/* Target-dependent code for NetBSD/Alpha. Copyright 2002, 2003 Free Software Foundation, Inc. Contributed by Wasabi Systems, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "gdbcore.h" #include "frame.h" #include "regcache.h" #include "value.h" #include "osabi.h" #include "solib-svr4.h" #include "alpha-tdep.h" #include "alphabsd-tdep.h" #include "nbsd-tdep.h" static void fetch_core_registers (char *core_reg_sect, unsigned core_reg_size, int which, CORE_ADDR ignore) { char *regs, *fpregs; int regno; /* Table to map a gdb register number to a trapframe register index. */ static const int regmap[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 30, 31, 32, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 29, 26 }; #define SIZEOF_TRAPFRAME (33 * 8) /* We get everything from one section. */ if (which != 0) return; regs = core_reg_sect; fpregs = core_reg_sect + SIZEOF_TRAPFRAME; if (core_reg_size < (SIZEOF_TRAPFRAME + SIZEOF_STRUCT_FPREG)) { warning ("Wrong size register set in core file."); return; } /* Integer registers. */ for (regno = 0; regno < ALPHA_ZERO_REGNUM; regno++) supply_register (regno, regs + (regmap[regno] * 8)); supply_register (ALPHA_ZERO_REGNUM, NULL); supply_register (PC_REGNUM, regs + (28 * 8)); /* Floating point registers. */ alphabsd_supply_fpreg (fpregs, -1); } static void fetch_elfcore_registers (char *core_reg_sect, unsigned core_reg_size, int which, CORE_ADDR ignore) { switch (which) { case 0: /* Integer registers. */ if (core_reg_size != SIZEOF_STRUCT_REG) warning ("Wrong size register set in core file."); else alphabsd_supply_reg (core_reg_sect, -1); break; case 2: /* Floating point registers. */ if (core_reg_size != SIZEOF_STRUCT_FPREG) warning ("Wrong size FP register set in core file."); else alphabsd_supply_fpreg (core_reg_sect, -1); break; default: /* Don't know what kind of register request this is; just ignore it. */ break; } } static struct core_fns alphanbsd_core_fns = { bfd_target_unknown_flavour, /* core_flavour */ default_check_format, /* check_format */ default_core_sniffer, /* core_sniffer */ fetch_core_registers, /* core_read_registers */ NULL /* next */ }; static struct core_fns alphanbsd_elfcore_fns = { bfd_target_elf_flavour, /* core_flavour */ default_check_format, /* check_format */ default_core_sniffer, /* core_sniffer */ fetch_elfcore_registers, /* core_read_registers */ NULL /* next */ }; /* Under NetBSD/alpha, signal handler invocations can be identified by the designated code sequence that is used to return from a signal handler. In particular, the return address of a signal handler points to the following code sequence: ldq a0, 0(sp) lda sp, 16(sp) lda v0, 295(zero) # __sigreturn14 call_pal callsys Each instruction has a unique encoding, so we simply attempt to match the instruction the PC is pointing to with any of the above instructions. If there is a hit, we know the offset to the start of the designated sequence and can then check whether we really are executing in the signal trampoline. If not, -1 is returned, otherwise the offset from the start of the return sequence is returned. */ static const unsigned char sigtramp_retcode[] = { 0x00, 0x00, 0x1e, 0xa6, /* ldq a0, 0(sp) */ 0x10, 0x00, 0xde, 0x23, /* lda sp, 16(sp) */ 0x27, 0x01, 0x1f, 0x20, /* lda v0, 295(zero) */ 0x83, 0x00, 0x00, 0x00, /* call_pal callsys */ }; #define RETCODE_NWORDS 4 #define RETCODE_SIZE (RETCODE_NWORDS * 4) LONGEST alphanbsd_sigtramp_offset (CORE_ADDR pc) { unsigned char ret[RETCODE_SIZE], w[4]; LONGEST off; int i; if (read_memory_nobpt (pc, (char *) w, 4) != 0) return -1; for (i = 0; i < RETCODE_NWORDS; i++) { if (memcmp (w, sigtramp_retcode + (i * 4), 4) == 0) break; } if (i == RETCODE_NWORDS) return (-1); off = i * 4; pc -= off; if (read_memory_nobpt (pc, (char *) ret, sizeof (ret)) != 0) return -1; if (memcmp (ret, sigtramp_retcode, RETCODE_SIZE) == 0) return off; return -1; } static int alphanbsd_pc_in_sigtramp (CORE_ADDR pc, char *func_name) { return (nbsd_pc_in_sigtramp (pc, func_name) || alphanbsd_sigtramp_offset (pc) >= 0); } static CORE_ADDR alphanbsd_sigcontext_addr (struct frame_info *frame) { /* FIXME: This is not correct for all versions of NetBSD/alpha. We will probably need to disassemble the trampoline to figure out which trampoline frame type we have. */ return frame->frame; } static CORE_ADDR alphanbsd_skip_sigtramp_frame (struct frame_info *frame, CORE_ADDR pc) { char *name; /* FIXME: This is not correct for all versions of NetBSD/alpha. We will probably need to disassemble the trampoline to figure out which trampoline frame type we have. */ find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); if (PC_IN_SIGTRAMP (pc, name)) return frame->frame; return 0; } static void alphanbsd_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); set_gdbarch_pc_in_sigtramp (gdbarch, alphanbsd_pc_in_sigtramp); /* NetBSD/alpha does not provide single step support via ptrace(2); we must use software single-stepping. */ set_gdbarch_software_single_step (gdbarch, alpha_software_single_step); set_solib_svr4_fetch_link_map_offsets (gdbarch, nbsd_lp64_solib_svr4_fetch_link_map_offsets); tdep->skip_sigtramp_frame = alphanbsd_skip_sigtramp_frame; tdep->dynamic_sigtramp_offset = alphanbsd_sigtramp_offset; tdep->sigcontext_addr = alphanbsd_sigcontext_addr; tdep->jb_pc = 2; tdep->jb_elt_size = 8; } void _initialize_alphanbsd_tdep (void) { gdbarch_register_osabi (bfd_arch_alpha, 0, GDB_OSABI_NETBSD_ELF, alphanbsd_init_abi); add_core_fns (&alphanbsd_core_fns); add_core_fns (&alphanbsd_elfcore_fns); }