default (b);
/* This breakpoint could have been pending, and be resolved now, and
if so, we should now have the extra string. If we don't, the
dprintf was malformed when created, but we couldn't tell because
we can't extract the extra string until the location is
resolved. */
if (b->loc != NULL && b->extra_string == NULL)
error (_("Format string required"));
/* 1 - connect to target 1, that can run breakpoint commands.
2 - create a dprintf, which resolves fine.
3 - disconnect from target 1
4 - connect to target 2, that can NOT run breakpoint commands.
After steps #3/#4, you'll want the dprintf command list to
be updated, because target 1 and 2 may well return different
answers for target_can_run_breakpoint_commands().
Given absence of finer grained resetting, we get to do
it all the time. */
if (b->extra_string != NULL)
update_dprintf_command_list (b);
}
/* Implement the "print_recreate" breakpoint_ops method for dprintf. */
static void
dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
{
fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
tp->extra_string);
print_recreate_thread (tp, fp);
}
/* Implement the "after_condition_true" breakpoint_ops method for
dprintf.
dprintf's are implemented with regular commands in their command
list, but we run the commands here instead of before presenting the
stop to the user, as dprintf's don't actually cause a stop. This
also makes it so that the commands of multiple dprintfs at the same
address are all handled. */
static void
dprintf_after_condition_true (struct bpstats *bs)
{
struct cleanup *old_chain;
struct bpstats tmp_bs = { NULL };
struct bpstats *tmp_bs_p = &tmp_bs;
/* dprintf's never cause a stop. This wasn't set in the
check_status hook instead because that would make the dprintf's
condition not be evaluated. */
bs->stop = 0;
/* Run the command list here. Take ownership of it instead of
copying. We never want these commands to run later in
bpstat_do_actions, if a breakpoint that causes a stop happens to
be set at same address as this dprintf, or even if running the
commands here throws. */
tmp_bs.commands = bs->commands;
bs->commands = NULL;
old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
bpstat_do_actions_1 (&tmp_bs_p);
/* 'tmp_bs.commands' will usually be NULL by now, but
bpstat_do_actions_1 may return early without processing the whole
list. */
do_cleanups (old_chain);
}
/* The breakpoint_ops structure to be used on static tracepoints with
markers (`-m'). */
static void
strace_marker_create_sals_from_address (char **arg,
struct linespec_result *canonical,
enum bptype type_wanted,
char *addr_start, char **copy_arg)
{
struct linespec_sals lsal;
lsal.sals = decode_static_tracepoint_spec (arg);
*copy_arg = savestring (addr_start, *arg - addr_start);
canonical->addr_string = xstrdup (*copy_arg);
lsal.canonical = xstrdup (*copy_arg);
VEC_safe_push (linespec_sals, canonical->sals, &lsal);
}
static void
strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
struct linespec_result *canonical,
char *cond_string,
char *extra_string,
enum bptype type_wanted,
enum bpdisp disposition,
int thread,
int task, int ignore_count,
const struct breakpoint_ops *ops,
int from_tty, int enabled,
int internal, unsigned flags)
{
int i;
struct linespec_sals *lsal = VEC_index (linespec_sals,
canonical->sals, 0);
/* If the user is creating a static tracepoint by marker id
(strace -m MARKER_ID), then store the sals index, so that
breakpoint_re_set can try to match up which of the newly
found markers corresponds to this one, and, don't try to
expand multiple locations for each sal, given than SALS
already should contain all sals for MARKER_ID. */
for (i = 0; i < lsal->sals.nelts; ++i)
{
struct symtabs_and_lines expanded;
struct tracepoint *tp;
struct cleanup *old_chain;
char *addr_string;
expanded.nelts = 1;
expanded.sals = &lsal->sals.sals[i];
addr_string = xstrdup (canonical->addr_string);
old_chain = make_cleanup (xfree, addr_string);
tp = XCNEW (struct tracepoint);
init_breakpoint_sal (&tp->base, gdbarch, expanded,
addr_string, NULL,
cond_string, extra_string,
type_wanted, disposition,
thread, task, ignore_count, ops,
from_tty, enabled, internal, flags,
canonical->special_display);
/* Given that its possible to have multiple markers with
the same string id, if the user is creating a static
tracepoint by marker id ("strace -m MARKER_ID"), then
store the sals index, so that breakpoint_re_set can
try to match up which of the newly found markers
corresponds to this one */
tp->static_trace_marker_id_idx = i;
install_breakpoint (internal, &tp->base, 0);
discard_cleanups (old_chain);
}
}
static void
strace_marker_decode_linespec (struct breakpoint *b, char **s,
struct symtabs_and_lines *sals)
{
struct tracepoint *tp = (struct tracepoint *) b;
*sals = decode_static_tracepoint_spec (s);
if (sals->nelts > tp->static_trace_marker_id_idx)
{
sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
sals->nelts = 1;
}
else
error (_("marker %s not found"), tp->static_trace_marker_id);
}
static struct breakpoint_ops strace_marker_breakpoint_ops;
static int
strace_marker_p (struct breakpoint *b)
{
return b->ops == &strace_marker_breakpoint_ops;
}
/* Delete a breakpoint and clean up all traces of it in the data
structures. */
void
delete_breakpoint (struct breakpoint *bpt)
{
struct breakpoint *b;
gdb_assert (bpt != NULL);
/* Has this bp already been deleted? This can happen because
multiple lists can hold pointers to bp's. bpstat lists are
especial culprits.
One example of this happening is a watchpoint's scope bp. When
the scope bp triggers, we notice that the watchpoint is out of
scope, and delete it. We also delete its scope bp. But the
scope bp is marked "auto-deleting", and is already on a bpstat.
That bpstat is then checked for auto-deleting bp's, which are
deleted.
A real solution to this problem might involve reference counts in
bp's, and/or giving them pointers back to their referencing
bpstat's, and teaching delete_breakpoint to only free a bp's
storage when no more references were extent. A cheaper bandaid
was chosen. */
if (bpt->type == bp_none)
return;
/* At least avoid this stale reference until the reference counting
of breakpoints gets resolved. */
if (bpt->related_breakpoint != bpt)
{
struct breakpoint *related;
struct watchpoint *w;
if (bpt->type == bp_watchpoint_scope)
w = (struct watchpoint *) bpt->related_breakpoint;
else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
w = (struct watchpoint *) bpt;
else
w = NULL;
if (w != NULL)
watchpoint_del_at_next_stop (w);
/* Unlink bpt from the bpt->related_breakpoint ring. */
for (related = bpt; related->related_breakpoint != bpt;
related = related->related_breakpoint);
related->related_breakpoint = bpt->related_breakpoint;
bpt->related_breakpoint = bpt;
}
/* watch_command_1 creates a watchpoint but only sets its number if
update_watchpoint succeeds in creating its bp_locations. If there's
a problem in that process, we'll be asked to delete the half-created
watchpoint. In that case, don't announce the deletion. */
if (bpt->number)
observer_notify_breakpoint_deleted (bpt);
if (breakpoint_chain == bpt)
breakpoint_chain = bpt->next;
ALL_BREAKPOINTS (b)
if (b->next == bpt)
{
b->next = bpt->next;
break;
}
/* Be sure no bpstat's are pointing at the breakpoint after it's
been freed. */
/* FIXME, how can we find all bpstat's? We just check stop_bpstat
in all threads for now. Note that we cannot just remove bpstats
pointing at bpt from the stop_bpstat list entirely, as breakpoint
commands are associated with the bpstat; if we remove it here,
then the later call to bpstat_do_actions (&stop_bpstat); in
event-top.c won't do anything, and temporary breakpoints with
commands won't work. */
iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
/* Now that breakpoint is removed from breakpoint list, update the
global location list. This will remove locations that used to
belong to this breakpoint. Do this before freeing the breakpoint
itself, since remove_breakpoint looks at location's owner. It
might be better design to have location completely
self-contained, but it's not the case now. */
update_global_location_list (0);
bpt->ops->dtor (bpt);
/* On the chance that someone will soon try again to delete this
same bp, we mark it as deleted before freeing its storage. */
bpt->type = bp_none;
xfree (bpt);
}
static void
do_delete_breakpoint_cleanup (void *b)
{
delete_breakpoint (b);
}
struct cleanup *
make_cleanup_delete_breakpoint (struct breakpoint *b)
{
return make_cleanup (do_delete_breakpoint_cleanup, b);
}
/* Iterator function to call a user-provided callback function once
for each of B and its related breakpoints. */
static void
iterate_over_related_breakpoints (struct breakpoint *b,
void (*function) (struct breakpoint *,
void *),
void *data)
{
struct breakpoint *related;
related = b;
do
{
struct breakpoint *next;
/* FUNCTION may delete RELATED. */
next = related->related_breakpoint;
if (next == related)
{
/* RELATED is the last ring entry. */
function (related, data);
/* FUNCTION may have deleted it, so we'd never reach back to
B. There's nothing left to do anyway, so just break
out. */
break;
}
else
function (related, data);
related = next;
}
while (related != b);
}
static void
do_delete_breakpoint (struct breakpoint *b, void *ignore)
{
delete_breakpoint (b);
}
/* A callback for map_breakpoint_numbers that calls
delete_breakpoint. */
static void
do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
{
iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
}
void
delete_command (char *arg, int from_tty)
{
struct breakpoint *b, *b_tmp;
dont_repeat ();
if (arg == 0)
{
int breaks_to_delete = 0;
/* Delete all breakpoints if no argument. Do not delete
internal breakpoints, these have to be deleted with an
explicit breakpoint number argument. */
ALL_BREAKPOINTS (b)
if (user_breakpoint_p (b))
{
breaks_to_delete = 1;
break;
}
/* Ask user only if there are some breakpoints to delete. */
if (!from_tty
|| (breaks_to_delete && query (_("Delete all breakpoints? "))))
{
ALL_BREAKPOINTS_SAFE (b, b_tmp)
if (user_breakpoint_p (b))
delete_breakpoint (b);
}
}
else
map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
}
static int
all_locations_are_pending (struct bp_location *loc)
{
for (; loc; loc = loc->next)
if (!loc->shlib_disabled
&& !loc->pspace->executing_startup)
return 0;
return 1;
}
/* Subroutine of update_breakpoint_locations to simplify it.
Return non-zero if multiple fns in list LOC have the same name.
Null names are ignored. */
static int
ambiguous_names_p (struct bp_location *loc)
{
struct bp_location *l;
htab_t htab = htab_create_alloc (13, htab_hash_string,
(int (*) (const void *,
const void *)) streq,
NULL, xcalloc, xfree);
for (l = loc; l != NULL; l = l->next)
{
const char **slot;
const char *name = l->function_name;
/* Allow for some names to be NULL, ignore them. */
if (name == NULL)
continue;
slot = (const char **) htab_find_slot (htab, (const void *) name,
INSERT);
/* NOTE: We can assume slot != NULL here because xcalloc never
returns NULL. */
if (*slot != NULL)
{
htab_delete (htab);
return 1;
}
*slot = name;
}
htab_delete (htab);
return 0;
}
/* When symbols change, it probably means the sources changed as well,
and it might mean the static tracepoint markers are no longer at
the same address or line numbers they used to be at last we
checked. Losing your static tracepoints whenever you rebuild is
undesirable. This function tries to resync/rematch gdb static
tracepoints with the markers on the target, for static tracepoints
that have not been set by marker id. Static tracepoint that have
been set by marker id are reset by marker id in breakpoint_re_set.
