/* GNU/Linux on ARM target support. Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "target.h" #include "value.h" #include "gdbtypes.h" #include "floatformat.h" #include "gdbcore.h" #include "frame.h" #include "regcache.h" #include "doublest.h" #include "solib-svr4.h" #include "osabi.h" #include "regset.h" #include "trad-frame.h" #include "tramp-frame.h" #include "breakpoint.h" #include "arm-tdep.h" #include "arm-linux-tdep.h" #include "linux-tdep.h" #include "glibc-tdep.h" #include "gdb_string.h" extern int arm_apcs_32; /* Under ARM GNU/Linux the traditional way of performing a breakpoint is to execute a particular software interrupt, rather than use a particular undefined instruction to provoke a trap. Upon exection of the software interrupt the kernel stops the inferior with a SIGTRAP, and wakes the debugger. */ static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef }; static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 }; /* However, the EABI syscall interface (new in Nov. 2005) does not look at the operand of the swi if old-ABI compatibility is disabled. Therefore, use an undefined instruction instead. This is supported as of kernel version 2.5.70 (May 2003), so should be a safe assumption for EABI binaries. */ static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 }; static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 }; /* All the kernels which support Thumb support using a specific undefined instruction for the Thumb breakpoint. */ static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01}; static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde}; /* Description of the longjmp buffer. */ #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE #define ARM_LINUX_JB_PC 21 /* Dynamic Linking on ARM GNU/Linux -------------------------------- Note: PLT = procedure linkage table GOT = global offset table As much as possible, ELF dynamic linking defers the resolution of jump/call addresses until the last minute. The technique used is inspired by the i386 ELF design, and is based on the following constraints. 1) The calling technique should not force a change in the assembly code produced for apps; it MAY cause changes in the way assembly code is produced for position independent code (i.e. shared libraries). 2) The technique must be such that all executable areas must not be modified; and any modified areas must not be executed. To do this, there are three steps involved in a typical jump: 1) in the code 2) through the PLT 3) using a pointer from the GOT When the executable or library is first loaded, each GOT entry is initialized to point to the code which implements dynamic name resolution and code finding. This is normally a function in the program interpreter (on ARM GNU/Linux this is usually ld-linux.so.2, but it does not have to be). On the first invocation, the function is located and the GOT entry is replaced with the real function address. Subsequent calls go through steps 1, 2 and 3 and end up calling the real code. 1) In the code: b function_call bl function_call This is typical ARM code using the 26 bit relative branch or branch and link instructions. The target of the instruction (function_call is usually the address of the function to be called. In position independent code, the target of the instruction is actually an entry in the PLT when calling functions in a shared library. Note that this call is identical to a normal function call, only the target differs. 2) In the PLT: The PLT is a synthetic area, created by the linker. It exists in both executables and libraries. It is an array of stubs, one per imported function call. It looks like this: PLT[0]: str lr, [sp, #-4]! @push the return address (lr) ldr lr, [pc, #16] @load from 6 words ahead add lr, pc, lr @form an address for GOT[0] ldr pc, [lr, #8]! @jump to the contents of that addr The return address (lr) is pushed on the stack and used for calculations. The load on the second line loads the lr with &GOT[3] - . - 20. The addition on the third leaves: lr = (&GOT[3] - . - 20) + (. + 8) lr = (&GOT[3] - 12) lr = &GOT[0] On the fourth line, the pc and lr are both updated, so that: pc = GOT[2] lr = &GOT[0] + 8 = &GOT[2] NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little "tight", but allows us to keep all the PLT entries the same size. PLT[n+1]: ldr ip, [pc, #4] @load offset from gotoff add ip, pc, ip @add the offset to the pc ldr pc, [ip] @jump to that address gotoff: .word GOT[n+3] - . The load on the first line, gets an offset from the fourth word of the PLT entry. The add on the second line makes ip = &GOT[n+3], which contains either a pointer to PLT[0] (the fixup