/* GNU/Linux on ARM native support. Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "inferior.h" #include "gdbcore.h" #include "gdb_string.h" #include "regcache.h" #include "arm-tdep.h" #include <sys/user.h> #include <sys/ptrace.h> #include <sys/utsname.h> #include <sys/procfs.h> /* Prototypes for supply_gregset etc. */ #include "gregset.h" extern int arm_apcs_32; #define typeNone 0x00 #define typeSingle 0x01 #define typeDouble 0x02 #define typeExtended 0x03 #define FPWORDS 28 #define ARM_CPSR_REGNUM 16 typedef union tagFPREG { unsigned int fSingle; unsigned int fDouble[2]; unsigned int fExtended[3]; } FPREG; typedef struct tagFPA11 { FPREG fpreg[8]; /* 8 floating point registers */ unsigned int fpsr; /* floating point status register */ unsigned int fpcr; /* floating point control register */ unsigned char fType[8]; /* type of floating point value held in floating point registers. */ int initflag; /* NWFPE initialization flag. */ } FPA11; /* The following variables are used to determine the version of the underlying GNU/Linux operating system. Examples: GNU/Linux 2.0.35 GNU/Linux 2.2.12 os_version = 0x00020023 os_version = 0x0002020c os_major = 2 os_major = 2 os_minor = 0 os_minor = 2 os_release = 35 os_release = 12 Note: os_version = (os_major << 16) | (os_minor << 8) | os_release These are initialized using get_linux_version() from _initialize_arm_linux_nat(). */ static unsigned int os_version, os_major, os_minor, os_release; /* On GNU/Linux, threads are implemented as pseudo-processes, in which case we may be tracing more than one process at a time. In that case, inferior_ptid will contain the main process ID and the individual thread (process) ID. get_thread_id () is used to get the thread id if it's available, and the process id otherwise. */ int get_thread_id (ptid_t ptid) { int tid = TIDGET (ptid); if (0 == tid) tid = PIDGET (ptid); return tid; } #define GET_THREAD_ID(PTID) get_thread_id ((PTID)); static void fetch_nwfpe_single (unsigned int fn, FPA11 * fpa11) { unsigned int mem[3]; mem[0] = fpa11->fpreg[fn].fSingle; mem[1] = 0; mem[2] = 0; supply_register (ARM_F0_REGNUM + fn, (char *) &mem[0]); } static void fetch_nwfpe_double (unsigned int fn, FPA11 * fpa11) { unsigned int mem[3]; mem[0] = fpa11->fpreg[fn].fDouble[1]; mem[1] = fpa11->fpreg[fn].fDouble[0]; mem[2] = 0; supply_register (ARM_F0_REGNUM + fn, (char *) &mem[0]); } static void fetch_nwfpe_none (unsigned int fn) { unsigned int mem[3] = {0, 0, 0}; supply_register (ARM_F0_REGNUM + fn, (char *) &mem[0]); } static void fetch_nwfpe_extended (unsigned int fn, FPA11 * fpa11) { unsigned int mem[3]; mem[0] = fpa11->fpreg[fn].fExtended[0]; /* sign & exponent */ mem[1] = fpa11->fpreg[fn].fExtended[2]; /* ls bits */ mem[2] = fpa11->fpreg[fn].fExtended[1]; /* ms bits */ supply_register (ARM_F0_REGNUM + fn, (char *) &mem[0]); } static void fetch_nwfpe_register (int regno, FPA11 * fpa11) { int fn = regno - ARM_F0_REGNUM; switch (fpa11->fType[fn]) { case typeSingle: fetch_nwfpe_single (fn, fpa11); break; case typeDouble: fetch_nwfpe_double (fn, fpa11); break; case typeExtended: fetch_nwfpe_extended (fn, fpa11); break; default: fetch_nwfpe_none (fn); } } static void store_nwfpe_single (unsigned int fn, FPA11 *fpa11) { unsigned int mem[3]; regcache_collect (ARM_F0_REGNUM + fn, (char *) &mem[0]); fpa11->fpreg[fn].fSingle = mem[0]; fpa11->fType[fn] = typeSingle; } static void store_nwfpe_double (unsigned int fn, FPA11 *fpa11) { unsigned int mem[3]; regcache_collect (ARM_F0_REGNUM + fn, (char *) &mem[0]); fpa11->fpreg[fn].fDouble[1] = mem[0]; fpa11->fpreg[fn].fDouble[0] = mem[1]; fpa11->fType[fn] = typeDouble; } void store_nwfpe_extended (unsigned int fn, FPA11 *fpa11) { unsigned int mem[3]; regcache_collect (ARM_F0_REGNUM + fn, (char *) &mem[0]); fpa11->fpreg[fn].fExtended[0] = mem[0]; /* sign & exponent */ fpa11->fpreg[fn].fExtended[2] = mem[1]; /* ls bits */ fpa11->fpreg[fn].fExtended[1] = mem[2]; /* ms bits */ fpa11->fType[fn] = typeDouble; } void store_nwfpe_register (int regno, FPA11 * fpa11) { if (register_cached (regno)) { unsigned int fn = regno - ARM_F0_REGNUM; switch (fpa11->fType[fn]) { case typeSingle: store_nwfpe_single (fn, fpa11); break; case typeDouble: store_nwfpe_double (fn, fpa11); break; case typeExtended: store_nwfpe_extended (fn, fpa11); break; } } } /* Get the value of a particular register from the floating point state of the process and store it into regcache. */ static void fetch_fpregister (int regno) { int ret, tid; FPA11 fp; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_ptid); /* Read the floating point state. */ ret = ptrace (PT_GETFPREGS, tid, 0, &fp); if (ret < 0) { warning ("Unable to fetch floating point register."); return; } /* Fetch fpsr. */ if (ARM_FPS_REGNUM == regno) supply_register (ARM_FPS_REGNUM, (char *) &fp.fpsr); /* Fetch the floating point register. */ if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM) { int fn = regno - ARM_F0_REGNUM; switch (fp.fType[fn]) { case typeSingle: fetch_nwfpe_single (fn, &fp); break; case typeDouble: fetch_nwfpe_double (fn, &fp); break; case typeExtended: fetch_nwfpe_extended (fn, &fp); break; default: fetch_nwfpe_none (fn); } } } /* Get the whole floating point state of the process and store it into regcache. */ static void fetch_fpregs (void) { int ret, regno, tid; FPA11 fp; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_ptid); /* Read the floating point state. */ ret = ptrace (PT_GETFPREGS, tid, 0, &fp); if (ret < 0) { warning ("Unable to fetch the floating point registers."); return; } /* Fetch fpsr. */ supply_register (ARM_FPS_REGNUM, (char *) &fp.fpsr); /* Fetch the floating point registers. */ for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++) { int fn = regno - ARM_F0_REGNUM; switch (fp.fType[fn]) { case typeSingle: fetch_nwfpe_single (fn, &fp); break; case typeDouble: fetch_nwfpe_double (fn, &fp); break; case typeExtended: fetch_nwfpe_extended (fn, &fp); break; default: fetch_nwfpe_none (fn); } } } /* Save a particular register into the floating point state of the process using the contents from regcache. */ static void store_fpregister (int regno) { int ret, tid; FPA11 fp; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_ptid); /* Read the floating point state. */ ret = ptrace (PT_GETFPREGS, tid, 0, &fp); if (ret < 0) { warning ("Unable to fetch the floating point registers."); return; } /* Store fpsr. */ if (ARM_FPS_REGNUM == regno && register_cached (ARM_FPS_REGNUM)) regcache_collect (ARM_FPS_REGNUM, (char *) &fp.fpsr); /* Store the floating point register. */ if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM) { store_nwfpe_register (regno, &fp); } ret = ptrace (PTRACE_SETFPREGS, tid, 0, &fp); if (ret < 0) { warning ("Unable to store floating point register."); return; } } /* Save the whole floating point state of the process using the contents from regcache. */ static void store_fpregs (void) { int ret, regno, tid; FPA11 fp; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_ptid); /* Read the floating point state. */ ret = ptrace (PT_GETFPREGS, tid, 0, &fp); if (ret < 0) { warning ("Unable