/* GNU/Linux on ARM native support. Copyright 1999, 2000 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "inferior.h" #include "gdbcore.h" #include "gdb_string.h" #include <sys/user.h> #include <sys/ptrace.h> #include <sys/utsname.h> #include <sys/procfs.h> /* Prototypes for supply_gregset etc. */ #include "gregset.h" extern int arm_apcs_32; #define typeNone 0x00 #define typeSingle 0x01 #define typeDouble 0x02 #define typeExtended 0x03 #define FPWORDS 28 #define CPSR_REGNUM 16 typedef union tagFPREG { unsigned int fSingle; unsigned int fDouble[2]; unsigned int fExtended[3]; } FPREG; typedef struct tagFPA11 { FPREG fpreg[8]; /* 8 floating point registers */ unsigned int fpsr; /* floating point status register */ unsigned int fpcr; /* floating point control register */ unsigned char fType[8]; /* type of floating point value held in floating point registers. */ int initflag; /* NWFPE initialization flag. */ } FPA11; /* The following variables are used to determine the version of the underlying Linux operating system. Examples: Linux 2.0.35 Linux 2.2.12 os_version = 0x00020023 os_version = 0x0002020c os_major = 2 os_major = 2 os_minor = 0 os_minor = 2 os_release = 35 os_release = 12 Note: os_version = (os_major << 16) | (os_minor << 8) | os_release These are initialized using get_linux_version() from _initialize_arm_linux_nat(). */ static unsigned int os_version, os_major, os_minor, os_release; /* On Linux, threads are implemented as pseudo-processes, in which case we may be tracing more than one process at a time. In that case, inferior_pid will contain the main process ID and the individual thread (process) ID mashed together. These macros are used to separate them out. These definitions should be overridden if thread support is included. */ #if !defined (PIDGET) /* Default definition for PIDGET/TIDGET. */ #define PIDGET(PID) PID #define TIDGET(PID) 0 #endif int get_thread_id (int inferior_pid) { int tid = TIDGET (inferior_pid); if (0 == tid) tid = inferior_pid; return tid; } #define GET_THREAD_ID(PID) get_thread_id ((PID)); static void fetch_nwfpe_single (unsigned int fn, FPA11 * fpa11) { unsigned int mem[3]; mem[0] = fpa11->fpreg[fn].fSingle; mem[1] = 0; mem[2] = 0; supply_register (F0_REGNUM + fn, (char *) &mem[0]); } static void fetch_nwfpe_double (unsigned int fn, FPA11 * fpa11) { unsigned int mem[3]; mem[0] = fpa11->fpreg[fn].fDouble[1]; mem[1] = fpa11->fpreg[fn].fDouble[0]; mem[2] = 0; supply_register (F0_REGNUM + fn, (char *) &mem[0]); } static void fetch_nwfpe_none (unsigned int fn) { unsigned int mem[3] = {0, 0, 0}; supply_register (F0_REGNUM + fn, (char *) &mem[0]); } static void fetch_nwfpe_extended (unsigned int fn, FPA11 * fpa11) { unsigned int mem[3]; mem[0] = fpa11->fpreg[fn].fExtended[0]; /* sign & exponent */ mem[1] = fpa11->fpreg[fn].fExtended[2]; /* ls bits */ mem[2] = fpa11->fpreg[fn].fExtended[1]; /* ms bits */ supply_register (F0_REGNUM + fn, (char *) &mem[0]); } static void fetch_nwfpe_register (int regno, FPA11 * fpa11) { int fn = regno - F0_REGNUM; switch (fpa11->fType[fn]) { case typeSingle: fetch_nwfpe_single (fn, fpa11); break; case typeDouble: fetch_nwfpe_double (fn, fpa11); break; case typeExtended: fetch_nwfpe_extended (fn, fpa11); break; default: fetch_nwfpe_none (fn); } } static void store_nwfpe_single (unsigned int fn, FPA11 * fpa11) { unsigned int mem[3]; read_register_gen (F0_REGNUM + fn, (char *) &mem[0]); fpa11->fpreg[fn].fSingle = mem[0]; fpa11->fType[fn] = typeSingle; } static void store_nwfpe_double (unsigned int fn, FPA11 * fpa11) { unsigned