trampoline) or a pointer to the actual code. 3) In the GOT: The GOT contains helper pointers for both code (PLT) fixups and data fixups. The first 3 entries of the GOT are special. The next M entries (where M is the number of entries in the PLT) belong to the PLT fixups. The next D (all remaining) entries belong to various data fixups. The actual size of the GOT is 3 + M + D. The GOT is also a synthetic area, created by the linker. It exists in both executables and libraries. When the GOT is first initialized , all the GOT entries relating to PLT fixups are pointing to code back at PLT[0]. The special entries in the GOT are: GOT[0] = linked list pointer used by the dynamic loader GOT[1] = pointer to the reloc table for this module GOT[2] = pointer to the fixup/resolver code The first invocation of function call comes through and uses the fixup/resolver code. On the entry to the fixup/resolver code: ip = &GOT[n+3] lr = &GOT[2] stack[0] = return address (lr) of the function call [r0, r1, r2, r3] are still the arguments to the function call This is enough information for the fixup/resolver code to work with. Before the fixup/resolver code returns, it actually calls the requested function and repairs &GOT[n+3]. */ /* The constants below were determined by examining the following files in the linux kernel sources: arch/arm/kernel/signal.c - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN include/asm-arm/unistd.h - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */ #define ARM_LINUX_SIGRETURN_INSTR 0xef900077 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad /* For ARM EABI, the syscall number is not in the SWI instruction (instead it is loaded into r7). We recognize the pattern that glibc uses... alternatively, we could arrange to do this by function name, but they are not always exported. */ #define ARM_SET_R7_SIGRETURN 0xe3a07077 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad #define ARM_EABI_SYSCALL 0xef000000 static void arm_linux_sigtramp_cache (struct frame_info *this_frame, struct trad_frame_cache *this_cache, CORE_ADDR func, int regs_offset) { CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); CORE_ADDR base = sp + regs_offset; int i; for (i = 0; i < 16; i++) trad_frame_set_reg_addr (this_cache, i, base + i * 4); trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4); /* The VFP or iWMMXt registers may be saved on the stack, but there's no reliable way to restore them (yet). */ /* Save a frame ID. */ trad_frame_set_id (this_cache, frame_id_build (sp, func)); } /* There are a couple of different possible stack layouts that we need to support. Before version 2.6.18, the kernel used completely independent layouts for non-RT and RT signals. For non-RT signals the stack began directly with a struct sigcontext. For RT signals the stack began with two redundant pointers (to the siginfo and ucontext), and then the siginfo and ucontext. As of version 2.6.18, the non-RT signal frame layout starts with a ucontext and the RT signal frame starts with a siginfo and then a ucontext. Also, the ucontext now has a designated save area for coprocessor registers. For RT signals, it's easy to tell the difference: we look for pinfo, the pointer to the siginfo. If it has the expected value, we have an old layout. If it doesn't, we have the new layout. For non-RT signals, it's a bit harder. We need something in one layout or the other with a recognizable offset and value. We can't use the return trampoline, because ARM usually uses SA_RESTORER, in which case the stack return trampoline is not filled in. We can't use the saved stack pointer, because sigaltstack might be in use. So for now we guess the new layout... */ /* There are three words (trap_no, error_code, oldmask) in struct sigcontext before r0. */ #define ARM_SIGCONTEXT_R0 0xc /* There are five words (uc_flags, uc_link, and three for uc_stack) in the ucontext_t before the sigcontext. */ #define ARM_UCONTEXT_SIGCONTEXT 0x14 /* There are three elements in an rt_sigframe before the ucontext: pinfo, puc, and info. The first two are pointers and the third is a struct siginfo, with size 128 bytes. We could follow puc to the ucontext, but it's simpler to skip the whole thing. */ #define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8 #define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88 #define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80 #define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a static void arm_linux_sigreturn_init (const struct tramp_frame *self, struct frame_info *this_frame, struct trad_frame_cache *this_cache, CORE_ADDR func) { CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4); if (uc_flags == ARM_NEW_SIGFRAME_MAGIC) arm_linux_sigtramp_cache (this_frame, this_cache, func, ARM_UCONTEXT_SIGCONTEXT + ARM_SIGCONTEXT_R0); else arm_linux_sigtramp_cache (this_frame, this_cache, func, ARM_SIGCONTEXT_R0); } static void arm_linux_rt_sigreturn_init (const struct tramp_frame *self, struct frame_info *this_frame, struct trad_frame_cache *this_cache, CORE_ADDR func) { CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); ULONGEST pinfo = read_memory_unsigned_integer (sp, 4); if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO) arm_linux_sigtramp_cache (this_frame, this_cache, func, ARM_OLD_RT_SIGFRAME_UCONTEXT + ARM_UCONTEXT_SIGCONTEXT + ARM_SIGCONTEXT_R0); else arm_linux_sigtramp_cache (this_frame, this_cache, func, ARM_NEW_RT_SIGFRAME_UCONTEXT + ARM_UCONTEXT_SIGCONTEXT + ARM_SIGCONTEXT_R0); } static struct tramp_frame arm_linux_sigreturn_tramp_frame = { SIGTRAMP_FRAME, 4, { { ARM_LINUX_SIGRETURN_INSTR, -1 }, { TRAMP_SENTINEL_INSN } }, arm_linux_sigreturn_init }; static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = { SIGTRAMP_FRAME, 4, { { ARM_LINUX_RT_SIGRETURN_INSTR, -1 }, { TRAMP_SENTINEL_INSN } }, arm_linux_rt_sigreturn_init }; static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = { SIGTRAMP_FRAME, 4, { { ARM_SET_R7_SIGRETURN, -1 }, { ARM_EABI_SYSCALL, -1 }, { TRAMP_SENTINEL_INSN } }, arm_linux_sigreturn_init }; static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = { SIGTRAMP_FRAME, 4, { { ARM_SET_R7_RT_SIGRETURN, -1 }, { ARM_EABI_SYSCALL, -1 }, { TRAMP_SENTINEL_INSN } }, arm_linux_rt_sigreturn_init }; /* Core file and register set support. */ #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE) void arm_linux_supply_gregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *gregs_buf, size_t len) { const gdb_byte *gregs = gregs_buf; int regno; CORE_ADDR reg_pc; gdb_byte pc_buf[INT_REGISTER_SIZE]; for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++) if (regnum == -1 || regnum == regno) regcache_raw_supply (regcache, regno, gregs + INT_REGISTER_SIZE * regno); if (regnum == ARM_PS_REGNUM || regnum == -1) { if (arm_apcs_32) regcache_raw_supply (regcache, ARM_PS_REGNUM, gregs + INT_REGISTER_SIZE * ARM_CPSR_REGNUM); else regcache_raw_supply (regcache, ARM_PS_REGNUM, gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM); } if (regnum == ARM_PC_REGNUM || regnum == -1) { reg_pc = extract_unsigned_integer (gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM, INT_REGISTER_SIZE); reg_pc = gdbarch_addr_bits_remove (get_regcache_arch (regcache), reg_pc); store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, reg_pc); regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf); } } void arm_linux_collect_gregset (const struct regset *regset, const struct regcache *regcache, int regnum, void *gregs_buf, size_t len) { gdb_byte *gregs = gregs_buf; int regno; for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++) if (regnum == -1 || regnum == regno) regcache_raw_collect (regcache, regno, gregs + INT_REGISTER_SIZE * regno); if (regnum == ARM_PS_REGNUM || regnum == -1) { if (arm_apcs_32) regcache_raw_collect (regcache, ARM_PS_REGNUM, gregs + INT_REGISTER_SIZE * ARM_CPSR_REGNUM); else regcache_raw_collect (regcache, ARM_PS_REGNUM, gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM); } if (regnum == ARM_PC_REGNUM || regnum == -1) regcache_raw_collect (regcache, ARM_PC_REGNUM, gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM); } /* Support for register format used by the NWFPE FPA emulator. */ #define typeNone 0x00 #define typeSingle 0x01 #define typeDouble 0x02 #define typeExtended 0x03 void supply_nwfpe_register (struct regcache *regcache, int regno, const gdb_byte *regs) { const gdb_byte *reg_data; gdb_byte reg_tag; gdb_byte buf[FP_REGISTER_SIZE]; reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE; reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET]; memset (buf, 0, FP_REGISTER_SIZE); switch (reg_tag) { case typeSingle: memcpy (buf, reg_data, 4); break; case typeDouble: memcpy (buf, reg_data + 4, 4); memcpy (buf + 4, reg_data, 4); break; case typeExtended: /* We want sign and exponent, then least significant bits, then most significant. NWFPE does sign, most, least. */ memcpy (buf, reg_data, 4); memcpy (buf + 4, reg_data + 8, 4); memcpy (buf + 8, reg_data + 4, 4); break; default: break; } regcache_raw_supply (regcache, regno, buf); } void collect_nwfpe_register (const struct regcache *regcache, int regno, gdb_byte *regs) { gdb_byte *reg_data; gdb_byte reg_tag; gdb_byte buf[FP_REGISTER_SIZE]; regcache_raw_collect (regcache, regno, buf); /* NOTE drow/2006-06-07: This code uses the tag already in the register