The heuristic is:
1) For a tracepoint set at a specific address, look for a marker at
the old PC. If one is found there, assume to be the same marker.
If the name / string id of the marker found is different from the
previous known name, assume that means the user renamed the marker
in the sources, and output a warning.
2) For a tracepoint set at a given line number, look for a marker
at the new address of the old line number. If one is found there,
assume to be the same marker. If the name / string id of the
marker found is different from the previous known name, assume that
means the user renamed the marker in the sources, and output a
warning.
3) If a marker is no longer found at the same address or line, it
may mean the marker no longer exists. But it may also just mean
the code changed a bit. Maybe the user added a few lines of code
that made the marker move up or down (in line number terms). Ask
the target for info about the marker with the string id as we knew
it. If found, update line number and address in the matching
static tracepoint. This will get confused if there's more than one
marker with the same ID (possible in UST, although unadvised
precisely because it confuses tools). */
static struct symtab_and_line
update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
{
struct tracepoint *tp = (struct tracepoint *) b;
struct static_tracepoint_marker marker;
CORE_ADDR pc;
pc = sal.pc;
if (sal.line)
find_line_pc (sal.symtab, sal.line, &pc);
if (target_static_tracepoint_marker_at (pc, &marker))
{
if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
warning (_("static tracepoint %d changed probed marker from %s to %s"),
b->number,
tp->static_trace_marker_id, marker.str_id);
xfree (tp->static_trace_marker_id);
tp->static_trace_marker_id = xstrdup (marker.str_id);
release_static_tracepoint_marker (&marker);
return sal;
}
/* Old marker wasn't found on target at lineno. Try looking it up
by string ID. */
if (!sal.explicit_pc
&& sal.line != 0
&& sal.symtab != NULL
&& tp->static_trace_marker_id != NULL)
{
VEC(static_tracepoint_marker_p) *markers;
markers
= target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
if (!VEC_empty(static_tracepoint_marker_p, markers))
{
struct symtab_and_line sal2;
struct symbol *sym;
struct static_tracepoint_marker *tpmarker;
struct ui_out *uiout = current_uiout;
tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
xfree (tp->static_trace_marker_id);
tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
warning (_("marker for static tracepoint %d (%s) not "
"found at previous line number"),
b->number, tp->static_trace_marker_id);
init_sal (&sal2);
sal2.pc = tpmarker->address;
sal2 = find_pc_line (tpmarker->address, 0);
sym = find_pc_sect_function (tpmarker->address, NULL);
ui_out_text (uiout, "Now in ");
if (sym)
{
ui_out_field_string (uiout, "func",
SYMBOL_PRINT_NAME (sym));
ui_out_text (uiout, " at ");
}
ui_out_field_string (uiout, "file",
symtab_to_filename_for_display (sal2.symtab));
ui_out_text (uiout, ":");
if (ui_out_is_mi_like_p (uiout))
{
const char *fullname = symtab_to_fullname (sal2.symtab);
ui_out_field_string (uiout, "fullname", fullname);
}
ui_out_field_int (uiout, "line", sal2.line);
ui_out_text (uiout, "\n");
b->loc->line_number = sal2.line;
b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
xfree (b->addr_string);
b->addr_string = xstrprintf ("%s:%d",
symtab_to_filename_for_display (sal2.symtab),
b->loc->line_number);
/* Might be nice to check if function changed, and warn if
so. */
release_static_tracepoint_marker (tpmarker);
}
}
return sal;
}
/* Returns 1 iff locations A and B are sufficiently same that
we don't need to report breakpoint as changed. */
static int
locations_are_equal (struct bp_location *a, struct bp_location *b)
{
while (a && b)
{
if (a->address != b->address)
return 0;
if (a->shlib_disabled != b->shlib_disabled)
return 0;
if (a->enabled != b->enabled)
return 0;
a = a->next;
b = b->next;
}
if ((a == NULL) != (b == NULL))
return 0;
return 1;
}
/* Create new breakpoint locations for B (a hardware or software breakpoint)
based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
a ranged breakpoint. */
void
update_breakpoint_locations (struct breakpoint *b,
struct symtabs_and_lines sals,
struct symtabs_and_lines sals_end)
{
int i;
struct bp_location *existing_locations = b->loc;
if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
{
/* Ranged breakpoints have only one start location and one end
location. */
b->enable_state = bp_disabled;
update_global_location_list (1);
printf_unfiltered (_("Could not reset ranged breakpoint %d: "
"multiple locations found\n"),
b->number);
return;
}
/* If there's no new locations, and all existing locations are
pending, don't do anything. This optimizes the common case where
all locations are in the same shared library, that was unloaded.
We'd like to retain the location, so that when the library is
loaded again, we don't loose the enabled/disabled status of the
individual locations. */
if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
return;
b->loc = NULL;
for (i = 0; i < sals.nelts; ++i)
{
struct bp_location *new_loc;
switch_to_program_space_and_thread (sals.sals[i].pspace);
new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
/* Reparse conditions, they might contain references to the
old symtab. */
if (b->cond_string != NULL)
{
const char *s;
volatile struct gdb_exception e;
s = b->cond_string;
TRY_CATCH (e, RETURN_MASK_ERROR)
{
new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
block_for_pc (sals.sals[i].pc),
0);
}
if (e.reason < 0)
{
warning (_("failed to reevaluate condition "
"for breakpoint %d: %s"),
b->number, e.message);
new_loc->enabled = 0;
}
}
if (sals_end.nelts)
{
CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
new_loc->length = end - sals.sals[0].pc + 1;
}
}
/* Update locations of permanent breakpoints. */
if (b->enable_state == bp_permanent)
make_breakpoint_permanent (b);
/* If possible, carry over 'disable' status from existing
breakpoints. */
{
struct bp_location *e = existing_locations;
/* If there are multiple breakpoints with the same function name,
e.g. for inline functions, comparing function names won't work.
Instead compare pc addresses; this is just a heuristic as things
may have moved, but in practice it gives the correct answer
often enough until a better solution is found. */
int have_ambiguous_names = ambiguous_names_p (b->loc);
for (; e; e = e->next)
{
if (!e->enabled && e->function_name)
{
struct bp_location *l = b->loc;
if (have_ambiguous_names)
{
for (; l; l = l->next)
if (breakpoint_locations_match (e, l))
{
l->enabled = 0;
break;
}
}
else
{
for (; l; l = l->next)
if (l->function_name
&& strcmp (e->function_name, l->function_name) == 0)
{
l->enabled = 0;
break;
}
}
}
}
}
if (!locations_are_equal (existing_locations, b->loc))
observer_notify_breakpoint_modified (b);
update_global_location_list (1);
}
/* Find the SaL locations corresponding to the given ADDR_STRING.
On return, FOUND will be 1 if any SaL was found, zero otherwise. */
static struct symtabs_and_lines
addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
{
char *s;
struct symtabs_and_lines sals = {0};
volatile struct gdb_exception e;
gdb_assert (b->ops != NULL);
s = addr_string;
TRY_CATCH (e, RETURN_MASK_ERROR)
{
b->ops->decode_linespec (b, &s, &sals);
}
if (e.reason < 0)
{
int not_found_and_ok = 0;
/* For pending breakpoints, it's expected that parsing will
fail until the right shared library is loaded. User has
already told to create pending breakpoints and don't need
extra messages. If breakpoint is in bp_shlib_disabled
state, then user already saw the message about that
breakpoint being disabled, and don't want to see more
errors. */
if (e.error == NOT_FOUND_ERROR
&& (b->condition_not_parsed
|| (b->loc && b->loc->shlib_disabled)
|| (b->loc && b->loc->pspace->executing_startup)
|| b->enable_state == bp_disabled))
not_found_and_ok = 1;
if (!not_found_and_ok)
{
/* We surely don't want to warn about the same breakpoint
10 times. One solution, implemented here, is disable
the breakpoint on error. Another solution would be to
have separate 'warning emitted' flag. Since this
happens only when a binary has changed, I don't know
which approach is better. */
b->enable_state = bp_disabled;
throw_exception (e);
}
}
if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
{
int i;
for (i = 0; i < sals.nelts; ++i)
resolve_sal_pc (&sals.sals[i]);
if (b->condition_not_parsed && s && s[0])
{
char *cond_string, *extra_string;
int thread, task;
find_condition_and_thread (s, sals.sals[0].pc,
&cond_string, &thread, &task,
&extra_string);
if (cond_string)
b->cond_string = cond_string;
b->thread = thread;
b->task = task;
if (extra_string)
b->extra_string = extra_string;
b->condition_not_parsed = 0;
}
if (b->type == bp_static_tracepoint && !strace_marker_p (b))
sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
*found = 1;
}
else
*found = 0;
return sals;
}
/* The default re_set method, for typical hardware or software
breakpoints. Reevaluate the breakpoint and recreate its
locations. */
static void
breakpoint_re_set_default (struct breakpoint *b)
{
int found;
struct symtabs_and_lines sals, sals_end;
struct symtabs_and_lines expanded = {0};
struct symtabs_and_lines expanded_end = {0};
sals = addr_string_to_sals (b, b->addr_string, &found);
if (found)
{
make_cleanup (xfree, sals.sals);
expanded = sals;
}
if (b->addr_string_range_end)
{
sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
if (found)
{
make_cleanup (xfree, sals_end.sals);
expanded_end = sals_end;
}
}
update_breakpoint_locations (b, expanded, expanded_end);
}
/* Default method for creating SALs from an address string. It basically
calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
static void
create_sals_from_address_default (char **arg,
struct linespec_result *canonical,
enum bptype type_wanted,
char *addr_start, char **copy_arg)
{
parse_breakpoint_sals (arg, canonical);
}
/* Call create_breakpoints_sal for the given arguments. This is the default
function for the `create_breakpoints_sal' method of
breakpoint_ops. */
static void
create_breakpoints_sal_default (struct gdbarch *gdbarch,
struct linespec_result *canonical,
char *cond_string,
char *extra_string,
enum bptype type_wanted,
enum bpdisp disposition,
int thread,
int task, int ignore_count,
const struct breakpoint_ops *ops,
int from_tty, int enabled,
int internal, unsigned flags)
{
create_breakpoints_sal (gdbarch, canonical, cond_string,
extra_string,
type_wanted, disposition,
thread, task, ignore_count, ops, from_tty,
enabled, internal, flags);
}
/* Decode the line represented by S by calling decode_line_full. This is the
default function for the `decode_linespec' method of breakpoint_ops. */
static void
decode_linespec_default (struct breakpoint *b, char **s,
struct symtabs_and_lines *sals)
{
struct linespec_result canonical;
init_linespec_result (&canonical);
decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
(struct symtab *) NULL, 0,
&canonical, multiple_symbols_all,
b->filter);
/* We should get 0 or 1 resulting SALs. */
gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
if (VEC_length (linespec_sals, canonical.sals) > 0)
{
struct linespec_sals *lsal;
lsal = VEC_index (linespec_sals, canonical.sals, 0);
*sals = lsal->sals;
/* Arrange it so the destructor does not free the
contents. */
lsal->sals.sals = NULL;
}
destroy_linespec_result (&canonical);
}
/* Prepare the global context for a re-set of breakpoint B. */
static struct cleanup *
prepare_re_set_context (struct breakpoint *b)
{
struct cleanup *cleanups;
input_radix = b->input_radix;
cleanups = save_current_space_and_thread ();
if (b->pspace != NULL)
switch_to_program_space_and_thread (b->pspace);
set_language (b->language);
return cleanups;
}
/* Reset a breakpoint given it's struct breakpoint * BINT.
