/* Common target-dependent functionality for AArch64. Copyright (C) 2017-2022 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef ARCH_AARCH64_H #define ARCH_AARCH64_H #include "gdbsupport/tdesc.h" /* Holds information on what architectural features are available. This is used to select register sets. */ struct aarch64_features { /* A non zero VQ value indicates both the presence of SVE and the Vector Quotient - the number of 128bit chunks in an SVE Z register. */ uint64_t vq = 0; bool pauth = false; bool mte = false; /* A positive TLS value indicates the number of TLS registers available. */ uint8_t tls = 0; }; inline bool operator==(const aarch64_features &lhs, const aarch64_features &rhs) { return lhs.vq == rhs.vq && lhs.pauth == rhs.pauth && lhs.mte == rhs.mte && lhs.tls == rhs.tls; } namespace std { template<> struct hash { std::size_t operator()(const aarch64_features &features) const noexcept { std::size_t h; h = features.vq; h = h << 1 | features.pauth; h = h << 1 | features.mte; /* Shift by two bits for now. We may need to increase this in the future if more TLS registers get added. */ h = h << 2 | features.tls; return h; } }; } /* Create the aarch64 target description. */ target_desc * aarch64_create_target_description (const aarch64_features &features); /* Given a pointer value POINTER and a MASK of non-address bits, remove the non-address bits from the pointer and sign-extend the result if required. The sign-extension is required so we can handle kernel addresses correctly. */ CORE_ADDR aarch64_remove_top_bits (CORE_ADDR pointer, CORE_ADDR mask); /* Given CMASK and DMASK the two PAC mask registers, return the correct PAC mask to use for removing non-address bits from a pointer. */ CORE_ADDR aarch64_mask_from_pac_registers (const CORE_ADDR cmask, const CORE_ADDR dmask); /* Register numbers of various important registers. Note that on SVE, the Z registers reuse the V register numbers and the V registers become pseudo registers. */ enum aarch64_regnum { AARCH64_X0_REGNUM, /* First integer register. */ AARCH64_FP_REGNUM = AARCH64_X0_REGNUM + 29, /* Frame register, if used. */ AARCH64_LR_REGNUM = AARCH64_X0_REGNUM + 30, /* Return address. */ AARCH64_SP_REGNUM, /* Stack pointer. */ AARCH64_PC_REGNUM, /* Program counter. */ AARCH64_CPSR_REGNUM, /* Current Program Status Register. */ AARCH64_V0_REGNUM, /* First fp/vec register. */ AARCH64_V31_REGNUM = AARCH64_V0_REGNUM + 31, /* Last fp/vec register. */ AARCH64_SVE_Z0_REGNUM = AARCH64_V0_REGNUM, /* First SVE Z register. */ AARCH64_SVE_Z31_REGNUM = AARCH64_V31_REGNUM, /* Last SVE Z register. */ AARCH64_FPSR_REGNUM, /* Floating Point Status Register. */ AARCH64_FPCR_REGNUM, /* Floating Point Control Register. */ AARCH64_SVE_P0_REGNUM, /* First SVE predicate register. */ AARCH64_SVE_P15_REGNUM = AARCH64_SVE_P0_REGNUM + 15, /* Last SVE predicate register. */ AARCH64_SVE_FFR_REGNUM, /* SVE First Fault Register. */ AARCH64_SVE_VG_REGNUM, /* SVE Vector Granule. */ /* Other useful registers. */ AARCH64_LAST_X_ARG_REGNUM = AARCH64_X0_REGNUM + 7, AARCH64_STRUCT_RETURN_REGNUM = AARCH64_X0_REGNUM + 8, AARCH64_LAST_V_ARG_REGNUM = AARCH64_V0_REGNUM + 7 }; /* Sizes of various AArch64 registers. */ #define AARCH64_TLS_REGISTER_SIZE 8 #define V_REGISTER_SIZE 16 /* PAC-related constants. */ /* Bit 55 is used to select between a kernel-space and user-space address. */ #define VA_RANGE_SELECT_BIT_MASK 0x80000000000000ULL /* Mask with 1's in bits 55~63, used to remove the top byte of pointers (Top Byte Ignore). */ #define AARCH64_TOP_BITS_MASK 0xff80000000000000ULL /* Pseudo register base numbers. */ #define AARCH64_Q0_REGNUM 0 #define AARCH64_D0_REGNUM (AARCH64_Q0_REGNUM + AARCH64_D_REGISTER_COUNT) #define AARCH64_S0_REGNUM (AARCH64_D0_REGNUM + 32) #define AARCH64_H0_REGNUM (AARCH64_S0_REGNUM + 32) #define AARCH64_B0_REGNUM (AARCH64_H0_REGNUM + 32) #define AARCH64_SVE_V0_REGNUM (AARCH64_B0_REGNUM + 32) #define AARCH64_PAUTH_DMASK_REGNUM(pauth_reg_base) (pauth_reg_base) #define AARCH64_PAUTH_CMASK_REGNUM(pauth_reg_base) (pauth_reg_base + 1) #define AARCH64_PAUTH_REGS_SIZE (16) #define AARCH64_X_REGS_NUM 31 #define AARCH64_V_REGS_NUM 32 #define AARCH64_SVE_Z_REGS_NUM AARCH64_V_REGS_NUM #define AARCH64_SVE_P_REGS_NUM 16 #define AARCH64_NUM_REGS AARCH64_FPCR_REGNUM + 1 #define AARCH64_SVE_NUM_REGS AARCH64_SVE_VG_REGNUM + 1 /* There are a number of ways of expressing the current SVE vector size: VL : Vector Length. The number of bytes in an SVE Z register. VQ : Vector Quotient. The number of 128bit chunks in an SVE Z register. VG : Vector Granule. The number of 64bit chunks in an SVE Z register. */ #define sve_vg_from_vl(vl) ((vl) / 8) #define sve_vl_from_vg(vg) ((vg) * 8) #ifndef sve_vq_from_vl #define sve_vq_from_vl(vl) ((vl) / 0x10) #endif #ifndef sve_vl_from_vq #define sve_vl_from_vq(vq) ((vq) * 0x10) #endif #define sve_vq_from_vg(vg) (sve_vq_from_vl (sve_vl_from_vg (vg))) #define sve_vg_from_vq(vq) (sve_vg_from_vl (sve_vl_from_vq (vq))) /* Maximum supported VQ value. Increase if required. */ #define AARCH64_MAX_SVE_VQ 16 #endif /* ARCH_AARCH64_H */