/* Native-dependent code for GNU/Linux x86-64. Copyright (C) 2001-2014 Free Software Foundation, Inc. Contributed by Jiri Smid, SuSE Labs. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "inferior.h" #include "regcache.h" #include "elf/common.h" #include <sys/uio.h> #include <sys/ptrace.h> #include <asm/prctl.h> #include <sys/reg.h> #include "gregset.h" #include "gdb_proc_service.h" #include "amd64-nat.h" #include "linux-nat.h" #include "amd64-tdep.h" #include "amd64-linux-tdep.h" #include "i386-linux-tdep.h" #include "x86-xstate.h" #include "x86-linux-nat.h" /* Mapping between the general-purpose registers in GNU/Linux x86-64 `struct user' format and GDB's register cache layout for GNU/Linux i386. Note that most GNU/Linux x86-64 registers are 64-bit, while the GNU/Linux i386 registers are all 32-bit, but since we're little-endian we get away with that. */ /* From <sys/reg.h> on GNU/Linux i386. */ static int amd64_linux_gregset32_reg_offset[] = { RAX * 8, RCX * 8, /* %eax, %ecx */ RDX * 8, RBX * 8, /* %edx, %ebx */ RSP * 8, RBP * 8, /* %esp, %ebp */ RSI * 8, RDI * 8, /* %esi, %edi */ RIP * 8, EFLAGS * 8, /* %eip, %eflags */ CS * 8, SS * 8, /* %cs, %ss */ DS * 8, ES * 8, /* %ds, %es */ FS * 8, GS * 8, /* %fs, %gs */ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */ -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */ -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */ -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512) */ ORIG_RAX * 8 /* "orig_eax" */ }; /* Transfering the general-purpose registers between GDB, inferiors and core files. */ /* Fill GDB's register cache with the general-purpose register values in *GREGSETP. */ void supply_gregset (struct regcache *regcache, const elf_gregset_t *gregsetp) { amd64_supply_native_gregset (regcache, gregsetp, -1); } /* Fill register REGNUM (if it is a general-purpose register) in *GREGSETP with the value in GDB's register cache. If REGNUM is -1, do this for all registers. */ void fill_gregset (const struct regcache *regcache, elf_gregset_t *gregsetp, int regnum) { amd64_collect_native_gregset (regcache, gregsetp, regnum); } /* Transfering floating-point registers between GDB, inferiors and cores. */ /* Fill GDB's register cache with the floating-point and SSE register values in *FPREGSETP. */ void supply_fpregset (struct regcache *regcache, const elf_fpregset_t *fpregsetp) { amd64_supply_fxsave (regcache, -1, fpregsetp); } /* Fill register REGNUM (if it is a floating-point or SSE register) in *FPREGSETP with the value in GDB's register cache. If REGNUM is -1, do this for all registers. */ void fill_fpregset (const struct regcache *regcache, elf_fpregset_t *fpregsetp, int regnum) { amd64_collect_fxsave (regcache, regnum, fpregsetp); } /* Transferring arbitrary registers between GDB and inferior. */ /* Fetch register REGNUM from the child process. If REGNUM is -1, do this for all registers (including the floating point and SSE registers). */ static void amd64_linux_fetch_inferior_registers (struct target_ops *ops, struct regcache *regcache, int regnum) { struct gdbarch *gdbarch = get_regcache_arch (regcache); int tid; /* GNU/Linux LWP ID's are process ID's. */ tid = ptid_get_lwp (inferior_ptid); if (tid == 0) tid = ptid_get_pid (inferior_ptid); /* Not a threaded program. */ if (regnum == -1 || amd64_native_gregset_supplies_p (gdbarch, regnum)) { elf_gregset_t regs; if (ptrace (PTRACE_GETREGS, tid, 0, (long) ®s) < 0) perror_with_name (_("Couldn't get registers")); amd64_supply_native_gregset (regcache, ®s, -1); if (regnum != -1) return; } if (regnum == -1 || !amd64_native_gregset_supplies_p (gdbarch, regnum)) { elf_fpregset_t fpregs; if (have_ptrace_getregset) { char xstateregs[X86_XSTATE_MAX_SIZE]; struct iovec iov; iov.iov_base = xstateregs; iov.iov_len = sizeof (xstateregs); if (ptrace (PTRACE_GETREGSET, tid, (unsigned int) NT_X86_XSTATE, (long) &iov) < 0) perror_with_name (_("Couldn't get extended state status")); amd64_supply_xsave (regcache, -1, xstateregs); } else { if (ptrace (PTRACE_GETFPREGS, tid, 0, (long) &fpregs) < 0) perror_with_name (_("Couldn't get floating point status")); amd64_supply_fxsave (regcache, -1, &fpregs); } } } /* Store register REGNUM back into the child process. If REGNUM is -1, do this for all registers (including the floating-point and SSE registers). */ static void amd64_linux_store_inferior_registers (struct target_ops *ops, struct regcache *regcache, int regnum) { struct gdbarch *gdbarch = get_regcache_arch (regcache); int tid; /* GNU/Linux LWP ID's are process ID's. */ tid = ptid_get_lwp (inferior_ptid); if (tid == 0) tid = ptid_get_pid (inferior_ptid); /* Not a threaded program. */ if (regnum == -1 || amd64_native_gregset_supplies_p (gdbarch, regnum)) { elf_gregset_t regs; if (ptrace (PTRACE_GETREGS, tid, 0, (long) ®s) < 0) perror_with_name (_("Couldn't get registers")); amd64_collect_native_gregset (regcache, ®s, regnum); if (ptrace (PTRACE_SETREGS, tid, 0, (long) ®s) < 0) perror_with_name (_("Couldn't write registers")); if (regnum != -1) return; } if (regnum == -1 || !amd64_native_gregset_supplies_p (gdbarch, regnum)) { elf_fpregset_t fpregs; if (have_ptrace_getregset) { char xstateregs[X86_XSTATE_MAX_SIZE]; struct iovec iov; iov.iov_base = xstateregs; iov.iov_len = sizeof (xstateregs); if (ptrace (PTRACE_GETREGSET, tid, (unsigned int) NT_X86_XSTATE, (long) &iov) < 0) perror_with_name (_("Couldn't get extended state status")); amd64_collect_xsave (regcache, regnum, xstateregs, 0); if (ptrace (PTRACE_SETREGSET, tid, (unsigned int) NT_X86_XSTATE, (long) &iov) < 0) perror_with_name (_("Couldn't write extended state status")); } else { if (ptrace (PTRACE_GETFPREGS, tid, 0, (long) &fpregs) < 0) perror_with_name (_("Couldn't get floating point status")); amd64_collect_fxsave (regcache, regnum, &fpregs); if (ptrace (PTRACE_SETFPREGS, tid, 0, (long) &fpregs) < 0) perror_with_name (_("Couldn't write floating point status")); } } } /* This function is called by libthread_db as part of its handling of a request for a thread's local storage address. */ ps_err_e ps_get_thread_area (const struct ps_prochandle *ph, lwpid_t lwpid, int idx, void **base) { if (gdbarch_bfd_arch_info (target_gdbarch ())->bits_per_word == 32) { unsigned int base_addr; ps_err_e result; result = x86_linux_get_thread_area (lwpid, (void *) (long) idx, &base_addr); if (result == PS_OK) { /* Extend the value to 64 bits. Here it's assumed that a "long" and a "void *" are the same. */ (*base) = (void *) (long) base_addr; } return result; } else { /* This definition comes from prctl.h, but some kernels may not have it. */ #ifndef PTRACE_ARCH_PRCTL #define PTRACE_ARCH_PRCTL 30 #endif /* FIXME: ezannoni-2003-07-09 see comment above about include file order. We could be getting bogus values for these two. */ gdb_assert (FS < ELF_NGREG); gdb_assert (GS < ELF_NGREG); switch (idx) { case FS: #ifdef HAVE_STRUCT_USER_REGS_STRUCT_FS_BASE { /* PTRACE_ARCH_PRCTL is obsolete since 2.6.25, where the fs_base and gs_base fields of