The value we return ends up being the return value from catch_errors.
Unused in this case. */
static int
breakpoint_re_set_one (void *bint)
{
/* Get past catch_errs. */
struct breakpoint *b = (struct breakpoint *) bint;
struct cleanup *cleanups;
cleanups = prepare_re_set_context (b);
b->ops->re_set (b);
do_cleanups (cleanups);
return 0;
}
/* Re-set all breakpoints after symbols have been re-loaded. */
void
breakpoint_re_set (void)
{
struct breakpoint *b, *b_tmp;
enum language save_language;
int save_input_radix;
struct cleanup *old_chain;
save_language = current_language->la_language;
save_input_radix = input_radix;
old_chain = save_current_program_space ();
ALL_BREAKPOINTS_SAFE (b, b_tmp)
{
/* Format possible error msg. */
char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
b->number);
struct cleanup *cleanups = make_cleanup (xfree, message);
catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
do_cleanups (cleanups);
}
set_language (save_language);
input_radix = save_input_radix;
jit_breakpoint_re_set ();
do_cleanups (old_chain);
create_overlay_event_breakpoint ();
create_longjmp_master_breakpoint ();
create_std_terminate_master_breakpoint ();
create_exception_master_breakpoint ();
}
/* Reset the thread number of this breakpoint:
- If the breakpoint is for all threads, leave it as-is.
- Else, reset it to the current thread for inferior_ptid. */
void
breakpoint_re_set_thread (struct breakpoint *b)
{
if (b->thread != -1)
{
if (in_thread_list (inferior_ptid))
b->thread = pid_to_thread_id (inferior_ptid);
/* We're being called after following a fork. The new fork is
selected as current, and unless this was a vfork will have a
different program space from the original thread. Reset that
as well. */
b->loc->pspace = current_program_space;
}
}
/* Set ignore-count of breakpoint number BPTNUM to COUNT.
If from_tty is nonzero, it prints a message to that effect,
which ends with a period (no newline). */
void
set_ignore_count (int bptnum, int count, int from_tty)
{
struct breakpoint *b;
if (count < 0)
count = 0;
ALL_BREAKPOINTS (b)
if (b->number == bptnum)
{
if (is_tracepoint (b))
{
if (from_tty && count != 0)
printf_filtered (_("Ignore count ignored for tracepoint %d."),
bptnum);
return;
}
b->ignore_count = count;
if (from_tty)
{
if (count == 0)
printf_filtered (_("Will stop next time "
"breakpoint %d is reached."),
bptnum);
else if (count == 1)
printf_filtered (_("Will ignore next crossing of breakpoint %d."),
bptnum);
else
printf_filtered (_("Will ignore next %d "
"crossings of breakpoint %d."),
count, bptnum);
}
observer_notify_breakpoint_modified (b);
return;
}
error (_("No breakpoint number %d."), bptnum);
}
/* Command to set ignore-count of breakpoint N to COUNT. */
static void
ignore_command (char *args, int from_tty)
{
char *p = args;
int num;
if (p == 0)
error_no_arg (_("a breakpoint number"));
num = get_number (&p);
if (num == 0)
error (_("bad breakpoint number: '%s'"), args);
if (*p == 0)
error (_("Second argument (specified ignore-count) is missing."));
set_ignore_count (num,
longest_to_int (value_as_long (parse_and_eval (p))),
from_tty);
if (from_tty)
printf_filtered ("\n");
}
/* Call FUNCTION on each of the breakpoints
whose numbers are given in ARGS. */
static void
map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
void *),
void *data)
{
int num;
struct breakpoint *b, *tmp;
int match;
struct get_number_or_range_state state;
if (args == 0)
error_no_arg (_("one or more breakpoint numbers"));
init_number_or_range (&state, args);
while (!state.finished)
{
char *p = state.string;
match = 0;
num = get_number_or_range (&state);
if (num == 0)
{
warning (_("bad breakpoint number at or near '%s'"), p);
}
else
{
ALL_BREAKPOINTS_SAFE (b, tmp)
if (b->number == num)
{
match = 1;
function (b, data);
break;
}
if (match == 0)
printf_unfiltered (_("No breakpoint number %d.\n"), num);
}
}
}
static struct bp_location *
find_location_by_number (char *number)
{
char *dot = strchr (number, '.');
char *p1;
int bp_num;
int loc_num;
struct breakpoint *b;
struct bp_location *loc;
*dot = '\0';
p1 = number;
bp_num = get_number (&p1);
if (bp_num == 0)
error (_("Bad breakpoint number '%s'"), number);
ALL_BREAKPOINTS (b)
if (b->number == bp_num)
{
break;
}
if (!b || b->number != bp_num)
error (_("Bad breakpoint number '%s'"), number);
p1 = dot+1;
loc_num = get_number (&p1);
if (loc_num == 0)
error (_("Bad breakpoint location number '%s'"), number);
--loc_num;
loc = b->loc;
for (;loc_num && loc; --loc_num, loc = loc->next)
;
if (!loc)
error (_("Bad breakpoint location number '%s'"), dot+1);
return loc;
}
/* Set ignore-count of breakpoint number BPTNUM to COUNT.
If from_tty is nonzero, it prints a message to that effect,
which ends with a period (no newline). */
void
disable_breakpoint (struct breakpoint *bpt)
{
/* Never disable a watchpoint scope breakpoint; we want to
hit them when we leave scope so we can delete both the
watchpoint and its scope breakpoint at that time. */
if (bpt->type == bp_watchpoint_scope)
return;
/* You can't disable permanent breakpoints. */
if (bpt->enable_state == bp_permanent)
return;
bpt->enable_state = bp_disabled;
/* Mark breakpoint locations modified. */
mark_breakpoint_modified (bpt);
if (target_supports_enable_disable_tracepoint ()
&& current_trace_status ()->running && is_tracepoint (bpt))
{
struct bp_location *location;
for (location = bpt->loc; location; location = location->next)
target_disable_tracepoint (location);
}
update_global_location_list (0);
observer_notify_breakpoint_modified (bpt);
}
/* A callback for iterate_over_related_breakpoints. */
static void
do_disable_breakpoint (struct breakpoint *b, void *ignore)
{
disable_breakpoint (b);
}
/* A callback for map_breakpoint_numbers that calls
disable_breakpoint. */
static void
do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
{
iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
}
static void
disable_command (char *args, int from_tty)
{
if (args == 0)
{
struct breakpoint *bpt;
ALL_BREAKPOINTS (bpt)
if (user_breakpoint_p (bpt))
disable_breakpoint (bpt);
}
else
{
char *num = extract_arg (&args);
while (num)
{
if (strchr (num, '.'))
{
struct bp_location *loc = find_location_by_number (num);
if (loc)
{
if (loc->enabled)
{
loc->enabled = 0;
mark_breakpoint_location_modified (loc);
}
if (target_supports_enable_disable_tracepoint ()
&& current_trace_status ()->running && loc->owner
&& is_tracepoint (loc->owner))
target_disable_tracepoint (loc);
}
update_global_location_list (0);
}
else
map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
num = extract_arg (&args);
}
}
}
static void
enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
int count)
{
int target_resources_ok;
if (bpt->type == bp_hardware_breakpoint)
{
int i;
i = hw_breakpoint_used_count ();
target_resources_ok =
target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
i + 1, 0);
if (target_resources_ok == 0)
error (_("No hardware breakpoint support in the target."));
else if (target_resources_ok < 0)
error (_("Hardware breakpoints used exceeds limit."));
}
if (is_watchpoint (bpt))
{
/* Initialize it just to avoid a GCC false warning. */
enum enable_state orig_enable_state = 0;
volatile struct gdb_exception e;
TRY_CATCH (e, RETURN_MASK_ALL)
{
struct watchpoint *w = (struct watchpoint *) bpt;
orig_enable_state = bpt->enable_state;
bpt->enable_state = bp_enabled;
update_watchpoint (w, 1 /* reparse */);
}
if (e.reason < 0)
{
bpt->enable_state = orig_enable_state;
exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
bpt->number);
return;
}
}
if (bpt->enable_state != bp_permanent)
bpt->enable_state = bp_enabled;
bpt->enable_state = bp_enabled;
/* Mark breakpoint locations modified. */
mark_breakpoint_modified (bpt);
if (target_supports_enable_disable_tracepoint ()
&& current_trace_status ()->running && is_tracepoint (bpt))
{
struct bp_location *location;
for (location = bpt->loc; location; location = location->next)
target_enable_tracepoint (location);
}
bpt->disposition = disposition;
bpt->enable_count = count;
update_global_location_list (1);
observer_notify_breakpoint_modified (bpt);
}
void
enable_breakpoint (struct breakpoint *bpt)
{
enable_breakpoint_disp (bpt, bpt->disposition, 0);
}
static void
do_enable_breakpoint (struct breakpoint *bpt, void *arg)
{
enable_breakpoint (bpt);
}
/* A callback for map_breakpoint_numbers that calls
enable_breakpoint. */
static void
do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
{
iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
}
/* The enable command enables the specified breakpoints (or all defined
breakpoints) so they once again become (or continue to be) effective
in stopping the inferior. */
static void
enable_command (char *args, int from_tty)
{
if (args == 0)
{
struct breakpoint *bpt;
ALL_BREAKPOINTS (bpt)
if (user_breakpoint_p (bpt))
enable_breakpoint (bpt);
}
else
{
char *num = extract_arg (&args);
while (num)
{
if (strchr (num, '.'))
