/* Common target-dependent functionality for AArch64.
Copyright (C) 2017-2022 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
#ifndef ARCH_AARCH64_H
#define ARCH_AARCH64_H
#include "gdbsupport/tdesc.h"
/* Holds information on what architectural features are available. This is
used to select register sets. */
struct aarch64_features
{
/* A non zero VQ value indicates both the presence of SVE and the
Vector Quotient - the number of 128bit chunks in an SVE Z
register. */
uint64_t vq = 0;
bool pauth = false;
bool mte = false;
/* A positive TLS value indicates the number of TLS registers available. */
uint8_t tls = 0;
};
inline bool operator==(const aarch64_features &lhs, const aarch64_features &rhs)
{
return lhs.vq == rhs.vq
&& lhs.pauth == rhs.pauth
&& lhs.mte == rhs.mte
&& lhs.tls == rhs.tls;
}
namespace std
{
template<>
struct hash
{
std::size_t operator()(const aarch64_features &features) const noexcept
{
std::size_t h;
h = features.vq;
h = h << 1 | features.pauth;
h = h << 1 | features.mte;
/* Shift by two bits for now. We may need to increase this in the future
if more TLS registers get added. */
h = h << 2 | features.tls;
return h;
}
};
}
/* Create the aarch64 target description. */
target_desc *
aarch64_create_target_description (const aarch64_features &features);
/* Given a pointer value POINTER and a MASK of non-address bits, remove the
non-address bits from the pointer and sign-extend the result if required.
The sign-extension is required so we can handle kernel addresses
correctly. */
CORE_ADDR aarch64_remove_top_bits (CORE_ADDR pointer, CORE_ADDR mask);
/* Given CMASK and DMASK the two PAC mask registers, return the correct PAC
mask to use for removing non-address bits from a pointer. */
CORE_ADDR
aarch64_mask_from_pac_registers (const CORE_ADDR cmask, const CORE_ADDR dmask);
/* Register numbers of various important registers.
Note that on SVE, the Z registers reuse the V register numbers and the V
registers become pseudo registers. */
enum aarch64_regnum
{
AARCH64_X0_REGNUM, /* First integer register. */
AARCH64_FP_REGNUM = AARCH64_X0_REGNUM + 29, /* Frame register, if used. */
AARCH64_LR_REGNUM = AARCH64_X0_REGNUM + 30, /* Return address. */
AARCH64_SP_REGNUM, /* Stack pointer. */
AARCH64_PC_REGNUM, /* Program counter. */
AARCH64_CPSR_REGNUM, /* Current Program Status Register. */
AARCH64_V0_REGNUM, /* First fp/vec register. */
AARCH64_V31_REGNUM = AARCH64_V0_REGNUM + 31, /* Last fp/vec register. */
AARCH64_SVE_Z0_REGNUM = AARCH64_V0_REGNUM, /* First SVE Z register. */
AARCH64_SVE_Z31_REGNUM = AARCH64_V31_REGNUM, /* Last SVE Z register. */
AARCH64_FPSR_REGNUM, /* Floating Point Status Register. */
AARCH64_FPCR_REGNUM, /* Floating Point Control Register. */
AARCH64_SVE_P0_REGNUM, /* First SVE predicate register. */
AARCH64_SVE_P15_REGNUM = AARCH64_SVE_P0_REGNUM + 15, /* Last SVE predicate
register. */
AARCH64_SVE_FFR_REGNUM, /* SVE First Fault Register. */
AARCH64_SVE_VG_REGNUM, /* SVE Vector Granule. */
/* Other useful registers. */
AARCH64_LAST_X_ARG_REGNUM = AARCH64_X0_REGNUM + 7,
AARCH64_STRUCT_RETURN_REGNUM = AARCH64_X0_REGNUM + 8,
AARCH64_LAST_V_ARG_REGNUM = AARCH64_V0_REGNUM + 7
};
/* Sizes of various AArch64 registers. */
#define AARCH64_TLS_REGISTER_SIZE 8
#define V_REGISTER_SIZE 16
/* PAC-related constants. */
/* Bit 55 is used to select between a kernel-space and user-space address. */
#define VA_RANGE_SELECT_BIT_MASK 0x80000000000000ULL
/* Mask with 1's in bits 55~63, used to remove the top byte of pointers
(Top Byte Ignore). */
#define AARCH64_TOP_BITS_MASK 0xff80000000000000ULL
/* Pseudo register base numbers. */
#define AARCH64_Q0_REGNUM 0
#define AARCH64_D0_REGNUM (AARCH64_Q0_REGNUM + AARCH64_D_REGISTER_COUNT)
#define AARCH64_S0_REGNUM (AARCH64_D0_REGNUM + 32)
#define AARCH64_H0_REGNUM (AARCH64_S0_REGNUM + 32)
#define AARCH64_B0_REGNUM (AARCH64_H0_REGNUM + 32)
#define AARCH64_SVE_V0_REGNUM (AARCH64_B0_REGNUM + 32)
#define AARCH64_PAUTH_DMASK_REGNUM(pauth_reg_base) (pauth_reg_base)
#define AARCH64_PAUTH_CMASK_REGNUM(pauth_reg_base) (pauth_reg_base + 1)
#define AARCH64_PAUTH_REGS_SIZE (16)
#define AARCH64_X_REGS_NUM 31
#define AARCH64_V_REGS_NUM 32
#define AARCH64_SVE_Z_REGS_NUM AARCH64_V_REGS_NUM
#define AARCH64_SVE_P_REGS_NUM 16
#define AARCH64_NUM_REGS AARCH64_FPCR_REGNUM + 1
#define AARCH64_SVE_NUM_REGS AARCH64_SVE_VG_REGNUM + 1
/* There are a number of ways of expressing the current SVE vector size:
VL : Vector Length.
The number of bytes in an SVE Z register.
VQ : Vector Quotient.
The number of 128bit chunks in an SVE Z register.
VG : Vector Granule.
The number of 64bit chunks in an SVE Z register. */
#define sve_vg_from_vl(vl) ((vl) / 8)
#define sve_vl_from_vg(vg) ((vg) * 8)
#ifndef sve_vq_from_vl
#define sve_vq_from_vl(vl) ((vl) / 0x10)
#endif
#ifndef sve_vl_from_vq
#define sve_vl_from_vq(vq) ((vq) * 0x10)
#endif
#define sve_vq_from_vg(vg) (sve_vq_from_vl (sve_vl_from_vg (vg)))
#define sve_vg_from_vq(vq) (sve_vg_from_vl (sve_vl_from_vq (vq)))
/* Maximum supported VQ value. Increase if required. */
#define AARCH64_MAX_SVE_VQ 16
#endif /* ARCH_AARCH64_H */