/* Auxiliary vector support for GDB, the GNU debugger. Copyright (C) 2004-2018 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "target.h" #include "gdbtypes.h" #include "command.h" #include "inferior.h" #include "valprint.h" #include "gdbcore.h" #include "observable.h" #include "filestuff.h" #include "objfiles.h" #include "auxv.h" #include "elf/common.h" #include #include /* Implement the to_xfer_partial target_ops method. This function handles access via /proc/PID/auxv, which is a common method for native targets. */ static enum target_xfer_status procfs_xfer_auxv (gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) { char *pathname; int fd; ssize_t l; pathname = xstrprintf ("/proc/%d/auxv", ptid_get_pid (inferior_ptid)); fd = gdb_open_cloexec (pathname, writebuf != NULL ? O_WRONLY : O_RDONLY, 0); xfree (pathname); if (fd < 0) return TARGET_XFER_E_IO; if (offset != (ULONGEST) 0 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset) l = -1; else if (readbuf != NULL) l = read (fd, readbuf, (size_t) len); else l = write (fd, writebuf, (size_t) len); (void) close (fd); if (l < 0) return TARGET_XFER_E_IO; else if (l == 0) return TARGET_XFER_EOF; else { *xfered_len = (ULONGEST) l; return TARGET_XFER_OK; } } /* This function handles access via ld.so's symbol `_dl_auxv'. */ static enum target_xfer_status ld_so_xfer_auxv (gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) { struct bound_minimal_symbol msym; CORE_ADDR data_address, pointer_address; struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; size_t ptr_size = TYPE_LENGTH (ptr_type); size_t auxv_pair_size = 2 * ptr_size; gdb_byte *ptr_buf = (gdb_byte *) alloca (ptr_size); LONGEST retval; size_t block; msym = lookup_minimal_symbol ("_dl_auxv", NULL, NULL); if (msym.minsym == NULL) return TARGET_XFER_E_IO; if (MSYMBOL_SIZE (msym.minsym) != ptr_size) return TARGET_XFER_E_IO; /* POINTER_ADDRESS is a location where the `_dl_auxv' variable resides. DATA_ADDRESS is the inferior value present in `_dl_auxv', therefore the real inferior AUXV address. */ pointer_address = BMSYMBOL_VALUE_ADDRESS (msym); /* The location of the _dl_auxv symbol may no longer be correct if ld.so runs at a different address than the one present in the file. This is very common case - for unprelinked ld.so or with a PIE executable. PIE executable forces random address even for libraries already being prelinked to some address. PIE executables themselves are never prelinked even on prelinked systems. Prelinking of a PIE executable would block their purpose of randomizing load of everything including the executable. If the memory read fails, return -1 to fallback on another mechanism for retrieving the AUXV. In most cases of a PIE running under valgrind there is no way to find out the base addresses of any of ld.so, executable or AUXV as everything is randomized and /proc information is not relevant for the virtual executable running under valgrind. We think that we might need a valgrind extension to make it work. This is PR 11440. */ if (target_read_memory (pointer_address, ptr_buf, ptr_size) != 0) return TARGET_XFER_E_IO; data_address = extract_typed_address (ptr_buf, ptr_type); /* Possibly still not initialized such as during an inferior startup. */ if (data_address == 0) return TARGET_XFER_E_IO; data_address += offset; if (writebuf != NULL) { if (target_write_memory (data_address, writebuf, len) == 0) { *xfered_len = (ULONGEST) len; return TARGET_XFER_OK; } else return TARGET_XFER_E_IO; } /* Stop if trying to read past the existing AUXV block. The final AT_NULL was already returned before. */ if (offset >= auxv_pair_size) { if (target_read_memory (data_address - auxv_pair_size, ptr_buf, ptr_size) != 0) return TARGET_XFER_E_IO; if (extract_typed_address (ptr_buf, ptr_type) == AT_NULL) return TARGET_XFER_EOF; } retval = 0; block = 0x400; gdb_assert (block % auxv_pair_size == 0); while (len > 0) { if (block > len) block = len; /* Reading sizes smaller than AUXV_PAIR_SIZE is not supported. Tails unaligned to AUXV_PAIR_SIZE will not be read during a call (they should be completed during next read with new/extended buffer). */ block &= -auxv_pair_size; if (block == 0) break; if (target_read_memory (data_address, readbuf, block) != 0) { if (block <= auxv_pair_size) break; block = auxv_pair_size; continue; } data_address += block; len -= block; /* Check terminal AT_NULL. This function is being called indefinitely being extended its READBUF until it returns EOF (0). */ while (block >= auxv_pair_size) { retval += auxv_pair_size; if (extract_typed_address (readbuf, ptr_type) == AT_NULL) { *xfered_len = (ULONGEST) retval; return TARGET_XFER_OK; } readbuf += auxv_pair_size; block -= auxv_pair_size; } } *xfered_len = (ULONGEST) retval; return TARGET_XFER_OK; } /* Implement the to_xfer_partial target_ops method for TARGET_OBJECT_AUXV. It handles access to AUXV. */ enum target_xfer_status memory_xfer_auxv (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) { gdb_assert (object == TARGET_OBJECT_AUXV); gdb_assert (readbuf || writebuf); /* ld_so_xfer_auxv is the only function safe for virtual executables being executed by valgrind's memcheck. Using ld_so_xfer_auxv during inferior startup is problematic, because ld.so symbol tables have not yet been relocated. So GDB uses this function only when attaching to a process. */ if (current_inferior ()->attach_flag != 0) { enum target_xfer_status ret; ret = ld_so_xfer_auxv (readbuf, writebuf, offset, len, xfered_len); if (ret != TARGET_XFER_E_IO) return ret; } return procfs_xfer_auxv (readbuf, writebuf, offset, len, xfered_len); } /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR. Return 0 if *READPTR is already at the end of the buffer. Return -1 if there is insufficient buffer for a whole entry. Return 1 if an entry was read into *TYPEP and *VALP. */ int default_auxv_parse (struct target_ops *ops, gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp) { const int sizeof_auxv_field = gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT; const enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); gdb_byte *ptr = *readptr; if (endptr == ptr) return 0; if (endptr - ptr < sizeof_auxv_field * 2) return -1; *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); ptr += sizeof_auxv_field; *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); ptr += sizeof_auxv_field; *readptr = ptr; return 1; } /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR. Return 0 if *READPTR is already at the end of the buffer. Return -1 if there is insufficient buffer for a whole entry. Return 1 if an entry was read into *TYPEP and *VALP. */ int target_auxv_parse (gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp) { struct gdbarch *gdbarch = target_gdbarch(); if (gdbarch_auxv_parse_p (gdbarch)) return gdbarch_auxv_parse (gdbarch, readptr, endptr, typep, valp); return current_top_target ()->auxv_parse (readptr, endptr, typep, valp); } /* Per-inferior data key for auxv. */ static const struct inferior_data *auxv_inferior_data; /* Auxiliary Vector information structure. This is used by GDB for caching purposes for each inferior. This helps reduce the overhead of transfering data from a remote target to the local host. */ struct auxv_info { gdb::optional data; }; /* Handles the cleanup of the auxv cache for inferior INF. ARG is ignored. Frees whatever allocated space there is to be freed and sets INF's auxv cache data pointer to NULL. This function is called when the following events occur: inferior_appeared, inferior_exit and executable_changed. */ static void auxv_inferior_data_cleanup (struct inferior *inf, void *arg) { struct auxv_info *info; info = (struct auxv_info *) inferior_data (inf, auxv_inferior_data); if (info != NULL) { delete info; set_inferior_data (inf, auxv_inferior_data, NULL); } } /* Invalidate INF's auxv cache. */ static void