{
struct bp_location *loc = find_location_by_number (num);
if (loc)
{
if (!loc->enabled)
{
loc->enabled = 1;
mark_breakpoint_location_modified (loc);
}
if (target_supports_enable_disable_tracepoint ()
&& current_trace_status ()->running && loc->owner
&& is_tracepoint (loc->owner))
target_enable_tracepoint (loc);
}
update_global_location_list (1);
}
else
map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
num = extract_arg (&args);
}
}
}
/* This struct packages up disposition data for application to multiple
breakpoints. */
struct disp_data
{
enum bpdisp disp;
int count;
};
static void
do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
{
struct disp_data disp_data = *(struct disp_data *) arg;
enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
}
static void
do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
{
struct disp_data disp = { disp_disable, 1 };
iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
}
static void
enable_once_command (char *args, int from_tty)
{
map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
}
static void
do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
{
struct disp_data disp = { disp_disable, *(int *) countptr };
iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
}
static void
enable_count_command (char *args, int from_tty)
{
int count = get_number (&args);
map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
}
static void
do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
{
struct disp_data disp = { disp_del, 1 };
iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
}
static void
enable_delete_command (char *args, int from_tty)
{
map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
}
static void
set_breakpoint_cmd (char *args, int from_tty)
{
}
static void
show_breakpoint_cmd (char *args, int from_tty)
{
}
/* Invalidate last known value of any hardware watchpoint if
the memory which that value represents has been written to by
GDB itself. */
static void
invalidate_bp_value_on_memory_change (struct inferior *inferior,
CORE_ADDR addr, ssize_t len,
const bfd_byte *data)
{
struct breakpoint *bp;
ALL_BREAKPOINTS (bp)
if (bp->enable_state == bp_enabled
&& bp->type == bp_hardware_watchpoint)
{
struct watchpoint *wp = (struct watchpoint *) bp;
if (wp->val_valid && wp->val)
{
struct bp_location *loc;
for (loc = bp->loc; loc != NULL; loc = loc->next)
if (loc->loc_type == bp_loc_hardware_watchpoint
&& loc->address + loc->length > addr
&& addr + len > loc->address)
{
value_free (wp->val);
wp->val = NULL;
wp->val_valid = 0;
}
}
}
}
/* Create and insert a raw software breakpoint at PC. Return an
identifier, which should be used to remove the breakpoint later.
In general, places which call this should be using something on the
breakpoint chain instead; this function should be eliminated
someday. */
void *
deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
struct address_space *aspace, CORE_ADDR pc)
{
struct bp_target_info *bp_tgt;
bp_tgt = XCNEW (struct bp_target_info);
bp_tgt->placed_address_space = aspace;
bp_tgt->placed_address = pc;
if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
{
/* Could not insert the breakpoint. */
xfree (bp_tgt);
return NULL;
}
return bp_tgt;
}
/* Remove a breakpoint BP inserted by
deprecated_insert_raw_breakpoint. */
int
deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
{
struct bp_target_info *bp_tgt = bp;
int ret;
ret = target_remove_breakpoint (gdbarch, bp_tgt);
xfree (bp_tgt);
return ret;
}
/* One (or perhaps two) breakpoints used for software single
stepping. */
static void *single_step_breakpoints[2];
static struct gdbarch *single_step_gdbarch[2];
/* Create and insert a breakpoint for software single step. */
void
insert_single_step_breakpoint (struct gdbarch *gdbarch,
struct address_space *aspace,
CORE_ADDR next_pc)
{
void **bpt_p;
if (single_step_breakpoints[0] == NULL)
{
bpt_p = &single_step_breakpoints[0];
single_step_gdbarch[0] = gdbarch;
}
else
{
gdb_assert (single_step_breakpoints[1] == NULL);
bpt_p = &single_step_breakpoints[1];
single_step_gdbarch[1] = gdbarch;
}
/* NOTE drow/2006-04-11: A future improvement to this function would
be to only create the breakpoints once, and actually put them on
the breakpoint chain. That would let us use set_raw_breakpoint.
We could adjust the addresses each time they were needed. Doing
this requires corresponding changes elsewhere where single step
breakpoints are handled, however. So, for now, we use this. */
*bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
if (*bpt_p == NULL)
error (_("Could not insert single-step breakpoint at %s"),
paddress (gdbarch, next_pc));
}
/* Check if the breakpoints used for software single stepping
were inserted or not. */
int
single_step_breakpoints_inserted (void)
{
return (single_step_breakpoints[0] != NULL
|| single_step_breakpoints[1] != NULL);
}
/* Remove and delete any breakpoints used for software single step. */
void
remove_single_step_breakpoints (void)
{
gdb_assert (single_step_breakpoints[0] != NULL);
/* See insert_single_step_breakpoint for more about this deprecated
call. */
deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
single_step_breakpoints[0]);
single_step_gdbarch[0] = NULL;
single_step_breakpoints[0] = NULL;
if (single_step_breakpoints[1] != NULL)
{
deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
single_step_breakpoints[1]);
single_step_gdbarch[1] = NULL;
single_step_breakpoints[1] = NULL;
}
}
/* Delete software single step breakpoints without removing them from
the inferior. This is intended to be used if the inferior's address
space where they were inserted is already gone, e.g. after exit or
exec. */
void
cancel_single_step_breakpoints (void)
{
int i;
for (i = 0; i < 2; i++)
if (single_step_breakpoints[i])
{
xfree (single_step_breakpoints[i]);
single_step_breakpoints[i] = NULL;
single_step_gdbarch[i] = NULL;
}
}
/* Detach software single-step breakpoints from INFERIOR_PTID without
removing them. */
static void
detach_single_step_breakpoints (void)
{
int i;
for (i = 0; i < 2; i++)
if (single_step_breakpoints[i])
target_remove_breakpoint (single_step_gdbarch[i],
single_step_breakpoints[i]);
}
/* Check whether a software single-step breakpoint is inserted at
PC. */
static int
single_step_breakpoint_inserted_here_p (struct address_space *aspace,
CORE_ADDR pc)
{
int i;
for (i = 0; i < 2; i++)
{
struct bp_target_info *bp_tgt = single_step_breakpoints[i];
if (bp_tgt
&& breakpoint_address_match (bp_tgt->placed_address_space,
bp_tgt->placed_address,
aspace, pc))
return 1;
}
return 0;
}
/* Returns 0 if 'bp' is NOT a syscall catchpoint,
non-zero otherwise. */
static int
is_syscall_catchpoint_enabled (struct breakpoint *bp)
{
if (syscall_catchpoint_p (bp)
&& bp->enable_state != bp_disabled
&& bp->enable_state != bp_call_disabled)
return 1;
else
return 0;
}
int
catch_syscall_enabled (void)
{
struct catch_syscall_inferior_data *inf_data
= get_catch_syscall_inferior_data (current_inferior ());
return inf_data->total_syscalls_count != 0;
}
int
catching_syscall_number (int syscall_number)
{
struct breakpoint *bp;
ALL_BREAKPOINTS (bp)
if (is_syscall_catchpoint_enabled (bp))
{
struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
if (c->syscalls_to_be_caught)
{
int i, iter;
for (i = 0;
VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
i++)
if (syscall_number == iter)
return 1;
}
else
return 1;
}
return 0;
}
/* Complete syscall names. Used by "catch syscall". */
static VEC (char_ptr) *
catch_syscall_completer (struct cmd_list_element *cmd,
const char *text, const char *word)
{
const char **list = get_syscall_names ();
VEC (char_ptr) *retlist
= (list == NULL) ? NULL : complete_on_enum (list, word, word);
xfree (list);
return retlist;
}
/* Tracepoint-specific operations. */
/* Set tracepoint count to NUM. */
static void
set_tracepoint_count (int num)
{
tracepoint_count = num;
set_internalvar_integer (lookup_internalvar ("tpnum"), num);
}
static void
trace_command (char *arg, int from_tty)
{
struct breakpoint_ops *ops;
const char *arg_cp = arg;
if (arg && probe_linespec_to_ops (&arg_cp))
ops = &tracepoint_probe_breakpoint_ops;
else
ops = &tracepoint_breakpoint_ops;
create_breakpoint (get_current_arch (),
arg,
NULL, 0, NULL, 1 /* parse arg */,
0 /* tempflag */,
bp_tracepoint /* type_wanted */,
0 /* Ignore count */,
pending_break_support,
ops,
from_tty,
1 /* enabled */,
0 /* internal */, 0);
}
static void
ftrace_command (char *arg, int from_tty)
{
create_breakpoint (get_current_arch (),
arg,
NULL, 0, NULL, 1 /* parse arg */,
0 /* tempflag */,
bp_fast_tracepoint /* type_wanted */,
0 /* Ignore count */,
pending_break_support,
&tracepoint_breakpoint_ops,
from_tty,
1 /* enabled */,
0 /* internal */, 0);
}
/* strace command implementation. Creates a static tracepoint. */
static void
strace_command (char *arg, int from_tty)
{
struct breakpoint_ops *ops;
/* Decide if we are dealing with a static tracepoint marker (`-m'),
or with a normal static tracepoint. */
if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
ops = &strace_marker_breakpoint_ops;
else
ops = &tracepoint_breakpoint_ops;
create_breakpoint (get_current_arch (),
arg,
NULL, 0, NULL, 1 /* parse arg */,
0 /* tempflag */,
bp_static_tracepoint /* type_wanted */,
0 /* Ignore count */,
pending_break_support,
ops,
from_tty,
1 /* enabled */,
0 /* internal */, 0);
}
/* Set up a fake reader function that gets command lines from a linked
list that was acquired during tracepoint uploading. */
static struct uploaded_tp *this_utp;
static int next_cmd;
static char *
read_uploaded_action (void)
{
char *rslt;
VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
next_cmd++;
return rslt;
}
/* Given information about a tracepoint as recorded on a target (which
can be either a live system or a trace file), attempt to create an
equivalent GDB tracepoint. This is not a reliable process, since
the target does not necessarily have all the information used when
the tracepoint was originally defined. */
struct tracepoint *
create_tracepoint_from_upload (struct uploaded_tp *utp)
{
char *addr_str, small_buf[100];
struct tracepoint *tp;
if (utp->at_string)
addr_str = utp->at_string;
else
{
/* In the absence of a source location, fall back to raw
address. Since there is no way to confirm that the address
means the same thing as when the trace was started, warn the
user. */
warning (_("Uploaded tracepoint %d has no "
"source location, using raw address"),
utp->number);
xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
addr_str = small_buf;
}
/* There's not much we can do with a sequence of bytecodes. */
if (utp->cond && !utp->cond_string)
warning (_("Uploaded tracepoint %d condition "
"has no source form, ignoring it"),
utp->number);
if (!create_breakpoint (get_current_arch (),
addr_str,
utp->cond_string, -1, NULL,
0 /* parse cond/thread */,
0 /* tempflag */,
utp->type /* type_wanted */,
0 /* Ignore count */,
pending_break_support,
&tracepoint_breakpoint_ops,
0 /* from_tty */,
utp->enabled /* enabled */,
0 /* internal */,
CREATE_BREAKPOINT_FLAGS_INSERTED))
return NULL;
/* Get the tracepoint we just created. */
tp = get_tracepoint (tracepoint_count);
gdb_assert (tp != NULL);
if (utp->pass > 0)
{
xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
tp->base.number);
trace_pass_command (small_buf, 0);
}
/* If we have uploaded versions of the original commands, set up a
special-purpose "reader" function and call the usual command line
reader, then pass the result to the breakpoint command-setting
function. */
if (!VEC_empty (char_ptr, utp->cmd_strings))
{
struct command_line *cmd_list;
this_utp = utp;
next_cmd = 0;
cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
breakpoint_set_commands (&tp->base, cmd_list);
}
else if (!VEC_empty (char_ptr, utp->actions)
|| !VEC_empty (char_ptr, utp->step_actions))
warning (_("Uploaded tracepoint %d actions "
"have no source form, ignoring them"),
utp->number);
/* Copy any status information that might be available. */
tp->base.hit_count = utp->hit_count;
tp->traceframe_usage = utp->traceframe_usage;
return tp;
}
/* Print information on tracepoint number TPNUM_EXP, or all if
omitted. */
static void
tracepoints_info (char *args, int from_tty)
{
struct ui_out *uiout = current_uiout;
int num_printed;
num_printed = breakpoint_1 (args, 0, is_tracepoint);
if (num_printed == 0)
{
if (args == NULL || *args == '\0')
ui_out_message (uiout, 0, "No tracepoints.\n");
else
ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
}
default_collect_info ();
}
/* The 'enable trace' command enables tracepoints.