to fetch the floating point registers."); return; } /* Store fpsr. */ if (register_cached (ARM_FPS_REGNUM)) regcache_collect (ARM_FPS_REGNUM, (char *) &fp.fpsr); /* Store the floating point registers. */ for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++) { fetch_nwfpe_register (regno, &fp); } ret = ptrace (PTRACE_SETFPREGS, tid, 0, &fp); if (ret < 0) { warning ("Unable to store floating point registers."); return; } } /* Fetch a general register of the process and store into regcache. */ static void fetch_register (int regno) { int ret, tid; elf_gregset_t regs; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_ptid); ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); if (ret < 0) { warning ("Unable to fetch general register."); return; } if (regno >= ARM_A1_REGNUM && regno < ARM_PC_REGNUM) supply_register (regno, (char *) ®s[regno]); if (ARM_PS_REGNUM == regno) { if (arm_apcs_32) supply_register (ARM_PS_REGNUM, (char *) ®s[ARM_CPSR_REGNUM]); else supply_register (ARM_PS_REGNUM, (char *) ®s[ARM_PC_REGNUM]); } if (ARM_PC_REGNUM == regno) { regs[ARM_PC_REGNUM] = ADDR_BITS_REMOVE (regs[ARM_PC_REGNUM]); supply_register (ARM_PC_REGNUM, (char *) ®s[ARM_PC_REGNUM]); } } /* Fetch all general registers of the process and store into regcache. */ static void fetch_regs (void) { int ret, regno, tid; elf_gregset_t regs; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_ptid); ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); if (ret < 0) { warning ("Unable to fetch general registers."); return; } for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++) supply_register (regno, (char *) ®s[regno]); if (arm_apcs_32) supply_register (ARM_PS_REGNUM, (char *) ®s[ARM_CPSR_REGNUM]); else supply_register (ARM_PS_REGNUM, (char *) ®s[ARM_PC_REGNUM]); regs[ARM_PC_REGNUM] = ADDR_BITS_REMOVE (regs[ARM_PC_REGNUM]); supply_register (ARM_PC_REGNUM, (char *) ®s[ARM_PC_REGNUM]); } /* Store all general registers of the process from the values in regcache. */ static void store_register (int regno) { int ret, tid; elf_gregset_t regs; if (!register_cached (regno)) return; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_ptid); /* Get the general registers from the process. */ ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); if (ret < 0) { warning ("Unable to fetch general registers."); return; } if (regno >= ARM_A1_REGNUM && regno <= ARM_PC_REGNUM) regcache_collect (regno, (char *) ®s[regno]); ret = ptrace (PTRACE_SETREGS, tid, 0, ®s); if (ret < 0) { warning ("Unable to store general register."); return; } } static void store_regs (void) { int ret, regno, tid; elf_gregset_t regs; /* Get the thread id for the ptrace call. */ tid = GET_THREAD_ID (inferior_ptid); /* Fetch the general registers. */ ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); if (ret < 0) { warning ("Unable to fetch general registers."); return; } for (regno = ARM_A1_REGNUM; regno <= ARM_PC_REGNUM; regno++) { if (register_cached (regno)) regcache_collect (regno, (char *) ®s[regno]); } ret = ptrace (PTRACE_SETREGS, tid, 0, ®s); if (ret < 0) { warning ("Unable to store general registers."); return; } } /* Fetch registers from the child process. Fetch all registers if regno == -1, otherwise fetch all general registers or all floating point registers depending upon the value of regno. */ void fetch_inferior_registers (int regno) { if (-1 == regno) { fetch_regs (); fetch_fpregs (); } else { if (regno < ARM_F0_REGNUM || regno > ARM_FPS_REGNUM) fetch_register (regno); if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM) fetch_fpregister (regno); } } /* Store registers back into the inferior. Store all registers if regno == -1, otherwise store all general registers or all floating point registers depending upon the value of regno. */ void store_inferior_registers (int regno) { if (-1 == regno) { store_regs (); store_fpregs (); } else { if ((regno < ARM_F0_REGNUM) || (regno > ARM_FPS_REGNUM)) store_register (regno); if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM)) store_fpregister (regno); } } /* Fill register regno (if it is a general-purpose register) in *gregsetp with the appropriate value from GDB's register array. If regno is -1, do this for all registers. */ void fill_gregset (gdb_gregset_t *gregsetp, int regno) { if (-1 == regno) { int regnum; for (regnum = ARM_A1_REGNUM; regnum <= ARM_PC_REGNUM; regnum++) regcache_collect (regnum, (char *) &(*gregsetp)[regnum]); } else if (regno >= ARM_A1_REGNUM && regno <= ARM_PC_REGNUM) regcache_collect (regno, (char *) &(*gregsetp)[regno]); if (ARM_PS_REGNUM == regno || -1 == regno) { if (arm_apcs_32) regcache_collect (ARM_PS_REGNUM, (char *) &(*gregsetp)[ARM_CPSR_REGNUM]); else regcache_collect (ARM_PC_REGNUM, (char *) &(*gregsetp)[ARM_PC_REGNUM]); } } /* Fill GDB's register array with the general-purpose register values in *gregsetp. */ void supply_gregset (gdb_gregset_t *gregsetp) { int regno, reg_pc; for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++) supply_register (regno, (char *) &(*gregsetp)[regno]); if (arm_apcs_32) supply_register (ARM_PS_REGNUM, (char *) &(*gregsetp)[ARM_CPSR_REGNUM]); else supply_register (ARM_PS_REGNUM, (char *) &(*gregsetp)[ARM_PC_REGNUM]); reg_pc = ADDR_BITS_REMOVE ((CORE_ADDR)(*gregsetp)[ARM_PC_REGNUM]); supply_register (ARM_PC_REGNUM, (char *) ®_pc); } /* Fill register regno (if it is a floating-point register) in *fpregsetp with the appropriate value from GDB's register array. If regno is -1, do this for all registers. */ void fill_fpregset (gdb_fpregset_t *fpregsetp, int regno) { FPA11 *fp = (FPA11 *) fpregsetp; if (-1 == regno) { int regnum; for (regnum = ARM_F0_REGNUM; regnum <= ARM_F7_REGNUM; regnum++) store_nwfpe_register (regnum, fp); } else if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM) { store_nwfpe_register (regno, fp); return; } /* Store fpsr. */ if (ARM_FPS_REGNUM == regno || -1 == regno) regcache_collect (ARM_FPS_REGNUM, (char *) &fp->fpsr); } /* Fill GDB's register array with the floating-point register values in *fpregsetp. */ void supply_fpregset (gdb_fpregset_t *fpregsetp) { int regno; FPA11 *fp = (FPA11 *) fpregsetp; /* Fetch fpsr. */ supply_register (ARM_FPS_REGNUM, (char *) &fp->fpsr); /* Fetch the floating point registers. */ for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++) { fetch_nwfpe_register (regno, fp); } } int arm_linux_kernel_u_size (void) { return (sizeof (struct user)); } static unsigned int get_linux_version (unsigned int *vmajor, unsigned int *vminor, unsigned int *vrelease) { struct utsname info; char *pmajor, *pminor, *prelease, *tail; if (-1 == uname (&info)) { warning ("Unable to determine GNU/Linux version."); return -1; } pmajor = strtok (info.release, "."); pminor = strtok (NULL, "."); prelease = strtok (NULL, "."); *vmajor = (unsigned int) strtoul (pmajor, &tail, 0); *vminor = (unsigned int) strtoul (pminor, &tail, 0); *vrelease = (unsigned int) strtoul (prelease, &tail, 0); return ((*vmajor << 16) | (*vminor << 8) | *vrelease); } void _initialize_arm_linux_nat (void) { os_version = get_linux_version (&os_major, &os_minor, &os_release); }