user_regs_struct can be used directly. */ unsigned long fs; errno = 0; fs = ptrace (PTRACE_PEEKUSER, lwpid, offsetof (struct user_regs_struct, fs_base), 0); if (errno == 0) { *base = (void *) fs; return PS_OK; } } #endif if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_FS) == 0) return PS_OK; break; case GS: #ifdef HAVE_STRUCT_USER_REGS_STRUCT_GS_BASE { unsigned long gs; errno = 0; gs = ptrace (PTRACE_PEEKUSER, lwpid, offsetof (struct user_regs_struct, gs_base), 0); if (errno == 0) { *base = (void *) gs; return PS_OK; } } #endif if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_GS) == 0) return PS_OK; break; default: /* Should not happen. */ return PS_BADADDR; } } return PS_ERR; /* ptrace failed. */ } /* When GDB is built as a 64-bit application on linux, the PTRACE_GETSIGINFO data is always presented in 64-bit layout. Since debugging a 32-bit inferior with a 64-bit GDB should look the same as debugging it with a 32-bit GDB, we do the 32-bit <-> 64-bit conversion in-place ourselves. */ /* These types below (compat_*) define a siginfo type that is layout compatible with the siginfo type exported by the 32-bit userspace support. */ typedef int compat_int_t; typedef unsigned int compat_uptr_t; typedef int compat_time_t; typedef int compat_timer_t; typedef int compat_clock_t; struct compat_timeval { compat_time_t tv_sec; int tv_usec; }; typedef union compat_sigval { compat_int_t sival_int; compat_uptr_t sival_ptr; } compat_sigval_t; typedef struct compat_siginfo { int si_signo; int si_errno; int si_code; union { int _pad[((128 / sizeof (int)) - 3)]; /* kill() */ struct { unsigned int _pid; unsigned int _uid; } _kill; /* POSIX.1b timers */ struct { compat_timer_t _tid; int _overrun; compat_sigval_t _sigval; } _timer; /* POSIX.1b signals */ struct { unsigned int _pid; unsigned int _uid; compat_sigval_t _sigval; } _rt; /* SIGCHLD */ struct { unsigned int _pid; unsigned int _uid; int _status; compat_clock_t _utime; compat_clock_t _stime; } _sigchld; /* SIGILL, SIGFPE, SIGSEGV, SIGBUS */ struct { unsigned int _addr; } _sigfault; /* SIGPOLL */ struct { int _band; int _fd; } _sigpoll; } _sifields; } compat_siginfo_t; /* For x32, clock_t in _sigchld is 64bit aligned at 4 bytes. */ typedef struct compat_x32_clock { int lower; int upper; } compat_x32_clock_t; typedef struct compat_x32_siginfo { int si_signo; int si_errno; int si_code; union { int _pad[((128 / sizeof (int)) - 3)]; /* kill() */ struct { unsigned int _pid; unsigned int _uid; } _kill; /* POSIX.1b timers */ struct { compat_timer_t _tid; int _overrun; compat_sigval_t _sigval; } _timer; /* POSIX.1b signals */ struct { unsigned int _pid; unsigned int _uid; compat_sigval_t _sigval; } _rt; /* SIGCHLD */ struct { unsigned int _pid; unsigned int _uid; int _status; compat_x32_clock_t _utime; compat_x32_clock_t _stime; } _sigchld; /* SIGILL, SIGFPE, SIGSEGV, SIGBUS */ struct { unsigned int _addr; } _sigfault; /* SIGPOLL */ struct { int _band; int _fd; } _sigpoll; } _sifields; } compat_x32_siginfo_t; #define cpt_si_pid _sifields._kill._pid #define cpt_si_uid _sifields._kill._uid #define cpt_si_timerid _sifields._timer._tid #define cpt_si_overrun _sifields._timer._overrun #define cpt_si_status _sifields._sigchld._status #define cpt_si_utime _sifields._sigchld._utime #define cpt_si_stime _sifields._sigchld._stime #define cpt_si_ptr _sifields._rt._sigval.sival_ptr #define cpt_si_addr _sifields._sigfault._addr #define cpt_si_band _sifields._sigpoll._band #define cpt_si_fd _sifields._sigpoll._fd /* glibc