Not supported by all targets. */
static void
enable_trace_command (char *args, int from_tty)
{
enable_command (args, from_tty);
}
/* The 'disable trace' command disables tracepoints.
Not supported by all targets. */
static void
disable_trace_command (char *args, int from_tty)
{
disable_command (args, from_tty);
}
/* Remove a tracepoint (or all if no argument). */
static void
delete_trace_command (char *arg, int from_tty)
{
struct breakpoint *b, *b_tmp;
dont_repeat ();
if (arg == 0)
{
int breaks_to_delete = 0;
/* Delete all breakpoints if no argument.
Do not delete internal or call-dummy breakpoints, these
have to be deleted with an explicit breakpoint number
argument. */
ALL_TRACEPOINTS (b)
if (is_tracepoint (b) && user_breakpoint_p (b))
{
breaks_to_delete = 1;
break;
}
/* Ask user only if there are some breakpoints to delete. */
if (!from_tty
|| (breaks_to_delete && query (_("Delete all tracepoints? "))))
{
ALL_BREAKPOINTS_SAFE (b, b_tmp)
if (is_tracepoint (b) && user_breakpoint_p (b))
delete_breakpoint (b);
}
}
else
map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
}
/* Helper function for trace_pass_command. */
static void
trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
{
tp->pass_count = count;
observer_notify_breakpoint_modified (&tp->base);
if (from_tty)
printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
tp->base.number, count);
}
/* Set passcount for tracepoint.
First command argument is passcount, second is tracepoint number.
If tracepoint number omitted, apply to most recently defined.
Also accepts special argument "all". */
static void
trace_pass_command (char *args, int from_tty)
{
struct tracepoint *t1;
unsigned int count;
if (args == 0 || *args == 0)
error (_("passcount command requires an "
"argument (count + optional TP num)"));
count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
args = skip_spaces (args);
if (*args && strncasecmp (args, "all", 3) == 0)
{
struct breakpoint *b;
args += 3; /* Skip special argument "all". */
if (*args)
error (_("Junk at end of arguments."));
ALL_TRACEPOINTS (b)
{
t1 = (struct tracepoint *) b;
trace_pass_set_count (t1, count, from_tty);
}
}
else if (*args == '\0')
{
t1 = get_tracepoint_by_number (&args, NULL, 1);
if (t1)
trace_pass_set_count (t1, count, from_tty);
}
else
{
struct get_number_or_range_state state;
init_number_or_range (&state, args);
while (!state.finished)
{
t1 = get_tracepoint_by_number (&args, &state, 1);
if (t1)
trace_pass_set_count (t1, count, from_tty);
}
}
}
struct tracepoint *
get_tracepoint (int num)
{
struct breakpoint *t;
ALL_TRACEPOINTS (t)
if (t->number == num)
return (struct tracepoint *) t;
return NULL;
}
/* Find the tracepoint with the given target-side number (which may be
different from the tracepoint number after disconnecting and
reconnecting). */
struct tracepoint *
get_tracepoint_by_number_on_target (int num)
{
struct breakpoint *b;
ALL_TRACEPOINTS (b)
{
struct tracepoint *t = (struct tracepoint *) b;
if (t->number_on_target == num)
return t;
}
return NULL;
}
/* Utility: parse a tracepoint number and look it up in the list.
If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
If OPTIONAL_P is true, then if the argument is missing, the most
recent tracepoint (tracepoint_count) is returned. */
struct tracepoint *
get_tracepoint_by_number (char **arg,
struct get_number_or_range_state *state,
int optional_p)
{
struct breakpoint *t;
int tpnum;
char *instring = arg == NULL ? NULL : *arg;
if (state)
{
gdb_assert (!state->finished);
tpnum = get_number_or_range (state);
}
else if (arg == NULL || *arg == NULL || ! **arg)
{
if (optional_p)
tpnum = tracepoint_count;
else
error_no_arg (_("tracepoint number"));
}
else
tpnum = get_number (arg);
if (tpnum <= 0)
{
if (instring && *instring)
printf_filtered (_("bad tracepoint number at or near '%s'\n"),
instring);
else
printf_filtered (_("Tracepoint argument missing "
"and no previous tracepoint\n"));
return NULL;
}
ALL_TRACEPOINTS (t)
if (t->number == tpnum)
{
return (struct tracepoint *) t;
}
printf_unfiltered ("No tracepoint number %d.\n", tpnum);
return NULL;
}
void
print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
{
if (b->thread != -1)
fprintf_unfiltered (fp, " thread %d", b->thread);
if (b->task != 0)
fprintf_unfiltered (fp, " task %d", b->task);
fprintf_unfiltered (fp, "\n");
}
/* Save information on user settable breakpoints (watchpoints, etc) to
a new script file named FILENAME. If FILTER is non-NULL, call it
on each breakpoint and only include the ones for which it returns
non-zero. */
static void
save_breakpoints (char *filename, int from_tty,
int (*filter) (const struct breakpoint *))
{
struct breakpoint *tp;
int any = 0;
struct cleanup *cleanup;
struct ui_file *fp;
int extra_trace_bits = 0;
if (filename == 0 || *filename == 0)
error (_("Argument required (file name in which to save)"));
/* See if we have anything to save. */
ALL_BREAKPOINTS (tp)
{
/* Skip internal and momentary breakpoints. */
if (!user_breakpoint_p (tp))
continue;
/* If we have a filter, only save the breakpoints it accepts. */
if (filter && !filter (tp))
continue;
any = 1;
if (is_tracepoint (tp))
{
extra_trace_bits = 1;
/* We can stop searching. */
break;
}
}
if (!any)
{
warning (_("Nothing to save."));
return;
}
filename = tilde_expand (filename);
cleanup = make_cleanup (xfree, filename);
fp = gdb_fopen (filename, "w");
if (!fp)
error (_("Unable to open file '%s' for saving (%s)"),
filename, safe_strerror (errno));
make_cleanup_ui_file_delete (fp);
if (extra_trace_bits)
save_trace_state_variables (fp);
ALL_BREAKPOINTS (tp)
{
/* Skip internal and momentary breakpoints. */
if (!user_breakpoint_p (tp))
continue;
/* If we have a filter, only save the breakpoints it accepts. */
if (filter && !filter (tp))
continue;
tp->ops->print_recreate (tp, fp);
/* Note, we can't rely on tp->number for anything, as we can't
assume the recreated breakpoint numbers will match. Use $bpnum
instead. */
if (tp->cond_string)
fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
if (tp->ignore_count)
fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
if (tp->type != bp_dprintf && tp->commands)
{
volatile struct gdb_exception ex;
fprintf_unfiltered (fp, " commands\n");
ui_out_redirect (current_uiout, fp);
TRY_CATCH (ex, RETURN_MASK_ALL)
{
print_command_lines (current_uiout, tp->commands->commands, 2);
}
ui_out_redirect (current_uiout, NULL);
if (ex.reason < 0)
throw_exception (ex);
fprintf_unfiltered (fp, " end\n");
}
if (tp->enable_state == bp_disabled)
fprintf_unfiltered (fp, "disable\n");
/* If this is a multi-location breakpoint, check if the locations
should be individually disabled. Watchpoint locations are
special, and not user visible. */
if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
{
struct bp_location *loc;
int n = 1;
for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
if (!loc->enabled)
fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
}
}
if (extra_trace_bits && *default_collect)
fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
if (from_tty)
printf_filtered (_("Saved to file '%s'.\n"), filename);
do_cleanups (cleanup);
}
/* The `save breakpoints' command. */
static void
save_breakpoints_command (char *args, int from_tty)
{
save_breakpoints (args, from_tty, NULL);
}
/* The `save tracepoints' command. */
static void
save_tracepoints_command (char *args, int from_tty)
{
save_breakpoints (args, from_tty, is_tracepoint);
}
/* Create a vector of all tracepoints. */
VEC(breakpoint_p) *
all_tracepoints (void)
{
VEC(breakpoint_p) *tp_vec = 0;
struct breakpoint *tp;
ALL_TRACEPOINTS (tp)
{
VEC_safe_push (breakpoint_p, tp_vec, tp);
}
return tp_vec;
}
/* This help string is used for the break, hbreak, tbreak and thbreak
commands. It is defined as a macro to prevent duplication.
COMMAND should be a string constant containing the name of the
command. */
#define BREAK_ARGS_HELP(command) \
command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
PROBE_MODIFIER shall be present if the command is to be placed in a\n\
probe point. Accepted values are `-probe' (for a generic, automatically\n\
guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
LOCATION may be a line number, function name, or \"*\" and an address.\n\
If a line number is specified, break at start of code for that line.\n\
If a function is specified, break at start of code for that function.\n\
If an address is specified, break at that exact address.\n\
With no LOCATION, uses current execution address of the selected\n\
stack frame. This is useful for breaking on return to a stack frame.\n\
\n\
THREADNUM is the number from \"info threads\".\n\
CONDITION is a boolean expression.\n\
\n\
Multiple breakpoints at one place are permitted, and useful if their\n\
conditions are different.\n\
\n\
Do \"help breakpoints\" for info on other commands dealing with breakpoints."
