/* Common target dependent code for GDB on ARM systems. Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include /* XXX for isupper (). */ #include "defs.h" #include "frame.h" #include "inferior.h" #include "gdbcmd.h" #include "gdbcore.h" #include "gdb_string.h" #include "dis-asm.h" /* For register styles. */ #include "regcache.h" #include "reggroups.h" #include "doublest.h" #include "value.h" #include "arch-utils.h" #include "osabi.h" #include "frame-unwind.h" #include "frame-base.h" #include "trad-frame.h" #include "objfiles.h" #include "dwarf2-frame.h" #include "gdbtypes.h" #include "prologue-value.h" #include "target-descriptions.h" #include "user-regs.h" #include "observer.h" #include "arm-tdep.h" #include "gdb/sim-arm.h" #include "elf-bfd.h" #include "coff/internal.h" #include "elf/arm.h" #include "gdb_assert.h" #include "vec.h" #include "features/arm-with-m.c" static int arm_debug; /* Macros for setting and testing a bit in a minimal symbol that marks it as Thumb function. The MSB of the minimal symbol's "info" field is used for this purpose. MSYMBOL_SET_SPECIAL Actually sets the "special" bit. MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */ #define MSYMBOL_SET_SPECIAL(msym) \ MSYMBOL_TARGET_FLAG_1 (msym) = 1 #define MSYMBOL_IS_SPECIAL(msym) \ MSYMBOL_TARGET_FLAG_1 (msym) /* Per-objfile data used for mapping symbols. */ static const struct objfile_data *arm_objfile_data_key; struct arm_mapping_symbol { bfd_vma value; char type; }; typedef struct arm_mapping_symbol arm_mapping_symbol_s; DEF_VEC_O(arm_mapping_symbol_s); struct arm_per_objfile { VEC(arm_mapping_symbol_s) **section_maps; }; /* The list of available "set arm ..." and "show arm ..." commands. */ static struct cmd_list_element *setarmcmdlist = NULL; static struct cmd_list_element *showarmcmdlist = NULL; /* The type of floating-point to use. Keep this in sync with enum arm_float_model, and the help string in _initialize_arm_tdep. */ static const char *fp_model_strings[] = { "auto", "softfpa", "fpa", "softvfp", "vfp", NULL }; /* A variable that can be configured by the user. */ static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO; static const char *current_fp_model = "auto"; /* The ABI to use. Keep this in sync with arm_abi_kind. */ static const char *arm_abi_strings[] = { "auto", "APCS", "AAPCS", NULL }; /* A variable that can be configured by the user. */ static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO; static const char *arm_abi_string = "auto"; /* The execution mode to assume. */ static const char *arm_mode_strings[] = { "auto", "arm", "thumb", NULL }; static const char *arm_fallback_mode_string = "auto"; static const char *arm_force_mode_string = "auto"; /* Number of different reg name sets (options). */ static int num_disassembly_options; /* The standard register names, and all the valid aliases for them. Note that `fp', `sp' and `pc' are not added in this alias list, because they have been added as builtin user registers in std-regs.c:_initialize_frame_reg. */ static const struct { const char *name; int regnum; } arm_register_aliases[] = { /* Basic register numbers. */ { "r0", 0 }, { "r1", 1 }, { "r2", 2 }, { "r3", 3 }, { "r4", 4 }, { "r5", 5 }, { "r6", 6 }, { "r7", 7 }, { "r8", 8 }, { "r9", 9 }, { "r10", 10 }, { "r11", 11 }, { "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 }, /* Synonyms (argument and variable registers). */ { "a1", 0 }, { "a2", 1 }, { "a3", 2 }, { "a4", 3 }, { "v1", 4 }, { "v2", 5 }, { "v3", 6 }, { "v4", 7 }, { "v5", 8 }, { "v6", 9 }, { "v7", 10 }, { "v8", 11 }, /* Other platform-specific names for r9. */ { "sb", 9 }, { "tr", 9 }, /* Special names. */ { "ip", 12 }, { "lr", 14 }, /* Names used by GCC (not listed in the ARM EABI). */ { "sl", 10 }, /* A special name from the older ATPCS. */ { "wr", 7 }, }; static const char *const arm_register_names[] = {"r0", "r1", "r2", "r3", /* 0 1 2 3 */ "r4", "r5", "r6", "r7", /* 4 5 6 7 */ "r8", "r9", "r10", "r11", /* 8 9 10 11 */ "r12", "sp", "lr", "pc", /* 12 13 14 15 */ "f0", "f1", "f2", "f3", /* 16 17 18 19 */ "f4", "f5", "f6", "f7", /* 20 21 22 23 */ "fps", "cpsr" }; /* 24 25 */ /* Valid register name styles. */ static const char **valid_disassembly_styles; /* Disassembly style to use. Default to "std" register names. */ static const char *disassembly_style; /* This is used to keep the bfd arch_info in sync with the disassembly style. */ static void set_disassembly_style_sfunc(char *, int, struct cmd_list_element *); static void set_disassembly_style (void); static void convert_from_extended (const struct floatformat *, const void *, void *, int); static void convert_to_extended (const struct floatformat *, void *, const void *, int); static void arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache, int regnum, gdb_byte *buf); static void arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache, int regnum, const gdb_byte *buf); struct arm_prologue_cache { /* The stack pointer at the time this frame was created; i.e. the caller's stack pointer when this function was called. It is used to identify this frame. */ CORE_ADDR prev_sp; /* The frame base for this frame is just prev_sp - frame size. FRAMESIZE is the distance from the frame pointer to the initial stack pointer. */ int framesize; /* The register used to hold the frame pointer for this frame. */ int framereg; /* Saved register offsets. */ struct trad_frame_saved_reg *saved_regs; }; static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR prologue_start, CORE_ADDR prologue_end, struct arm_prologue_cache *cache); /* Architecture version for displaced stepping. This effects the behaviour of certain instructions, and really should not be hard-wired. */ #define DISPLACED_STEPPING_ARCH_VERSION 5 /* Addresses for calling Thumb functions have the bit 0 set. Here are some macros to test, set, or clear bit 0 of addresses. */ #define IS_THUMB_ADDR(addr) ((addr) & 1) #define MAKE_THUMB_ADDR(addr) ((addr) | 1) #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) /* Set to true if the 32-bit mode is in use. */ int arm_apcs_32 = 1; /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */ static int arm_psr_thumb_bit (struct gdbarch *gdbarch) { if (gdbarch_tdep (gdbarch)->is_m) return XPSR_T; else return CPSR_T; } /* Determine if FRAME is executing in Thumb mode. */ int arm_frame_is_thumb (struct frame_info *frame) { CORE_ADDR cpsr; ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame)); /* Every ARM frame unwinder can unwind the T bit of the CPSR, either directly (from a signal frame or dummy frame) or by interpreting the saved LR (from a prologue or DWARF frame). So consult it and trust the unwinders. */ cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM); return (cpsr & t_bit) != 0; } /* Callback for VEC_lower_bound. */ static inline int arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs, const struct arm_mapping_symbol *rhs) { return lhs->value < rhs->value; } /* Search for the mapping symbol covering MEMADDR. If one is found, return its type. Otherwise, return 0. If START is non-NULL, set *START to the location of the mapping symbol. */ static char arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start) { struct obj_section *sec; /* If there are mapping symbols, consult them. */ sec = find_pc_section (memaddr); if (sec != NULL) { struct arm_per_objfile *data; VEC(arm_mapping_symbol_s) *map; struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec), 0 }; unsigned int idx; data = objfile_data (sec->objfile, arm_objfile_data_key); if (data != NULL) { map = data->section_maps[sec->the_bfd_section->index]; if (!VEC_empty (arm_mapping_symbol_s, map)) { struct arm_mapping_symbol *map_sym; idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key, arm_compare_mapping_symbols); /* VEC_lower_bound finds the earliest ordered insertion point. If the following symbol starts at this exact address, we use that; otherwise, the preceding mapping symbol covers this address. */ if (idx < VEC_length (arm_mapping_symbol_s, map)) { map_sym = VEC_index (arm_mapping_symbol_s, map, idx); if (map_sym->value == map_key.value) { if (start) *start = map_sym->value + obj_section_addr (sec); return map_sym->type; } } if (idx > 0) { map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1); if (start) *start = map_sym->value + obj_section_addr (sec); return map_sym->type; } } } } return 0; } static CORE_ADDR arm_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc, int insert_bkpt); /* Determine if the program counter specified in MEMADDR is in a Thumb function. This function should be called for addresses unrelated to any executing frame; otherwise, prefer arm_frame_is_thumb. */ static int arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr) { struct obj_section *sec; struct minimal_symbol *sym; char type; /* If bit 0 of the address is set, assume this is a Thumb address. */ if (IS_THUMB_ADDR (memaddr)) return 1; /* If the user wants to