invalidate_auxv_cache_inf (struct inferior *inf) { auxv_inferior_data_cleanup (inf, NULL); } /* Invalidate current inferior's auxv cache. */ static void invalidate_auxv_cache (void) { invalidate_auxv_cache_inf (current_inferior ()); } /* Fetch the auxv object from inferior INF. If auxv is cached already, return a pointer to the cache. If not, fetch the auxv object from the target and cache it. This function always returns a valid INFO pointer. */ static struct auxv_info * get_auxv_inferior_data (struct target_ops *ops) { struct auxv_info *info; struct inferior *inf = current_inferior (); info = (struct auxv_info *) inferior_data (inf, auxv_inferior_data); if (info == NULL) { info = new auxv_info; info->data = target_read_alloc (ops, TARGET_OBJECT_AUXV, NULL); set_inferior_data (inf, auxv_inferior_data, info); } return info; } /* Extract the auxiliary vector entry with a_type matching MATCH. Return zero if no such entry was found, or -1 if there was an error getting the information. On success, return 1 after storing the entry's value field in *VALP. */ int target_auxv_search (struct target_ops *ops, CORE_ADDR match, CORE_ADDR *valp) { CORE_ADDR type, val; auxv_info *info = get_auxv_inferior_data (ops); if (!info->data) return -1; gdb_byte *data = info->data->data (); gdb_byte *ptr = data; size_t len = info->data->size (); while (1) switch (target_auxv_parse (&ptr, data + len, &type, &val)) { case 1: /* Here's an entry, check it. */ if (type == match) { *valp = val; return 1; } break; case 0: /* End of the vector. */ return 0; default: /* Bogosity. */ return -1; } /*NOTREACHED*/ } /* Print the description of a single AUXV entry on the specified file. */ void fprint_auxv_entry (struct ui_file *file, const char *name, const char *description, enum auxv_format format, CORE_ADDR type, CORE_ADDR val) { fprintf_filtered (file, ("%-4s %-20s %-30s "), plongest (type), name, description); switch (format) { case AUXV_FORMAT_DEC: fprintf_filtered (file, ("%s\n"), plongest (val)); break; case AUXV_FORMAT_HEX: fprintf_filtered (file, ("%s\n"), paddress (target_gdbarch (), val)); break; case AUXV_FORMAT_STR: { struct value_print_options opts; get_user_print_options (&opts); if (opts.addressprint) fprintf_filtered (file, ("%s "), paddress (target_gdbarch (), val)); val_print_string (builtin_type (target_gdbarch ())->builtin_char, NULL, val, -1, file, &opts); fprintf_filtered (file, ("\n")); } break; } } /* The default implementation of gdbarch_print_auxv_entry. */ void default_print_auxv_entry (struct gdbarch *gdbarch, struct ui_file *file, CORE_ADDR type, CORE_ADDR val) { const char *name = "???"; const char *description = ""; enum auxv_format format = AUXV_FORMAT_HEX; switch (type) { #define TAG(tag, text, kind) \ case tag: name = #tag; description = text; format = kind; break TAG (AT_NULL, _("End of vector"), AUXV_FORMAT_HEX); TAG (AT_IGNORE, _("Entry should be ignored"), AUXV_FORMAT_HEX); TAG (AT_EXECFD, _("File descriptor of program"), AUXV_FORMAT_DEC); TAG (AT_PHDR, _("Program headers for program"), AUXV_FORMAT_HEX); TAG (AT_PHENT, _("Size of program header entry"), AUXV_FORMAT_DEC); TAG (AT_PHNUM, _("Number of program headers"), AUXV_FORMAT_DEC); TAG (AT_PAGESZ, _("System page size"), AUXV_FORMAT_DEC); TAG (AT_BASE, _("Base address of interpreter"), AUXV_FORMAT_HEX); TAG (AT_FLAGS, _("Flags"), AUXV_FORMAT_HEX); TAG (AT_ENTRY, _("Entry point of program"), AUXV_FORMAT_HEX); TAG (AT_NOTELF, _("Program is not ELF"), AUXV_FORMAT_DEC); TAG (AT_UID, _("Real user ID"), AUXV_FORMAT_DEC); TAG (AT_EUID, _("Effective user ID"), AUXV_FORMAT_DEC); TAG (AT_GID, _("Real group ID"), AUXV_FORMAT_DEC); TAG (AT_EGID, _("Effective group ID"), AUXV_FORMAT_DEC); TAG (AT_CLKTCK, _("Frequency of times()"), AUXV_FORMAT_DEC); TAG (AT_PLATFORM, _("String identifying platform"), AUXV_FORMAT_STR); TAG (AT_HWCAP, _("Machine-dependent CPU capability hints"), AUXV_FORMAT_HEX); TAG (AT_FPUCW, _("Used FPU control