/* List of subcommands for "catch". */
static struct cmd_list_element *catch_cmdlist;
/* List of subcommands for "tcatch". */
static struct cmd_list_element *tcatch_cmdlist;
void
add_catch_command (char *name, char *docstring,
void (*sfunc) (char *args, int from_tty,
struct cmd_list_element *command),
completer_ftype *completer,
void *user_data_catch,
void *user_data_tcatch)
{
struct cmd_list_element *command;
command = add_cmd (name, class_breakpoint, NULL, docstring,
&catch_cmdlist);
set_cmd_sfunc (command, sfunc);
set_cmd_context (command, user_data_catch);
set_cmd_completer (command, completer);
command = add_cmd (name, class_breakpoint, NULL, docstring,
&tcatch_cmdlist);
set_cmd_sfunc (command, sfunc);
set_cmd_context (command, user_data_tcatch);
set_cmd_completer (command, completer);
}
static void
clear_syscall_counts (struct inferior *inf)
{
struct catch_syscall_inferior_data *inf_data
= get_catch_syscall_inferior_data (inf);
inf_data->total_syscalls_count = 0;
inf_data->any_syscall_count = 0;
VEC_free (int, inf_data->syscalls_counts);
}
static void
save_command (char *arg, int from_tty)
{
printf_unfiltered (_("\"save\" must be followed by "
"the name of a save subcommand.\n"));
help_list (save_cmdlist, "save ", -1, gdb_stdout);
}
struct breakpoint *
iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
void *data)
{
struct breakpoint *b, *b_tmp;
ALL_BREAKPOINTS_SAFE (b, b_tmp)
{
if ((*callback) (b, data))
return b;
}
return NULL;
}
/* Zero if any of the breakpoint's locations could be a location where
functions have been inlined, nonzero otherwise. */
static int
is_non_inline_function (struct breakpoint *b)
{
/* The shared library event breakpoint is set on the address of a
non-inline function. */
if (b->type == bp_shlib_event)
return 1;
return 0;
}
/* Nonzero if the specified PC cannot be a location where functions
have been inlined. */
int
pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
const struct target_waitstatus *ws)
{
struct breakpoint *b;
struct bp_location *bl;
ALL_BREAKPOINTS (b)
{
if (!is_non_inline_function (b))
continue;
for (bl = b->loc; bl != NULL; bl = bl->next)
{
if (!bl->shlib_disabled
&& bpstat_check_location (bl, aspace, pc, ws))
return 1;
}
}
return 0;
}
/* Remove any references to OBJFILE which is going to be freed. */
void
breakpoint_free_objfile (struct objfile *objfile)
{
struct bp_location **locp, *loc;
ALL_BP_LOCATIONS (loc, locp)
if (loc->symtab != NULL && loc->symtab->objfile == objfile)
loc->symtab = NULL;
}
void
initialize_breakpoint_ops (void)
{
static int initialized = 0;
struct breakpoint_ops *ops;
if (initialized)
return;
initialized = 1;
/* The breakpoint_ops structure to be inherit by all kinds of
breakpoints (real breakpoints, i.e., user "break" breakpoints,
internal and momentary breakpoints, etc.). */
ops = &bkpt_base_breakpoint_ops;
*ops = base_breakpoint_ops;
ops->re_set = bkpt_re_set;
ops->insert_location = bkpt_insert_location;
ops->remove_location = bkpt_remove_location;
ops->breakpoint_hit = bkpt_breakpoint_hit;
ops->create_sals_from_address = bkpt_create_sals_from_address;
ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
ops->decode_linespec = bkpt_decode_linespec;
/* The breakpoint_ops structure to be used in regular breakpoints. */
ops = &bkpt_breakpoint_ops;
*ops = bkpt_base_breakpoint_ops;
ops->re_set = bkpt_re_set;
ops->resources_needed = bkpt_resources_needed;
ops->print_it = bkpt_print_it;
ops->print_mention = bkpt_print_mention;
ops->print_recreate = bkpt_print_recreate;
/* Ranged breakpoints. */
ops = &ranged_breakpoint_ops;
*ops = bkpt_breakpoint_ops;
ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
ops->resources_needed = resources_needed_ranged_breakpoint;
ops->print_it = print_it_ranged_breakpoint;
ops->print_one = print_one_ranged_breakpoint;
ops->print_one_detail = print_one_detail_ranged_breakpoint;
ops->print_mention = print_mention_ranged_breakpoint;
ops->print_recreate = print_recreate_ranged_breakpoint;
/* Internal breakpoints. */
ops = &internal_breakpoint_ops;
*ops = bkpt_base_breakpoint_ops;
ops->re_set = internal_bkpt_re_set;
ops->check_status = internal_bkpt_check_status;
ops->print_it = internal_bkpt_print_it;
ops->print_mention = internal_bkpt_print_mention;
/* Momentary breakpoints. */
ops = &momentary_breakpoint_ops;
*ops = bkpt_base_breakpoint_ops;
ops->re_set = momentary_bkpt_re_set;
ops->check_status = momentary_bkpt_check_status;
ops->print_it = momentary_bkpt_print_it;
ops->print_mention = momentary_bkpt_print_mention;
/* Momentary breakpoints for bp_longjmp and bp_exception. */
ops = &longjmp_breakpoint_ops;
*ops = momentary_breakpoint_ops;
ops->dtor = longjmp_bkpt_dtor;
/* Probe breakpoints. */
ops = &bkpt_probe_breakpoint_ops;
*ops = bkpt_breakpoint_ops;
ops->insert_location = bkpt_probe_insert_location;
ops->remove_location = bkpt_probe_remove_location;
ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
ops->decode_linespec = bkpt_probe_decode_linespec;
/* Watchpoints. */
ops = &watchpoint_breakpoint_ops;
*ops = base_breakpoint_ops;
ops->dtor = dtor_watchpoint;
ops->re_set = re_set_watchpoint;
ops->insert_location = insert_watchpoint;
ops->remove_location = remove_watchpoint;
ops->breakpoint_hit = breakpoint_hit_watchpoint;
ops->check_status = check_status_watchpoint;
ops->resources_needed = resources_needed_watchpoint;
ops->works_in_software_mode = works_in_software_mode_watchpoint;
ops->print_it = print_it_watchpoint;
ops->print_mention = print_mention_watchpoint;
ops->print_recreate = print_recreate_watchpoint;
ops->explains_signal = explains_signal_watchpoint;
/* Masked watchpoints. */
ops = &masked_watchpoint_breakpoint_ops;
*ops = watchpoint_breakpoint_ops;
ops->insert_location = insert_masked_watchpoint;
ops->remove_location = remove_masked_watchpoint;
ops->resources_needed = resources_needed_masked_watchpoint;
ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
ops->print_it = print_it_masked_watchpoint;
ops->print_one_detail = print_one_detail_masked_watchpoint;
ops->print_mention = print_mention_masked_watchpoint;
ops->print_recreate = print_recreate_masked_watchpoint;
/* Tracepoints. */
ops = &tracepoint_breakpoint_ops;
*ops = base_breakpoint_ops;
ops->re_set = tracepoint_re_set;
ops->breakpoint_hit = tracepoint_breakpoint_hit;
ops->print_one_detail = tracepoint_print_one_detail;
ops->print_mention = tracepoint_print_mention;
ops->print_recreate = tracepoint_print_recreate;
ops->create_sals_from_address = tracepoint_create_sals_from_address;
ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
ops->decode_linespec = tracepoint_decode_linespec;
/* Probe tracepoints. */
ops = &tracepoint_probe_breakpoint_ops;
*ops = tracepoint_breakpoint_ops;
ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
ops->decode_linespec = tracepoint_probe_decode_linespec;
/* Static tracepoints with marker (`-m'). */
ops = &strace_marker_breakpoint_ops;
*ops = tracepoint_breakpoint_ops;
ops->create_sals_from_address = strace_marker_create_sals_from_address;
ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
ops->decode_linespec = strace_marker_decode_linespec;
/* Fork catchpoints. */
ops = &catch_fork_breakpoint_ops;
*ops = base_breakpoint_ops;
ops->insert_location = insert_catch_fork;
ops->remove_location = remove_catch_fork;
ops->breakpoint_hit = breakpoint_hit_catch_fork;
ops->print_it = print_it_catch_fork;
ops->print_one = print_one_catch_fork;
ops->print_mention = print_mention_catch_fork;
ops->print_recreate = print_recreate_catch_fork;
/* Vfork catchpoints. */
ops = &catch_vfork_breakpoint_ops;
*ops = base_breakpoint_ops;
ops->insert_location = insert_catch_vfork;
ops->remove_location = remove_catch_vfork;
ops->breakpoint_hit = breakpoint_hit_catch_vfork;
ops->print_it = print_it_catch_vfork;
ops->print_one = print_one_catch_vfork;
ops->print_mention = print_mention_catch_vfork;
ops->print_recreate = print_recreate_catch_vfork;
/* Exec catchpoints. */
ops = &catch_exec_breakpoint_ops;
*ops = base_breakpoint_ops;
ops->dtor = dtor_catch_exec;
ops->insert_location = insert_catch_exec;
ops->remove_location = remove_catch_exec;
ops->breakpoint_hit = breakpoint_hit_catch_exec;
ops->print_it = print_it_catch_exec;
ops->print_one = print_one_catch_exec;
ops->print_mention = print_mention_catch_exec;
ops->print_recreate = print_recreate_catch_exec;
/* Syscall catchpoints. */
ops = &catch_syscall_breakpoint_ops;
*ops = base_breakpoint_ops;
ops->dtor = dtor_catch_syscall;
ops->insert_location = insert_catch_syscall;
ops->remove_location = remove_catch_syscall;
ops->breakpoint_hit = breakpoint_hit_catch_syscall;
ops->print_it = print_it_catch_syscall;
ops->print_one = print_one_catch_syscall;
ops->print_mention = print_mention_catch_syscall;
ops->print_recreate = print_recreate_catch_syscall;
/* Solib-related catchpoints. */
ops = &catch_solib_breakpoint_ops;
*ops = base_breakpoint_ops;
ops->dtor = dtor_catch_solib;
ops->insert_location = insert_catch_solib;
ops->remove_location = remove_catch_solib;
ops->breakpoint_hit = breakpoint_hit_catch_solib;
ops->check_status = check_status_catch_solib;
ops->print_it = print_it_catch_solib;
ops->print_one = print_one_catch_solib;
ops->print_mention = print_mention_catch_solib;
ops->print_recreate = print_recreate_catch_solib;
ops = &dprintf_breakpoint_ops;
*ops = bkpt_base_breakpoint_ops;
ops->re_set = dprintf_re_set;
ops->resources_needed = bkpt_resources_needed;
ops->print_it = bkpt_print_it;
ops->print_mention = bkpt_print_mention;
ops->print_recreate = dprintf_print_recreate;
ops->after_condition_true = dprintf_after_condition_true;
}
/* Chain containing all defined "enable breakpoint" subcommands. */
static struct cmd_list_element *enablebreaklist = NULL;
void
_initialize_breakpoint (void)
{
struct cmd_list_element *c;
initialize_breakpoint_ops ();
observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
observer_attach_inferior_exit (clear_syscall_counts);
observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
breakpoint_objfile_key
= register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
catch_syscall_inferior_data
= register_inferior_data_with_cleanup (NULL,
catch_syscall_inferior_data_cleanup);
breakpoint_chain = 0;
/* Don't bother to call set_breakpoint_count. $bpnum isn't useful
before a breakpoint is set. */
breakpoint_count = 0;
tracepoint_count = 0;
add_com ("ignore", class_breakpoint, ignore_command, _("\
Set ignore-count of breakpoint number N to COUNT.\n\
Usage is `ignore N COUNT'."));
if (xdb_commands)
add_com_alias ("bc", "ignore", class_breakpoint, 1);
add_com ("commands", class_breakpoint, commands_command, _("\
Set commands to be executed when a breakpoint is hit.\n\
Give breakpoint number as argument after \"commands\".\n\
With no argument, the targeted breakpoint is the last one set.\n\
The commands themselves follow starting on the next line.\n\
Type a line containing \"end\" to indicate the end of them.\n\
Give \"silent\" as the first line to make the breakpoint silent;\n\
then no output is printed when it is hit, except what the commands print."));
c = add_com ("condition", class_breakpoint, condition_command, _("\
Specify breakpoint number N to break only if COND is true.\n\
Usage is `condition N COND', where N is an integer and COND is an\n\
expression to be evaluated whenever breakpoint N is reached."));
set_cmd_completer (c, condition_completer);
c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
Set a temporary breakpoint.\n\
Like \"break\" except the breakpoint is only temporary,\n\
so it will be deleted when hit. Equivalent to \"break\" followed\n\