int mem[3]; read_register_gen (F0_REGNUM + fn, (char *) &mem[0]); fpa11->fpreg[fn].fDouble[1] = mem[0]; fpa11->fpreg[fn].fDouble[0] = mem[1]; fpa11->fType[fn] = typeDouble; } void store_nwfpe_extended (unsigned int fn, FPA11 * fpa11) { unsigned int mem[3]; read_register_gen (F0_REGNUM + fn, (char *) &mem[0]); fpa11->fpreg[fn].fExtended[0] = mem[0]; /* sign & exponent */ fpa11->fpreg[fn].fExtended[2] = mem[1]; /* ls bits */ fpa11->fpreg[fn].fExtended[1] = mem[2]; /* ms bits */ fpa11->fType[fn] = typeDouble; } void store_nwfpe_register (int regno, FPA11 * fpa11) { if (register_valid[regno]) { unsigned int fn = regno - F0_REGNUM; switch (fpa11->fType[fn]) { case typeSingle: store_nwfpe_single (fn, fpa11); break; case typeDouble: store_nwfpe_double (fn, fpa11); break; case typeExtended: store_nwfpe_extended (fn, fpa11); break; } } } /* Get the value of a particular register from the floating point state of the process and store it into registers[]. */ static void fetch_fpregister (int regno) { int ret, tid; FPA11 fp; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_pid); /* Read the floating point state. */ ret = ptrace (PT_GETFPREGS, tid, 0, &fp); if (ret < 0) { warning ("Unable to fetch floating point register."); return; } /* Fetch fpsr. */ if (FPS_REGNUM == regno) supply_register (FPS_REGNUM, (char *) &fp.fpsr); /* Fetch the floating point register. */ if (regno >= F0_REGNUM && regno <= F7_REGNUM) { int fn = regno - F0_REGNUM; switch (fp.fType[fn]) { case typeSingle: fetch_nwfpe_single (fn, &fp); break; case typeDouble: fetch_nwfpe_double (fn, &fp); break; case typeExtended: fetch_nwfpe_extended (fn, &fp); break; default: fetch_nwfpe_none (fn); } } } /* Get the whole floating point state of the process and store it into registers[]. */ static void fetch_fpregs (void) { int ret, regno, tid; FPA11 fp; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_pid); /* Read the floating point state. */ ret = ptrace (PT_GETFPREGS, tid, 0, &fp); if (ret < 0) { warning ("Unable to fetch the floating point registers."); return; } /* Fetch fpsr. */ supply_register (FPS_REGNUM, (char *) &fp.fpsr); /* Fetch the floating point registers. */ for (regno = F0_REGNUM; regno <= F7_REGNUM; regno++) { int fn = regno - F0_REGNUM; switch (fp.fType[fn]) { case typeSingle: fetch_nwfpe_single (fn, &fp); break; case typeDouble: fetch_nwfpe_double (fn, &fp); break; case typeExtended: fetch_nwfpe_extended (fn, &fp); break; default: fetch_nwfpe_none (fn); } } } /* Save a particular register into the floating point state of the process using the contents from registers[]. */ static void store_fpregister (int regno) { int ret, tid; FPA11 fp; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_pid); /* Read the floating point state. */ ret = ptrace (PT_GETFPREGS, tid, 0, &fp); if (ret < 0) { warning ("Unable to fetch the floating point registers."); return; } /* Store fpsr. */ if (FPS_REGNUM == regno && register_valid[FPS_REGNUM]) read_register_gen (FPS_REGNUM, (char *) &fp.fpsr); /* Store the floating point register. */ if (regno >= F0_REGNUM && regno <= F7_REGNUM) { store_nwfpe_register (regno, &fp); } ret = ptrace (PTRACE_SETFPREGS, tid, 0, &fp); if (ret < 0) { warning ("Unable to store floating point register."); return; } } /* Save the whole floating point state of the process using the contents from registers[]. */ static void store_fpregs (void) { int ret, regno, tid; FPA11 fp; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_pid); /* Read the floating point state. */ ret = ptrace (PT_GETFPREGS, tid, 0, &fp); if (ret < 0) { warning ("Unable to fetch the floating point registers."); return; } /* Store fpsr. */ if (register_valid[FPS_REGNUM]) read_register_gen (FPS_REGNUM, (char *) &fp.fpsr); /* Store the floating point registers. */ for (regno = F0_REGNUM; regno <= F7_REGNUM; regno++) { fetch_nwfpe_register (regno, &fp); } ret = ptrace (PTRACE_SETFPREGS, tid, 0, &fp); if (ret < 0) { warning ("Unable to store floating point registers."); return; } } /* Fetch a general register of the process and store into registers[]. */ static void fetch_register (int regno) { int ret, tid; struct pt_regs regs; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_pid); ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); if (ret < 0) { warning ("Unable to fetch general register."); return; } if (regno >= A1_REGNUM && regno < PC_REGNUM) supply_register (regno, (char *) ®s.uregs[regno]); if (PS_REGNUM == regno) { if (arm_apcs_32) supply_register (PS_REGNUM, (char *) ®s.uregs[CPSR_REGNUM]); else supply_register (PS_REGNUM, (char *) ®s.uregs[PC_REGNUM]); } if (PC_REGNUM == regno) { regs.uregs[PC_REGNUM] = ADDR_BITS_REMOVE (regs.uregs[PC_REGNUM]); supply_register (PC_REGNUM, (char *) ®s.uregs[PC_REGNUM]); } } /* Fetch all general registers of the process and store into registers[]. */ static void fetch_regs (void) { int ret, regno, tid; struct pt_regs regs; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_pid); ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); if (ret < 0) { warning ("Unable to fetch general registers."); return; } for (regno = A1_REGNUM; regno < PC_REGNUM; regno++) supply_register (regno, (char *) ®s.uregs[regno]); if (arm_apcs_32) supply_register (PS_REGNUM, (char *) ®s.uregs[CPSR_REGNUM]); else supply_register (PS_REGNUM, (char *) ®s.uregs[PC_REGNUM]); regs.uregs[PC_REGNUM] = ADDR_BITS_REMOVE (regs.uregs[PC_REGNUM]); supply_register (PC_REGNUM, (char *) ®s.uregs[PC_REGNUM]); } /* Store all general registers of the process from the values in registers[]. */ static void store_register (int regno) { int ret, tid; struct pt_regs regs; if (!register_valid[regno]) return; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_pid); /* Get the general registers from the process. */ ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); if (ret < 0) { warning ("Unable to fetch general registers."); return; } if (regno >= A1_REGNUM && regno <= PC_REGNUM) read_register_gen (regno, (char *) ®s.uregs[regno]); ret = ptrace (PTRACE_SETREGS, tid, 0, ®s); if (ret < 0) { warning ("Unable to store general register."); return; } } static void store_regs (void) { int ret, regno, tid; struct pt_regs regs; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_pid); /* Fetch the general registers. */ ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); if (ret < 0) { warning ("Unable to fetch general registers."); return; } for (regno = A1_REGNUM; regno <= PC_REGNUM; regno++) { if (register_valid[regno]) read_register_gen (regno, (char *) ®s.uregs[regno]); } ret = ptrace (PTRACE_SETREGS, tid, 0, ®s); if (ret < 0) { warning ("Unable to store general registers."); return; } } /* Fetch registers from the child process. Fetch all registers if regno == -1, otherwise fetch all general registers or all floating point registers depending upon the value of regno. */ void fetch_inferior_registers (int regno) { if (-1 == regno) { fetch_regs (); fetch_fpregs (); } else { if (regno < F0_REGNUM || regno > FPS_REGNUM) fetch_register (regno); if (regno >= F0_REGNUM && regno <= FPS_REGNUM) fetch_fpregister (regno); } } /* Store registers back into the inferior. Store all registers if regno == -1, otherwise store all general registers or all floating point registers depending upon the value of regno. */ void store_inferior_registers (int regno) { if (-1 == regno) { store_regs (); store_fpregs (); } else { if ((regno < F0_REGNUM) || (regno > FPS_REGNUM)) store_register (regno); if ((regno >= F0_REGNUM) && (regno <= FPS_REGNUM)) store_fpregister (regno); } } /* Fill register regno (if it is a general-purpose register) in *gregsetp with the appropriate value from GDB's register array. If regno is -1, do this for all registers. */ void fill_gregset (gregset_t *gregsetp, int regno) { if (-1 == regno) { int regnum; for (regnum = A1_REGNUM; regnum <= PC_REGNUM; regnum++) if (register_valid[regnum]) read_register_gen (regnum, (char *) &(*gregsetp)[regnum]); } else if (regno >= A1_REGNUM && regno <= PC_REGNUM) { if (register_valid[regno]) read_register_gen (regno, (char *) &(*gregsetp)[regno]); } if (PS_REGNUM == regno || -1 == regno) { if (register_valid[regno] || -1 == regno) { if (arm_apcs_32) read_register_gen (PS_REGNUM, (char *) &(*gregsetp)[CPSR_REGNUM]); else read_register_gen (PC_REGNUM, (char *) &(*gregsetp)[PC_REGNUM]); } } } /* Fill GDB's register array with the general-purpose register values in *gregsetp. */ void supply_gregset (gregset_t *gregsetp) { int regno, reg_pc; for (regno = A1_REGNUM; regno < PC_REGNUM; regno++) supply_register (regno, (char *) &(*gregsetp)[regno]); if (arm_apcs_32) supply_register (PS_REGNUM, (char *) &(*gregsetp)[CPSR_REGNUM]); else supply_register (PS_REGNUM, (char *) &(*gregsetp)[PC_REGNUM]); reg_pc = ADDR_BITS_REMOVE ((CORE_ADDR)(*gregsetp)[PC_REGNUM]); supply_register (PC_REGNUM, (char *) ®_pc); } /* Fill register regno (if it is a floating-point register) in *fpregsetp with the appropriate value from GDB's register array. If regno is -1, do this for all registers. */ void fill_fpregset (fpregset_t *fpregsetp, int regno) { FPA11 *fp = (FPA11 *) fpregsetp; if (-1 == regno) { int regnum; for (regnum = F0_REGNUM; regnum <= F7_REGNUM; regnum++) store_nwfpe_register (regnum, fp); } else if (regno >= F0_REGNUM && regno <= F7_REGNUM) { store_nwfpe_register (regno, fp); return; } /* Store fpsr. */ if (register_valid[FPS_REGNUM]) if (FPS_REGNUM == regno || -1 == regno) read_register_gen (FPS_REGNUM, (char *) &fp->fpsr); } /* Fill GDB's register array with the floating-point register values in *fpregsetp. */ void supply_fpregset (fpregset_t *fpregsetp) { int regno; FPA11 *fp = (FPA11 *) fpregsetp; /* Fetch fpsr. */ supply_register (FPS_REGNUM, (char *) &fp->fpsr); /* Fetch the floating point registers. */ for (regno = F0_REGNUM; regno <= F7_REGNUM; regno++) { fetch_nwfpe_register (regno, fp); } } int arm_linux_kernel_u_size (void) { return (sizeof (struct user)); } static unsigned int get_linux_version (unsigned int *vmajor, unsigned int *vminor, unsigned int *vrelease) { struct utsname info; char *pmajor, *pminor, *prelease, *tail; if (-1 == uname (&info)) { warning ("Unable to determine Linux version."); return -1; } pmajor = strtok (info.release, "."); pminor = strtok (NULL, "."); prelease = strtok (NULL, "."); *vmajor = (unsigned int) strtoul (pmajor, &tail, 0); *vminor = (unsigned int) strtoul (pminor, &tail, 0); *vrelease = (unsigned int) strtoul (prelease, &tail, 0); return ((*vmajor << 16) | (*vminor << 8) | *vrelease); } void _initialize_arm_linux_nat (void) { os_version = get_linux_version (&os_major, &os_minor, &os_release); }