at least up to 2.3.2 doesn't have si_timerid, si_overrun. In their place is si_timer1,si_timer2. */ #ifndef si_timerid #define si_timerid si_timer1 #endif #ifndef si_overrun #define si_overrun si_timer2 #endif static void compat_siginfo_from_siginfo (compat_siginfo_t *to, siginfo_t *from) { memset (to, 0, sizeof (*to)); to->si_signo = from->si_signo; to->si_errno = from->si_errno; to->si_code = from->si_code; if (to->si_code == SI_TIMER) { to->cpt_si_timerid = from->si_timerid; to->cpt_si_overrun = from->si_overrun; to->cpt_si_ptr = (intptr_t) from->si_ptr; } else if (to->si_code == SI_USER) { to->cpt_si_pid = from->si_pid; to->cpt_si_uid = from->si_uid; } else if (to->si_code < 0) { to->cpt_si_pid = from->si_pid; to->cpt_si_uid = from->si_uid; to->cpt_si_ptr = (intptr_t) from->si_ptr; } else { switch (to->si_signo) { case SIGCHLD: to->cpt_si_pid = from->si_pid; to->cpt_si_uid = from->si_uid; to->cpt_si_status = from->si_status; to->cpt_si_utime = from->si_utime; to->cpt_si_stime = from->si_stime; break; case SIGILL: case SIGFPE: case SIGSEGV: case SIGBUS: to->cpt_si_addr = (intptr_t) from->si_addr; break; case SIGPOLL: to->cpt_si_band = from->si_band; to->cpt_si_fd = from->si_fd; break; default: to->cpt_si_pid = from->si_pid; to->cpt_si_uid = from->si_uid; to->cpt_si_ptr = (intptr_t) from->si_ptr; break; } } } static void siginfo_from_compat_siginfo (siginfo_t *to, compat_siginfo_t *from) { memset (to, 0, sizeof (*to)); to->si_signo = from->si_signo; to->si_errno = from->si_errno; to->si_code = from->si_code; if (to->si_code == SI_TIMER) { to->si_timerid = from->cpt_si_timerid; to->si_overrun = from->cpt_si_overrun; to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr; } else if (to->si_code == SI_USER) { to->si_pid = from->cpt_si_pid; to->si_uid = from->cpt_si_uid; } if (to->si_code < 0) { to->si_pid = from->cpt_si_pid; to->si_uid = from->cpt_si_uid; to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr; } else { switch (to->si_signo) { case SIGCHLD: to->si_pid = from->cpt_si_pid; to->si_uid = from->cpt_si_uid; to->si_status = from->cpt_si_status; to->si_utime = from->cpt_si_utime; to->si_stime = from->cpt_si_stime; break; case SIGILL: case SIGFPE: case SIGSEGV: case SIGBUS: to->si_addr = (void *) (intptr_t) from->cpt_si_addr; break; case SIGPOLL: to->si_band = from->cpt_si_band; to->si_fd = from->cpt_si_fd; break; default: to->si_pid = from->cpt_si_pid; to->si_uid = from->cpt_si_uid; to->si_ptr = (void* ) (intptr_t) from->cpt_si_ptr; break; } } } static void compat_x32_siginfo_from_siginfo (compat_x32_siginfo_t *to, siginfo_t *from) { memset (to, 0, sizeof (*to)); to->si_signo = from->si_signo; to->si_errno = from->si_errno; to->si_code = from->si_code; if (to->si_code == SI_TIMER) { to->cpt_si_timerid = from->si_timerid; to->cpt_si_overrun = from->si_overrun; to->cpt_si_ptr = (intptr_t) from->si_ptr; } else if (to->si_code == SI_USER) { to->cpt_si_pid = from->si_pid; to->cpt_si_uid = from->si_uid; } else if (to->si_code < 0) { to->cpt_si_pid = from->si_pid; to->cpt_si_uid = from->si_uid; to->cpt_si_ptr = (intptr_t) from->si_ptr; } else { switch (to->si_signo) { case SIGCHLD: to->cpt_si_pid = from->si_pid; to->cpt_si_uid = from->si_uid; to->cpt_si_status = from->si_status; memcpy (&to->cpt_si_utime, &from->si_utime, sizeof (to->cpt_si_utime)); memcpy (&to->cpt_si_stime, &from->si_stime, sizeof (to->cpt_si_stime)); break; case SIGILL: case SIGFPE: case SIGSEGV: case SIGBUS: to->cpt_si_addr = (intptr_t) from->si_addr; break; case