word"), AUXV_FORMAT_DEC); TAG (AT_DCACHEBSIZE, _("Data cache block size"), AUXV_FORMAT_DEC); TAG (AT_ICACHEBSIZE, _("Instruction cache block size"), AUXV_FORMAT_DEC); TAG (AT_UCACHEBSIZE, _("Unified cache block size"), AUXV_FORMAT_DEC); TAG (AT_IGNOREPPC, _("Entry should be ignored"), AUXV_FORMAT_DEC); TAG (AT_BASE_PLATFORM, _("String identifying base platform"), AUXV_FORMAT_STR); TAG (AT_RANDOM, _("Address of 16 random bytes"), AUXV_FORMAT_HEX); TAG (AT_HWCAP2, _("Extension of AT_HWCAP"), AUXV_FORMAT_HEX); TAG (AT_EXECFN, _("File name of executable"), AUXV_FORMAT_STR); TAG (AT_SECURE, _("Boolean, was exec setuid-like?"), AUXV_FORMAT_DEC); TAG (AT_SYSINFO, _("Special system info/entry points"), AUXV_FORMAT_HEX); TAG (AT_SYSINFO_EHDR, _("System-supplied DSO's ELF header"), AUXV_FORMAT_HEX); TAG (AT_L1I_CACHESHAPE, _("L1 Instruction cache information"), AUXV_FORMAT_HEX); TAG (AT_L1D_CACHESHAPE, _("L1 Data cache information"), AUXV_FORMAT_HEX); TAG (AT_L2_CACHESHAPE, _("L2 cache information"), AUXV_FORMAT_HEX); TAG (AT_L3_CACHESHAPE, _("L3 cache information"), AUXV_FORMAT_HEX); TAG (AT_SUN_UID, _("Effective user ID"), AUXV_FORMAT_DEC); TAG (AT_SUN_RUID, _("Real user ID"), AUXV_FORMAT_DEC); TAG (AT_SUN_GID, _("Effective group ID"), AUXV_FORMAT_DEC); TAG (AT_SUN_RGID, _("Real group ID"), AUXV_FORMAT_DEC); TAG (AT_SUN_LDELF, _("Dynamic linker's ELF header"), AUXV_FORMAT_HEX); TAG (AT_SUN_LDSHDR, _("Dynamic linker's section headers"), AUXV_FORMAT_HEX); TAG (AT_SUN_LDNAME, _("String giving name of dynamic linker"), AUXV_FORMAT_STR); TAG (AT_SUN_LPAGESZ, _("Large pagesize"), AUXV_FORMAT_DEC); TAG (AT_SUN_PLATFORM, _("Platform name string"), AUXV_FORMAT_STR); TAG (AT_SUN_HWCAP, _("Machine-dependent CPU capability hints"), AUXV_FORMAT_HEX); TAG (AT_SUN_IFLUSH, _("Should flush icache?"), AUXV_FORMAT_DEC); TAG (AT_SUN_CPU, _("CPU name string"), AUXV_FORMAT_STR); TAG (AT_SUN_EMUL_ENTRY, _("COFF entry point address"), AUXV_FORMAT_HEX); TAG (AT_SUN_EMUL_EXECFD, _("COFF executable file descriptor"), AUXV_FORMAT_DEC); TAG (AT_SUN_EXECNAME, _("Canonicalized file name given to execve"), AUXV_FORMAT_STR); TAG (AT_SUN_MMU, _("String for name of MMU module"), AUXV_FORMAT_STR); TAG (AT_SUN_LDDATA, _("Dynamic linker's data segment address"), AUXV_FORMAT_HEX); TAG (AT_SUN_AUXFLAGS, _("AF_SUN_ flags passed from the kernel"), AUXV_FORMAT_HEX); } fprint_auxv_entry (file, name, description, format, type, val); } /* Print the contents of the target's AUXV on the specified file. */ int fprint_target_auxv (struct ui_file *file, struct target_ops *ops) { struct gdbarch *gdbarch = target_gdbarch (); CORE_ADDR type, val; int ents = 0; auxv_info *info = get_auxv_inferior_data (ops); if (!info->data) return -1; gdb_byte *data = info->data->data (); gdb_byte *ptr = data; size_t len = info->data->size (); while (target_auxv_parse (&ptr, data + len, &type, &val) > 0) { gdbarch_print_auxv_entry (gdbarch, file, type, val); ++ents; if (type == AT_NULL) break; } return ents; } static void info_auxv_command (const char *cmd, int from_tty) { if (! target_has_stack) error (_("The program has no auxiliary information now.")); else { int ents = fprint_target_auxv (gdb_stdout, current_top_target ()); if (ents < 0) error (_("No auxiliary vector found, or failed reading it.")); else if (ents == 0) error (_("Auxiliary vector is empty.")); } } void _initialize_auxv (void) { add_info ("auxv", info_auxv_command, _("Display the inferior's auxiliary vector.\n\ This is information provided by the operating system at program startup.")); /* Set an auxv cache per-inferior. */ auxv_inferior_data = register_inferior_data_with_cleanup (NULL, auxv_inferior_data_cleanup); /* Observers used to invalidate the auxv cache when needed. */ gdb::observers::inferior_exit.attach (invalidate_auxv_cache_inf); gdb::observers::inferior_appeared.attach (invalidate_auxv_cache_inf); gdb::observers::executable_changed.attach (invalidate_auxv_cache); }