buffer. I've preserved that when moving the code from the native file to the target file. But this doesn't always make sense. */ reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE; reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET]; switch (reg_tag) { case typeSingle: memcpy (reg_data, buf, 4); break; case typeDouble: memcpy (reg_data, buf + 4, 4); memcpy (reg_data + 4, buf, 4); break; case typeExtended: memcpy (reg_data, buf, 4); memcpy (reg_data + 4, buf + 8, 4); memcpy (reg_data + 8, buf + 4, 4); break; default: break; } } void arm_linux_supply_nwfpe (const struct regset *regset, struct regcache *regcache, int regnum, const void *regs_buf, size_t len) { const gdb_byte *regs = regs_buf; int regno; if (regnum == ARM_FPS_REGNUM || regnum == -1) regcache_raw_supply (regcache, ARM_FPS_REGNUM, regs + NWFPE_FPSR_OFFSET); for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++) if (regnum == -1 || regnum == regno) supply_nwfpe_register (regcache, regno, regs); } void arm_linux_collect_nwfpe (const struct regset *regset, const struct regcache *regcache, int regnum, void *regs_buf, size_t len) { gdb_byte *regs = regs_buf; int regno; for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++) if (regnum == -1 || regnum == regno) collect_nwfpe_register (regcache, regno, regs); if (regnum == ARM_FPS_REGNUM || regnum == -1) regcache_raw_collect (regcache, ARM_FPS_REGNUM, regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM); } /* Return the appropriate register set for the core section identified by SECT_NAME and SECT_SIZE. */ static const struct regset * arm_linux_regset_from_core_section (struct gdbarch *gdbarch, const char *sect_name, size_t sect_size) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); if (strcmp (sect_name, ".reg") == 0 && sect_size == ARM_LINUX_SIZEOF_GREGSET) { if (tdep->gregset == NULL) tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset, arm_linux_collect_gregset); return tdep->gregset; } if (strcmp (sect_name, ".reg2") == 0 && sect_size == ARM_LINUX_SIZEOF_NWFPE) { if (tdep->fpregset == NULL) tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe); return tdep->fpregset; } return NULL; } /* Insert a single step breakpoint at the next executed instruction. */ int arm_linux_software_single_step (struct frame_info *frame) { CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame)); /* The Linux kernel offers some user-mode helpers in a high page. We can not read this page (as of 2.6.23), and even if we could then we couldn't set breakpoints in it, and even if we could then the atomic operations would fail when interrupted. They are all called as functions and return to the address in LR, so step to there instead. */ if (next_pc > 0xffff0000) next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM); insert_single_step_breakpoint (next_pc); return 1; } static void arm_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); tdep->lowest_pc = 0x8000; if (info.byte_order == BFD_ENDIAN_BIG) { if (tdep->arm_abi == ARM_ABI_AAPCS) tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint; else tdep->arm_breakpoint = arm_linux_arm_be_breakpoint; tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint; } else { if (tdep->arm_abi == ARM_ABI_AAPCS) tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint; else tdep->arm_breakpoint = arm_linux_arm_le_breakpoint; tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint; } tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint); tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint); if (tdep->fp_model == ARM_FLOAT_AUTO) tdep->fp_model = ARM_FLOAT_FPA; tdep->jb_pc = ARM_LINUX_JB_PC; tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE; set_solib_svr4_fetch_link_map_offsets (gdbarch, svr4_ilp32_fetch_link_map_offsets); /* Single stepping. */ set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step); /* Shared library handling. */ set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver); /* Enable TLS support. */ set_gdbarch_fetch_tls_load_module_address (gdbarch, svr4_fetch_objfile_link_map); tramp_frame_prepend_unwinder (gdbarch, &arm_linux_sigreturn_tramp_frame); tramp_frame_prepend_unwinder (gdbarch, &arm_linux_rt_sigreturn_tramp_frame); tramp_frame_prepend_unwinder (gdbarch, &arm_eabi_linux_sigreturn_tramp_frame); tramp_frame_prepend_unwinder (gdbarch, &arm_eabi_linux_rt_sigreturn_tramp_frame); /* Core file support. */ set_gdbarch_regset_from_core_section (gdbarch, arm_linux_regset_from_core_section); set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type); } void _initialize_arm_linux_tdep (void) { gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX, arm_linux_init_abi); }