by using \"enable delete\" on the breakpoint number.\n\
\n"
BREAK_ARGS_HELP ("tbreak")));
set_cmd_completer (c, location_completer);
c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
Set a hardware assisted breakpoint.\n\
Like \"break\" except the breakpoint requires hardware support,\n\
some target hardware may not have this support.\n\
\n"
BREAK_ARGS_HELP ("hbreak")));
set_cmd_completer (c, location_completer);
c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
Set a temporary hardware assisted breakpoint.\n\
Like \"hbreak\" except the breakpoint is only temporary,\n\
so it will be deleted when hit.\n\
\n"
BREAK_ARGS_HELP ("thbreak")));
set_cmd_completer (c, location_completer);
add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
Enable some breakpoints.\n\
Give breakpoint numbers (separated by spaces) as arguments.\n\
With no subcommand, breakpoints are enabled until you command otherwise.\n\
This is used to cancel the effect of the \"disable\" command.\n\
With a subcommand you can enable temporarily."),
&enablelist, "enable ", 1, &cmdlist);
if (xdb_commands)
add_com ("ab", class_breakpoint, enable_command, _("\
Enable some breakpoints.\n\
Give breakpoint numbers (separated by spaces) as arguments.\n\
With no subcommand, breakpoints are enabled until you command otherwise.\n\
This is used to cancel the effect of the \"disable\" command.\n\
With a subcommand you can enable temporarily."));
add_com_alias ("en", "enable", class_breakpoint, 1);
add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
Enable some breakpoints.\n\
Give breakpoint numbers (separated by spaces) as arguments.\n\
This is used to cancel the effect of the \"disable\" command.\n\
May be abbreviated to simply \"enable\".\n"),
&enablebreaklist, "enable breakpoints ", 1, &enablelist);
add_cmd ("once", no_class, enable_once_command, _("\
Enable breakpoints for one hit. Give breakpoint numbers.\n\
If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
&enablebreaklist);
add_cmd ("delete", no_class, enable_delete_command, _("\
Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
If a breakpoint is hit while enabled in this fashion, it is deleted."),
&enablebreaklist);
add_cmd ("count", no_class, enable_count_command, _("\
Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
If a breakpoint is hit while enabled in this fashion,\n\
the count is decremented; when it reaches zero, the breakpoint is disabled."),
&enablebreaklist);
add_cmd ("delete", no_class, enable_delete_command, _("\
Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
If a breakpoint is hit while enabled in this fashion, it is deleted."),
&enablelist);
add_cmd ("once", no_class, enable_once_command, _("\
Enable breakpoints for one hit. Give breakpoint numbers.\n\
If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
&enablelist);
add_cmd ("count", no_class, enable_count_command, _("\
Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
If a breakpoint is hit while enabled in this fashion,\n\
the count is decremented; when it reaches zero, the breakpoint is disabled."),
&enablelist);
add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
Disable some breakpoints.\n\
Arguments are breakpoint numbers with spaces in between.\n\
To disable all breakpoints, give no argument.\n\
A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
&disablelist, "disable ", 1, &cmdlist);
add_com_alias ("dis", "disable", class_breakpoint, 1);
add_com_alias ("disa", "disable", class_breakpoint, 1);
if (xdb_commands)
add_com ("sb", class_breakpoint, disable_command, _("\
Disable some breakpoints.\n\
Arguments are breakpoint numbers with spaces in between.\n\
To disable all breakpoints, give no argument.\n\
A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
add_cmd ("breakpoints", class_alias, disable_command, _("\
Disable some breakpoints.\n\
Arguments are breakpoint numbers with spaces in between.\n\
To disable all breakpoints, give no argument.\n\
A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
This command may be abbreviated \"disable\"."),
&disablelist);
add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
Delete some breakpoints or auto-display expressions.\n\
Arguments are breakpoint numbers with spaces in between.\n\
To delete all breakpoints, give no argument.\n\
\n\
Also a prefix command for deletion of other GDB objects.\n\
The \"unset\" command is also an alias for \"delete\"."),
&deletelist, "delete ", 1, &cmdlist);
add_com_alias ("d", "delete", class_breakpoint, 1);
add_com_alias ("del", "delete", class_breakpoint, 1);
if (xdb_commands)
add_com ("db", class_breakpoint, delete_command, _("\
Delete some breakpoints.\n\
Arguments are breakpoint numbers with spaces in between.\n\
To delete all breakpoints, give no argument.\n"));
add_cmd ("breakpoints", class_alias, delete_command, _("\
Delete some breakpoints or auto-display expressions.\n\
Arguments are breakpoint numbers with spaces in between.\n\
To delete all breakpoints, give no argument.\n\
This command may be abbreviated \"delete\"."),
&deletelist);
add_com ("clear", class_breakpoint, clear_command, _("\
Clear breakpoint at specified line or function.\n\
Argument may be line number, function name, or \"*\" and an address.\n\
If line number is specified, all breakpoints in that line are cleared.\n\
If function is specified, breakpoints at beginning of function are cleared.\n\
If an address is specified, breakpoints at that address are cleared.\n\
\n\
With no argument, clears all breakpoints in the line that the selected frame\n\
is executing in.\n\
\n\
See also the \"delete\" command which clears breakpoints by number."));
add_com_alias ("cl", "clear", class_breakpoint, 1);
c = add_com ("break", class_breakpoint, break_command, _("\
Set breakpoint at specified line or function.\n"
BREAK_ARGS_HELP ("break")));
set_cmd_completer (c, location_completer);
add_com_alias ("b", "break", class_run, 1);
add_com_alias ("br", "break", class_run, 1);
add_com_alias ("bre", "break", class_run, 1);
add_com_alias ("brea", "break", class_run, 1);
if (xdb_commands)
add_com_alias ("ba", "break", class_breakpoint, 1);
if (dbx_commands)
{
add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
Break in function/address or break at a line in the current file."),
&stoplist, "stop ", 1, &cmdlist);
add_cmd ("in", class_breakpoint, stopin_command,
_("Break in function or address."), &stoplist);
add_cmd ("at", class_breakpoint, stopat_command,
_("Break at a line in the current file."), &stoplist);
add_com ("status", class_info, breakpoints_info, _("\
Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
The \"Type\" column indicates one of:\n\
\tbreakpoint - normal breakpoint\n\
\twatchpoint - watchpoint\n\
The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
address and file/line number respectively.\n\
\n\
Convenience variable \"$_\" and default examine address for \"x\"\n\
are set to the address of the last breakpoint listed unless the command\n\
is prefixed with \"server \".\n\n\
Convenience variable \"$bpnum\" contains the number of the last\n\
breakpoint set."));
}
add_info ("breakpoints", breakpoints_info, _("\
Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
The \"Type\" column indicates one of:\n\
\tbreakpoint - normal breakpoint\n\
\twatchpoint - watchpoint\n\
The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
address and file/line number respectively.\n\
\n\
Convenience variable \"$_\" and default examine address for \"x\"\n\
are set to the address of the last breakpoint listed unless the command\n\
is prefixed with \"server \".\n\n\
Convenience variable \"$bpnum\" contains the number of the last\n\
breakpoint set."));
add_info_alias ("b", "breakpoints", 1);
if (xdb_commands)
add_com ("lb", class_breakpoint, breakpoints_info, _("\
Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
The \"Type\" column indicates one of:\n\
\tbreakpoint - normal breakpoint\n\
\twatchpoint - watchpoint\n\
The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
address and file/line number respectively.\n\
\n\
Convenience variable \"$_\" and default examine address for \"x\"\n\
are set to the address of the last breakpoint listed unless the command\n\
is prefixed with \"server \".\n\n\
Convenience variable \"$bpnum\" contains the number of the last\n\
breakpoint set."));
add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
Status of all breakpoints, or breakpoint number NUMBER.\n\
The \"Type\" column indicates one of:\n\
\tbreakpoint - normal breakpoint\n\
\twatchpoint - watchpoint\n\
\tlongjmp - internal breakpoint used to step through longjmp()\n\
\tlongjmp resume - internal breakpoint at the target of longjmp()\n\
\tuntil - internal breakpoint used by the \"until\" command\n\
\tfinish - internal breakpoint used by the \"finish\" command\n\
The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
address and file/line number respectively.\n\
\n\
Convenience variable \"$_\" and default examine address for \"x\"\n\
are set to the address of the last breakpoint listed unless the command\n\
is prefixed with \"server \".\n\n\
Convenience variable \"$bpnum\" contains the number of the last\n\
breakpoint set."),
&maintenanceinfolist);
add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
Set catchpoints to catch events."),
&catch_cmdlist, "catch ",
0/*allow-unknown*/, &cmdlist);
add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
Set temporary catchpoints to catch events."),
&tcatch_cmdlist, "tcatch ",
0/*allow-unknown*/, &cmdlist);
add_catch_command ("fork", _("Catch calls to fork."),
catch_fork_command_1,
NULL,
(void *) (uintptr_t) catch_fork_permanent,
(void *) (uintptr_t) catch_fork_temporary);
add_catch_command ("vfork", _("Catch calls to vfork."),
catch_fork_command_1,
NULL,
(void *) (uintptr_t) catch_vfork_permanent,
(void *) (uintptr_t) catch_vfork_temporary);
add_catch_command ("exec", _("Catch calls to exec."),
catch_exec_command_1,
NULL,
CATCH_PERMANENT,
CATCH_TEMPORARY);
add_catch_command ("load", _("Catch loads of shared libraries.\n\
Usage: catch load [REGEX]\n\
If REGEX is given, only stop for libraries matching the regular expression."),
catch_load_command_1,
NULL,
CATCH_PERMANENT,
CATCH_TEMPORARY);
add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
Usage: catch unload [REGEX]\n\
If REGEX is given, only stop for libraries matching the regular expression."),
catch_unload_command_1,
NULL,
CATCH_PERMANENT,
CATCH_TEMPORARY);
add_catch_command ("syscall", _("\
Catch system calls by their names and/or numbers.\n\
Arguments say which system calls to catch. If no arguments\n\
are given, every system call will be caught.\n\
Arguments, if given, should be one or more system call names\n\
(if your system supports that), or system call numbers."),
catch_syscall_command_1,
catch_syscall_completer,
CATCH_PERMANENT,
CATCH_TEMPORARY);
c = add_com ("watch", class_breakpoint, watch_command, _("\
Set a watchpoint for an expression.\n\
Usage: watch [-l|-location] EXPRESSION\n\
A watchpoint stops execution of your program whenever the value of\n\
an expression changes.\n\
If -l or -location is given, this evaluates EXPRESSION and watches\n\
the memory to which it refers."));
set_cmd_completer (c, expression_completer);
c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
Set a read watchpoint for an expression.\n\
Usage: rwatch [-l|-location] EXPRESSION\n\
A watchpoint stops execution of your program whenever the value of\n\
an expression is read.\n\
If -l or -location is given, this evaluates EXPRESSION and watches\n\
the memory to which it refers."));