override the symbol table, let him. */ if (strcmp (arm_force_mode_string, "arm") == 0) return 0; if (strcmp (arm_force_mode_string, "thumb") == 0) return 1; /* ARM v6-M and v7-M are always in Thumb mode. */ if (gdbarch_tdep (gdbarch)->is_m) return 1; /* If there are mapping symbols, consult them. */ type = arm_find_mapping_symbol (memaddr, NULL); if (type) return type == 't'; /* Thumb functions have a "special" bit set in minimal symbols. */ sym = lookup_minimal_symbol_by_pc (memaddr); if (sym) return (MSYMBOL_IS_SPECIAL (sym)); /* If the user wants to override the fallback mode, let them. */ if (strcmp (arm_fallback_mode_string, "arm") == 0) return 0; if (strcmp (arm_fallback_mode_string, "thumb") == 0) return 1; /* If we couldn't find any symbol, but we're talking to a running target, then trust the current value of $cpsr. This lets "display/i $pc" always show the correct mode (though if there is a symbol table we will not reach here, so it still may not be displayed in the mode it will be executed). As a further heuristic if we detect that we are doing a single-step we see what state executing the current instruction ends up with us being in. */ if (target_has_registers) { struct frame_info *current_frame = get_current_frame (); CORE_ADDR current_pc = get_frame_pc (current_frame); int is_thumb = arm_frame_is_thumb (current_frame); CORE_ADDR next_pc; if (memaddr == current_pc) return is_thumb; else { struct gdbarch *gdbarch = get_frame_arch (current_frame); next_pc = arm_get_next_pc_raw (current_frame, current_pc, FALSE); if (memaddr == gdbarch_addr_bits_remove (gdbarch, next_pc)) return IS_THUMB_ADDR (next_pc); else return is_thumb; } } /* Otherwise we're out of luck; we assume ARM. */ return 0; } /* Remove useless bits from addresses in a running program. */ static CORE_ADDR arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val) { if (arm_apcs_32) return UNMAKE_THUMB_ADDR (val); else return (val & 0x03fffffc); } /* When reading symbols, we need to zap the low bit of the address, which may be set to 1 for Thumb functions. */ static CORE_ADDR arm_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR val) { return val & ~1; } /* Return 1 if PC is the start of a compiler helper function which can be safely ignored during prologue skipping. IS_THUMB is true if the function is known to be a Thumb function due to the way it is being called. */ static int skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb) { enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); struct minimal_symbol *msym; msym = lookup_minimal_symbol_by_pc (pc); if (msym != NULL && SYMBOL_VALUE_ADDRESS (msym) == pc && SYMBOL_LINKAGE_NAME (msym) != NULL) { const char *name = SYMBOL_LINKAGE_NAME (msym); /* The GNU linker's Thumb call stub to foo is named __foo_from_thumb. */ if (strstr (name, "_from_thumb") != NULL) name += 2; /* On soft-float targets, __truncdfsf2 is called to convert promoted arguments to their argument types in non-prototyped functions. */ if (strncmp (name, "__truncdfsf2", strlen ("__truncdfsf2")) == 0) return 1; if (strncmp (name, "__aeabi_d2f", strlen ("__aeabi_d2f")) == 0) return 1; /* Internal functions related to thread-local storage. */ if (strncmp (name, "__tls_get_addr", strlen ("__tls_get_addr")) == 0) return 1; if (strncmp (name, "__aeabi_read_tp", strlen ("__aeabi_read_tp")) == 0) return 1; } else { /* If we run against a stripped glibc, we may be unable to identify special functions by name. Check for one important case, __aeabi_read_tp, by comparing the *code* against the default implementation (this is hand-written ARM assembler in glibc). */ if (!is_thumb && read_memory_unsigned_integer (pc, 4, byte_order_for_code) == 0xe3e00a0f /* mov r0, #0xffff0fff */ && read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code) == 0xe240f01f) /* sub pc, r0, #31 */ return 1; } return 0; } /* Support routines for instruction parsing. */ #define submask(x) ((1L << ((x) + 1)) - 1) #define bit(obj,st) (((obj) >> (st)) & 1) #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) #define sbits(obj,st,fn) \ ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st)))) #define BranchDest(addr,instr) \ ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2))) /* Extract the immediate from instruction movw/movt of encoding T. INSN1 is the first 16-bit of instruction, and INSN2 is the second 16-bit of instruction. */ #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \ ((bits ((insn1), 0, 3) << 12) \ | (bits ((insn1), 10, 10) << 11) \ | (bits ((insn2), 12, 14) << 8) \ | bits ((insn2), 0, 7)) /* Extract the immediate from instruction movw/movt of encoding A. INSN is the 32-bit instruction. */ #define EXTRACT_MOVW_MOVT_IMM_A(insn) \ ((bits ((insn), 16, 19) << 12) \ | bits ((insn), 0, 11)) /* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */ static unsigned int thumb_expand_immediate (unsigned int imm) { unsigned int count = imm >> 7; if (count < 8) switch (count / 2) { case 0: return imm & 0xff; case 1: return (imm & 0xff) | ((imm & 0xff) << 16); case 2: return ((imm & 0xff) << 8) | ((imm & 0xff) << 24); case 3: return (imm & 0xff) | ((imm & 0xff) << 8) | ((imm & 0xff) << 16) | ((imm & 0xff) << 24); } return (0x80 | (imm & 0x7f)) << (32 - count); } /* Return 1 if the 16-bit Thumb instruction INST might change control flow, 0 otherwise. */ static int thumb_instruction_changes_pc (unsigned short inst) { if ((inst & 0xff00) == 0xbd00) /* pop {rlist, pc} */ return 1; if ((inst & 0xf000) == 0xd000) /* conditional branch */ return 1; if ((inst & 0xf800) == 0xe000) /* unconditional branch */ return 1; if ((inst & 0xff00) == 0x4700) /* bx REG, blx REG */ return 1; if ((inst & 0xff87) == 0x4687) /* mov pc, REG */ return 1; if ((inst & 0xf500) == 0xb100) /* CBNZ or CBZ. */ return 1; return 0; } /* Return 1 if the 32-bit Thumb instruction in INST1 and INST2 might change control flow, 0 otherwise. */ static int thumb2_instruction_changes_pc (unsigned short inst1, unsigned short inst2) { if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000) { /* Branches and miscellaneous control instructions. */ if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000) { /* B, BL, BLX. */ return 1; } else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00) { /* SUBS PC, LR, #imm8. */ return 1; } else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380) { /* Conditional branch. */ return 1; } return 0; } if ((inst1 & 0xfe50) == 0xe810) { /* Load multiple or RFE. */ if (bit (inst1, 7) && !bit (inst1, 8)) { /* LDMIA or POP */ if (bit (inst2, 15)) return 1; } else if (!bit (inst1, 7) && bit (inst1, 8)) { /* LDMDB */ if (bit (inst2, 15)) return 1; } else if (bit (inst1, 7) && bit (inst1, 8)) { /* RFEIA */ return 1; } else if (!bit (inst1, 7) && !bit (inst1, 8)) { /* RFEDB */ return 1; } return 0; } if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00) { /* MOV PC or MOVS PC. */ return 1; } if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000) { /* LDR PC. */ if (bits (inst1, 0, 3) == 15) return 1; if (bit (inst1, 7)) return 1; if (bit (inst2, 11)) return 1; if ((inst2 & 0x0fc0) == 0x0000) return 1; return 0; } if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000) { /* TBB. */ return 1; } if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010) { /* TBH. */ return 1; } return 0; } /* Analyze a Thumb prologue, looking for a recognizable stack frame and frame pointer. Scan until we encounter a store that could clobber the stack frame unexpectedly, or an unknown instruction. Return the last address which is definitely safe to skip for an initial breakpoint. */ static CORE_ADDR thumb_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR start, CORE_ADDR limit, struct arm_prologue_cache *cache) { enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); int i; pv_t regs[16]; struct pv_area *stack; struct cleanup *back_to; CORE_ADDR offset; CORE_ADDR unrecognized_pc = 0; for (i = 0; i < 16; i++) regs[i] = pv_register (i, 0); stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); back_to = make_cleanup_free_pv_area (stack); while (start < limit) { unsigned short insn; insn = read_memory_unsigned_integer (start, 2, byte_order_for_code); if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ { int regno; int mask; if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM])) break; /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says whether to save LR (R14). */ mask = (insn & 0xff) | ((insn & 0x100) << 6); /* Calculate offsets of saved R0-R7 and LR. */ for (regno = ARM_LR_REGNUM; regno >= 0; regno--) if (mask & (1 << regno)) { regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4); pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]); } } else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */ { offset = (insn & 0x7f) << 2; /* get scaled offset */ if (insn & 0x80) /* Check for SUB. */ regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -offset); else regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], offset); } else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */ regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM], (insn & 0xff) << 2); else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */ && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)], bits (insn, 6, 8)); else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */ && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)], bits (insn, 0, 7)); else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */ && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM) && pv_is_constant (regs[bits (insn, 3, 5)])) regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)], regs[bits (insn, 6, 8)]); else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */ && pv_is_constant (regs[bits (insn, 3, 6)])) { int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2); int rm = bits (insn, 3, 6); regs[rd] = pv_add (regs[rd], regs[rm]); } else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */ { int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4); int src_reg = (insn & 0x78) >> 3; regs[dst_reg] = regs[src_reg]; } else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */ { /* Handle stores to the stack. Normally pushes are used, but with GCC -mtpcs-frame, there may be other stores in the prologue to create the frame. */ int regno = (insn >> 8) & 0x7; pv_t addr; offset = (insn & 0xff) << 2; addr = pv_add_constant (regs[ARM_SP_REGNUM], offset); if (pv_area_store_would_trash (stack, addr)) break; pv_area_store (stack, addr, 4, regs[regno]); } else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */ { int rd = bits (insn, 0, 2); int rn = bits (insn, 3, 5); pv_t addr; offset = bits (insn, 6, 10) << 2; addr = pv_add_constant (regs[rn], offset); if (pv_area_store_would_trash (stack, addr)) break; pv_area_store (stack, addr, 4, regs[rd]); } else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */ || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */ && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) /* Ignore stores of argument registers to the stack. */ ; else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */ && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) /* Ignore block loads from the stack, potentially copying parameters from memory. */ ; else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */ || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */ && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))) /* Similarly ignore single loads from the stack. */ ; else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */ || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */ /* Skip register copies, i.e. saves to another register instead of the stack. */ ; else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */ /* Recognize constant loads; even with small stacks these are necessary on Thumb. */ regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7)); else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */ { /* Constant pool loads, for the same reason. */ unsigned int constant; CORE_ADDR loc; loc = start + 4 + bits (insn, 0, 7) * 4; constant = read_memory_unsigned_integer (loc, 4, byte_order); regs[bits (insn, 8, 10)] = pv_constant (constant); } else if ((insn & 0xe000) == 0xe000) { unsigned short inst2; inst2 = read_memory_unsigned_integer (start + 2, 2, byte_order_for_code); if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800) { /* BL, BLX. Allow some special function calls when skipping the prologue; GCC generates these before storing arguments to the stack. */ CORE_ADDR nextpc; int j1, j2, imm1, imm2; imm1 = sbits (insn, 0, 10); imm2 = bits (inst2, 0, 10); j1 = bit (inst2, 13); j2 = bit (inst2, 11); offset = ((imm1 << 12) + (imm2 << 1)); offset ^= ((!j2) << 22) | ((!j1) << 23); nextpc = start + 4 + offset; /* For BLX make sure to clear the low bits. */ if (bit (inst2, 12) == 0) nextpc = nextpc & 0xfffffffc; if (!skip_prologue_function (gdbarch, nextpc, bit (inst2, 12) != 0)) break; } else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!}, { registers } */ && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) { pv_t addr = regs[bits (insn, 0, 3)]; int regno; if (pv_area_store_would_trash (stack, addr)) break; /* Calculate offsets of saved registers. */ for (regno = ARM_LR_REGNUM; regno >= 0; regno--) if (inst2 & (1 << regno)) { addr = pv_add_constant (addr, -4); pv_area_store (stack, addr, 4, regs[regno]); } if (insn & 0x0020) regs[bits (insn, 0, 3)] = addr; } else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2, [Rn, #+/-imm]{!