SIGPOLL: to->cpt_si_band = from->si_band; to->cpt_si_fd = from->si_fd; break; default: to->cpt_si_pid = from->si_pid; to->cpt_si_uid = from->si_uid; to->cpt_si_ptr = (intptr_t) from->si_ptr; break; } } } static void siginfo_from_compat_x32_siginfo (siginfo_t *to, compat_x32_siginfo_t *from) { memset (to, 0, sizeof (*to)); to->si_signo = from->si_signo; to->si_errno = from->si_errno; to->si_code = from->si_code; if (to->si_code == SI_TIMER) { to->si_timerid = from->cpt_si_timerid; to->si_overrun = from->cpt_si_overrun; to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr; } else if (to->si_code == SI_USER) { to->si_pid = from->cpt_si_pid; to->si_uid = from->cpt_si_uid; } if (to->si_code < 0) { to->si_pid = from->cpt_si_pid; to->si_uid = from->cpt_si_uid; to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr; } else { switch (to->si_signo) { case SIGCHLD: to->si_pid = from->cpt_si_pid; to->si_uid = from->cpt_si_uid; to->si_status = from->cpt_si_status; memcpy (&to->si_utime, &from->cpt_si_utime, sizeof (to->si_utime)); memcpy (&to->si_stime, &from->cpt_si_stime, sizeof (to->si_stime)); break; case SIGILL: case SIGFPE: case SIGSEGV: case SIGBUS: to->si_addr = (void *) (intptr_t) from->cpt_si_addr; break; case SIGPOLL: to->si_band = from->cpt_si_band; to->si_fd = from->cpt_si_fd; break; default: to->si_pid = from->cpt_si_pid; to->si_uid = from->cpt_si_uid; to->si_ptr = (void* ) (intptr_t) from->cpt_si_ptr; break; } } } /* Convert a native/host siginfo object, into/from the siginfo in the layout of the inferiors' architecture. Returns true if any conversion was done; false otherwise. If DIRECTION is 1, then copy from INF to NATIVE. If DIRECTION is 0, copy from NATIVE to INF. */ static int amd64_linux_siginfo_fixup (siginfo_t *native, gdb_byte *inf, int direction) { struct gdbarch *gdbarch = get_frame_arch (get_current_frame ()); /* Is the inferior 32-bit? If so, then do fixup the siginfo object. */ if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32) { gdb_assert (sizeof (siginfo_t) == sizeof (compat_siginfo_t)); if (direction == 0) compat_siginfo_from_siginfo ((struct compat_siginfo *) inf, native); else siginfo_from_compat_siginfo (native, (struct compat_siginfo *) inf); return 1; } /* No fixup for native x32 GDB. */ else if (gdbarch_addr_bit (gdbarch) == 32 && sizeof (void *) == 8) { gdb_assert (sizeof (siginfo_t) == sizeof (compat_x32_siginfo_t)); if (direction == 0) compat_x32_siginfo_from_siginfo ((struct compat_x32_siginfo *) inf, native); else siginfo_from_compat_x32_siginfo (native, (struct compat_x32_siginfo *) inf); return 1; } else return 0; } /* Provide a prototype to silence -Wmissing-prototypes. */ void _initialize_amd64_linux_nat (void); void _initialize_amd64_linux_nat (void) { struct target_ops *t; amd64_native_gregset32_reg_offset = amd64_linux_gregset32_reg_offset; amd64_native_gregset32_num_regs = I386_LINUX_NUM_REGS; amd64_native_gregset64_reg_offset = amd64_linux_gregset_reg_offset; amd64_native_gregset64_num_regs = AMD64_LINUX_NUM_REGS; gdb_assert (ARRAY_SIZE (amd64_linux_gregset32_reg_offset) == amd64_native_gregset32_num_regs); /* Create a generic x86 GNU/Linux target. */ t = x86_linux_create_target (); /* Add our register access methods. */ t->to_fetch_registers = amd64_linux_fetch_inferior_registers; t->to_store_registers = amd64_linux_store_inferior_registers; /* Add the target. */ x86_linux_add_target (t); /* Add our siginfo layout converter. */ linux_nat_set_siginfo_fixup (t, amd64_linux_siginfo_fixup); }