set_cmd_completer (c, expression_completer);
c = add_com ("awatch", class_breakpoint, awatch_command, _("\
Set a watchpoint for an expression.\n\
Usage: awatch [-l|-location] EXPRESSION\n\
A watchpoint stops execution of your program whenever the value of\n\
an expression is either read or written.\n\
If -l or -location is given, this evaluates EXPRESSION and watches\n\
the memory to which it refers."));
set_cmd_completer (c, expression_completer);
add_info ("watchpoints", watchpoints_info, _("\
Status of specified watchpoints (all watchpoints if no argument)."));
/* XXX: cagney/2005-02-23: This should be a boolean, and should
respond to changes - contrary to the description. */
add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
&can_use_hw_watchpoints, _("\
Set debugger's willingness to use watchpoint hardware."), _("\
Show debugger's willingness to use watchpoint hardware."), _("\
If zero, gdb will not use hardware for new watchpoints, even if\n\
such is available. (However, any hardware watchpoints that were\n\
created before setting this to nonzero, will continue to use watchpoint\n\
hardware.)"),
NULL,
show_can_use_hw_watchpoints,
&setlist, &showlist);
can_use_hw_watchpoints = 1;
/* Tracepoint manipulation commands. */
c = add_com ("trace", class_breakpoint, trace_command, _("\
Set a tracepoint at specified line or function.\n\
\n"
BREAK_ARGS_HELP ("trace") "\n\
Do \"help tracepoints\" for info on other tracepoint commands."));
set_cmd_completer (c, location_completer);
add_com_alias ("tp", "trace", class_alias, 0);
add_com_alias ("tr", "trace", class_alias, 1);
add_com_alias ("tra", "trace", class_alias, 1);
add_com_alias ("trac", "trace", class_alias, 1);
c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
Set a fast tracepoint at specified line or function.\n\
\n"
BREAK_ARGS_HELP ("ftrace") "\n\
Do \"help tracepoints\" for info on other tracepoint commands."));
set_cmd_completer (c, location_completer);
c = add_com ("strace", class_breakpoint, strace_command, _("\
Set a static tracepoint at specified line, function or marker.\n\
\n\
strace [LOCATION] [if CONDITION]\n\
LOCATION may be a line number, function name, \"*\" and an address,\n\
or -m MARKER_ID.\n\
If a line number is specified, probe the marker at start of code\n\
for that line. If a function is specified, probe the marker at start\n\
of code for that function. If an address is specified, probe the marker\n\
at that exact address. If a marker id is specified, probe the marker\n\
with that name. With no LOCATION, uses current execution address of\n\
the selected stack frame.\n\
Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
This collects arbitrary user data passed in the probe point call to the\n\
tracing library. You can inspect it when analyzing the trace buffer,\n\
by printing the $_sdata variable like any other convenience variable.\n\
\n\
CONDITION is a boolean expression.\n\
\n\
Multiple tracepoints at one place are permitted, and useful if their\n\
conditions are different.\n\
\n\
Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
Do \"help tracepoints\" for info on other tracepoint commands."));
set_cmd_completer (c, location_completer);
add_info ("tracepoints", tracepoints_info, _("\
Status of specified tracepoints (all tracepoints if no argument).\n\
Convenience variable \"$tpnum\" contains the number of the\n\
last tracepoint set."));
add_info_alias ("tp", "tracepoints", 1);
add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
Delete specified tracepoints.\n\
Arguments are tracepoint numbers, separated by spaces.\n\
No argument means delete all tracepoints."),
&deletelist);
add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
Disable specified tracepoints.\n\
Arguments are tracepoint numbers, separated by spaces.\n\
No argument means disable all tracepoints."),
&disablelist);
deprecate_cmd (c, "disable");
c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
Enable specified tracepoints.\n\
Arguments are tracepoint numbers, separated by spaces.\n\
No argument means enable all tracepoints."),
&enablelist);
deprecate_cmd (c, "enable");
add_com ("passcount", class_trace, trace_pass_command, _("\
Set the passcount for a tracepoint.\n\
The trace will end when the tracepoint has been passed 'count' times.\n\
Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
if TPNUM is omitted, passcount refers to the last tracepoint defined."));
add_prefix_cmd ("save", class_breakpoint, save_command,
_("Save breakpoint definitions as a script."),
&save_cmdlist, "save ",
0/*allow-unknown*/, &cmdlist);
c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
Save current breakpoint definitions as a script.\n\
This includes all types of breakpoints (breakpoints, watchpoints,\n\
catchpoints, tracepoints). Use the 'source' command in another debug\n\
session to restore them."),
&save_cmdlist);
set_cmd_completer (c, filename_completer);
c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
Save current tracepoint definitions as a script.\n\
Use the 'source' command in another debug session to restore them."),
&save_cmdlist);
set_cmd_completer (c, filename_completer);
c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
deprecate_cmd (c, "save tracepoints");
add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
Breakpoint specific settings\n\
Configure various breakpoint-specific variables such as\n\
pending breakpoint behavior"),
&breakpoint_set_cmdlist, "set breakpoint ",
0/*allow-unknown*/, &setlist);
add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
Breakpoint specific settings\n\
Configure various breakpoint-specific variables such as\n\
pending breakpoint behavior"),
&breakpoint_show_cmdlist, "show breakpoint ",
0/*allow-unknown*/, &showlist);
add_setshow_auto_boolean_cmd ("pending", no_class,
&pending_break_support, _("\
Set debugger's behavior regarding pending breakpoints."), _("\
Show debugger's behavior regarding pending breakpoints."), _("\
If on, an unrecognized breakpoint location will cause gdb to create a\n\
pending breakpoint. If off, an unrecognized breakpoint location results in\n\
an error. If auto, an unrecognized breakpoint location results in a\n\
user-query to see if a pending breakpoint should be created."),
NULL,
show_pending_break_support,
&breakpoint_set_cmdlist,
&breakpoint_show_cmdlist);
pending_break_support = AUTO_BOOLEAN_AUTO;
add_setshow_boolean_cmd ("auto-hw", no_class,
&automatic_hardware_breakpoints, _("\
Set automatic usage of hardware breakpoints."), _("\
Show automatic usage of hardware breakpoints."), _("\
If set, the debugger will automatically use hardware breakpoints for\n\
breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
a warning will be emitted for such breakpoints."),
NULL,
show_automatic_hardware_breakpoints,
&breakpoint_set_cmdlist,
&breakpoint_show_cmdlist);
add_setshow_auto_boolean_cmd ("always-inserted", class_support,
&always_inserted_mode, _("\
Set mode for inserting breakpoints."), _("\
Show mode for inserting breakpoints."), _("\
When this mode is off, breakpoints are inserted in inferior when it is\n\
resumed, and removed when execution stops. When this mode is on,\n\
breakpoints are inserted immediately and removed only when the user\n\
deletes the breakpoint. When this mode is auto (which is the default),\n\
the behaviour depends on the non-stop setting (see help set non-stop).\n\
In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
behaves as if always-inserted mode is on; if gdb is controlling the\n\
inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
NULL,
&show_always_inserted_mode,
&breakpoint_set_cmdlist,
&breakpoint_show_cmdlist);
add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
condition_evaluation_enums,
&condition_evaluation_mode_1, _("\
Set mode of breakpoint condition evaluation."), _("\
Show mode of breakpoint condition evaluation."), _("\
When this is set to \"host\", breakpoint conditions will be\n\
evaluated on the host's side by GDB. When it is set to \"target\",\n\
breakpoint conditions will be downloaded to the target (if the target\n\
supports such feature) and conditions will be evaluated on the target's side.\n\
If this is set to \"auto\" (default), this will be automatically set to\n\
\"target\" if it supports condition evaluation, otherwise it will\n\
be set to \"gdb\""),
&set_condition_evaluation_mode,
&show_condition_evaluation_mode,
&breakpoint_set_cmdlist,
&breakpoint_show_cmdlist);
add_com ("break-range", class_breakpoint, break_range_command, _("\
Set a breakpoint for an address range.\n\
break-range START-LOCATION, END-LOCATION\n\
where START-LOCATION and END-LOCATION can be one of the following:\n\
LINENUM, for that line in the current file,\n\
FILE:LINENUM, for that line in that file,\n\
+OFFSET, for that number of lines after the current line\n\
or the start of the range\n\
FUNCTION, for the first line in that function,\n\
FILE:FUNCTION, to distinguish among like-named static functions.\n\
*ADDRESS, for the instruction at that address.\n\
\n\
The breakpoint will stop execution of the inferior whenever it executes\n\
an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
range (including START-LOCATION and END-LOCATION)."));
c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
Set a dynamic printf at specified line or function.\n\
dprintf location,format string,arg1,arg2,...\n\
location may be a line number, function name, or \"*\" and an address.\n\
If a line number is specified, break at start of code for that line.\n\
If a function is specified, break at start of code for that function."));
set_cmd_completer (c, location_completer);
add_setshow_enum_cmd ("dprintf-style", class_support,
dprintf_style_enums, &dprintf_style, _("\
Set the style of usage for dynamic printf."), _("\
Show the style of usage for dynamic printf."), _("\
This setting chooses how GDB will do a dynamic printf.\n\
If the value is \"gdb\", then the printing is done by GDB to its own\n\
console, as with the \"printf\" command.\n\
If the value is \"call\", the print is done by calling a function in your\n\
program; by default printf(), but you can choose a different function or\n\
output stream by setting dprintf-function and dprintf-channel."),
update_dprintf_commands, NULL,
&setlist, &showlist);
dprintf_function = xstrdup ("printf");
add_setshow_string_cmd ("dprintf-function", class_support,
&dprintf_function, _("\
Set the function to use for dynamic printf"), _("\
Show the function to use for dynamic printf"), NULL,
update_dprintf_commands, NULL,
&setlist, &showlist);
dprintf_channel = xstrdup ("");
add_setshow_string_cmd ("dprintf-channel", class_support,
&dprintf_channel, _("\
Set the channel to use for dynamic printf"), _("\
Show the channel to use for dynamic printf"), NULL,
update_dprintf_commands, NULL,
&setlist, &showlist);
add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
&disconnected_dprintf, _("\
Set whether dprintf continues after GDB disconnects."), _("\
Show whether dprintf continues after GDB disconnects."), _("\
Use this to let dprintf commands continue to hit and produce output\n\
even if GDB disconnects or detaches from the target."),
NULL,
NULL,
&setlist, &showlist);
add_com ("agent-printf", class_vars, agent_printf_command, _("\
agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
(target agent only) This is useful for formatted output in user-defined commands."));
automatic_hardware_breakpoints = 1;
observer_attach_about_to_proceed (breakpoint_about_to_proceed);
observer_attach_thread_exit (remove_threaded_breakpoints);
}