} */ && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) { int regno1 = bits (inst2, 12, 15); int regno2 = bits (inst2, 8, 11); pv_t addr = regs[bits (insn, 0, 3)]; offset = inst2 & 0xff; if (insn & 0x0080) addr = pv_add_constant (addr, offset); else addr = pv_add_constant (addr, -offset); if (pv_area_store_would_trash (stack, addr)) break; pv_area_store (stack, addr, 4, regs[regno1]); pv_area_store (stack, pv_add_constant (addr, 4), 4, regs[regno2]); if (insn & 0x0020) regs[bits (insn, 0, 3)] = addr; } else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */ && (inst2 & 0x0c00) == 0x0c00 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) { int regno = bits (inst2, 12, 15); pv_t addr = regs[bits (insn, 0, 3)]; offset = inst2 & 0xff; if (inst2 & 0x0200) addr = pv_add_constant (addr, offset); else addr = pv_add_constant (addr, -offset); if (pv_area_store_would_trash (stack, addr)) break; pv_area_store (stack, addr, 4, regs[regno]); if (inst2 & 0x0100) regs[bits (insn, 0, 3)] = addr; } else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */ && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) { int regno = bits (inst2, 12, 15); pv_t addr; offset = inst2 & 0xfff; addr = pv_add_constant (regs[bits (insn, 0, 3)], offset); if (pv_area_store_would_trash (stack, addr)) break; pv_area_store (stack, addr, 4, regs[regno]); } else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */ && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) /* Ignore stores of argument registers to the stack. */ ; else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */ && (inst2 & 0x0d00) == 0x0c00 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) /* Ignore stores of argument registers to the stack. */ ; else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!], { registers } */ && (inst2 & 0x8000) == 0x0000 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) /* Ignore block loads from the stack, potentially copying parameters from memory. */ ; else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2, [Rn, #+/-imm] */ && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) /* Similarly ignore dual loads from the stack. */ ; else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */ && (inst2 & 0x0d00) == 0x0c00 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) /* Similarly ignore single loads from the stack. */ ; else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */ && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) /* Similarly ignore single loads from the stack. */ ; else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */ && (inst2 & 0x8000) == 0x0000) { unsigned int imm = ((bits (insn, 10, 10) << 11) | (bits (inst2, 12, 14) << 8) | bits (inst2, 0, 7)); regs[bits (inst2, 8, 11)] = pv_add_constant (regs[bits (insn, 0, 3)], thumb_expand_immediate (imm)); } else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */ && (inst2 & 0x8000) == 0x0000) { unsigned int imm = ((bits (insn, 10, 10) << 11) | (bits (inst2, 12, 14) << 8) | bits (inst2, 0, 7)); regs[bits (inst2, 8, 11)] = pv_add_constant (regs[bits (insn, 0, 3)], imm); } else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */ && (inst2 & 0x8000) == 0x0000) { unsigned int imm = ((bits (insn, 10, 10) << 11) | (bits (inst2, 12, 14) << 8) | bits (inst2, 0, 7)); regs[bits (inst2, 8, 11)] = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) thumb_expand_immediate (imm)); } else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */ && (inst2 & 0x8000) == 0x0000) { unsigned int imm = ((bits (insn, 10, 10) << 11) | (bits (inst2, 12, 14) << 8) | bits (inst2, 0, 7)); regs[bits (inst2, 8, 11)] = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm); } else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */ { unsigned int imm = ((bits (insn, 10, 10) << 11) | (bits (inst2, 12, 14) << 8) | bits (inst2, 0, 7)); regs[bits (inst2, 8, 11)] = pv_constant (thumb_expand_immediate (imm)); } else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */ { unsigned int imm = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2); regs[bits (inst2, 8, 11)] = pv_constant (imm); } else if (insn == 0xea5f /* mov.w Rd,Rm */ && (inst2 & 0xf0f0) == 0) { int dst_reg = (inst2 & 0x0f00) >> 8; int src_reg = inst2 & 0xf; regs[dst_reg] = regs[src_reg]; } else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,