/* Low level Alpha interface, for GDB when running native. Copyright 1993, 1995, 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "inferior.h" #include "gdbcore.h" #include "target.h" #include "regcache.h" #include "alpha-tdep.h" #include #ifdef __linux__ #include #include #else #include #endif #include /* Prototypes for local functions. */ static void fetch_osf_core_registers (char *, unsigned, int, CORE_ADDR); static void fetch_elf_core_registers (char *, unsigned, int, CORE_ADDR); /* Size of elements in jmpbuf */ #define JB_ELEMENT_SIZE 8 /* The definition for JB_PC in machine/reg.h is wrong. And we can't get at the correct definition in setjmp.h as it is not always available (eg. if _POSIX_SOURCE is defined which is the default). As the defintion is unlikely to change (see comment in , define the correct value here. */ #undef JB_PC #define JB_PC 2 /* Figure out where the longjmp will land. We expect the first arg to be a pointer to the jmp_buf structure from which we extract the pc (JB_PC) that we will land at. The pc is copied into PC. This routine returns true on success. */ int get_longjmp_target (CORE_ADDR *pc) { CORE_ADDR jb_addr; char raw_buffer[MAX_REGISTER_RAW_SIZE]; jb_addr = read_register (ALPHA_A0_REGNUM); if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer, sizeof (CORE_ADDR))) return 0; *pc = extract_address (raw_buffer, sizeof (CORE_ADDR)); return 1; } /* Extract the register values out of the core file and store them where `read_register' will find them. CORE_REG_SECT points to the register values themselves, read into memory. CORE_REG_SIZE is the size of that area. WHICH says which set of registers we are handling (0 = int, 2 = float on machines where they are discontiguous). REG_ADDR is the offset from u.u_ar0 to the register values relative to core_reg_sect. This is used with old-fashioned core files to locate the registers in a large upage-plus-stack ".reg" section. Original upage address X is at location core_reg_sect+x+reg_addr. */ static void fetch_osf_core_registers (char *core_reg_sect, unsigned core_reg_size, int which, CORE_ADDR reg_addr) { register int regno; register int addr; int bad_reg = -1; /* Table to map a gdb regnum to an index in the core register section. The floating point register values are garbage in OSF/1.2 core files. OSF5 uses different names for the register enum list, need to handle two cases. The actual values are the same. */ static int core_reg_mapping[NUM_REGS] = { #ifdef NCF_REGS #define EFL NCF_REGS CF_V0, CF_T0, CF_T1, CF_T2, CF_T3, CF_T4, CF_T5, CF_T6, CF_T7, CF_S0, CF_S1, CF_S2, CF_S3, CF_S4, CF_S5, CF_S6, CF_A0, CF_A1, CF_A2, CF_A3, CF_A4, CF_A5, CF_T8, CF_T9, CF_T10, CF_T11, CF_RA, CF_T12, CF_AT, CF_GP, CF_SP, -1, EFL + 0, EFL + 1, EFL + 2, EFL + 3, EFL + 4, EFL + 5, EFL + 6, EFL + 7, EFL + 8, EFL + 9, EFL + 10, EFL + 11, EFL + 12, EFL + 13, EFL + 14, EFL + 15, EFL + 16, EFL + 17, EFL + 18, EFL + 19, EFL + 20, EFL + 21, EFL + 22, EFL + 23, EFL + 24, EFL + 25, EFL + 26, EFL + 27, EFL + 28, EFL + 29, EFL + 30, EFL + 31, CF_PC, -1 #else #define EFL (EF_SIZE / 8) EF_V0, EF_T0, EF_T1, EF_T2, EF_T3, EF_T4, EF_T5, EF_T6, EF_T7, EF_S0, EF_S1, EF_S2, EF_S3, EF_S4, EF_S5, EF_S6, EF_A0, EF_A1, EF_A2, EF_A3, EF_A4, EF_A5, EF_T8, EF_T9, EF_T10, EF_T11, EF_RA, EF_T12, EF_AT, EF_GP, EF_SP, -1, EFL + 0, EFL + 1, EFL + 2, EFL + 3, EFL + 4, EFL + 5, EFL + 6, EFL + 7, EFL + 8, EFL + 9, EFL + 10, EFL + 11, EFL + 12, EFL + 13, EFL + 14, EFL + 15, EFL + 16, EFL + 17, EFL + 18, EFL + 19, EFL + 20, EFL + 21, EFL + 22, EFL + 23, EFL + 24, EFL + 25, EFL + 26, EFL + 27, EFL + 28, EFL + 29, EFL + 30, EFL + 31, EF_PC, -1 #endif }; static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0}; for (regno = 0; regno < NUM_REGS; regno++) { if (CANNOT_FETCH_REGISTER (regno)) { supply_register (regno, zerobuf); continue; } addr = 8 * core_reg_mapping[regno]; if (addr < 0 || addr >= core_reg_size) { if (bad_reg < 0) bad_reg = regno; } else { supply_register (regno, core_reg_sect + addr); } } if (bad_reg >= 0) { error ("Register %s not found in core file.", REGISTER_NAME (bad_reg)); } } static void fetch_elf_core_registers (char *core_reg_sect, unsigned core_reg_size, int which, CORE_ADDR reg_addr) { if (core_reg_size < 32 * 8) { error ("Core file register section too small (%u bytes).", core_reg_size); return; } if (which == 2) { /* The FPU Registers. */ memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], core_reg_sect, 31 * 8); memset (®isters[REGISTER_BYTE (FP0_REGNUM + 31)], 0, 8); memset (®ister_valid[FP0_REGNUM], 1, 32); } else { /* The General Registers. */ memcpy (®isters[REGISTER_BYTE (ALPHA_V0_REGNUM)], core_reg_sect, 31 * 8); memcpy (®isters[REGISTER_BYTE (PC_REGNUM)], core_reg_sect + 31 * 8, 8); memset (®isters[REGISTER_BYTE (ALPHA_ZERO_REGNUM)], 0, 8); memset (®ister_valid[ALPHA_V0_REGNUM], 1, 32); register_valid[PC_REGNUM] = 1; } } /* Map gdb internal register number to a ptrace ``address''. These ``addresses'' are defined in */ #define REGISTER_PTRACE_ADDR(regno) \ (regno < FP0_REGNUM ? GPR_BASE + (regno) \ : regno == PC_REGNUM ? PC \ : regno >= FP0_REGNUM ? FPR_BASE + ((regno) - FP0_REGNUM) \ : 0) /* Return the ptrace ``address'' of register REGNO. */ CORE_ADDR register_addr (int regno, CORE_ADDR blockend) { return REGISTER_PTRACE_ADDR (regno); } int kernel_u_size (void) { return (sizeof (struct user)); } #if defined(USE_PROC_FS) || defined(HAVE_GREGSET_T) #include /* Prototypes for supply_gregset etc. */ #include "gregset.h" /* * See the comment in m68k-tdep.c regarding the utility of these functions. */ void supply_gregset (gdb_gregset_t *gregsetp) { register int regi; register long *regp = ALPHA_REGSET_BASE (gregsetp); static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0}; for (regi = 0; regi < 31; regi++) supply_register (regi, (char *) (regp + regi)); supply_register (PC_REGNUM, (char *) (regp + 31)); /* Fill inaccessible registers with zero. */ supply_register (ALPHA_ZERO_REGNUM, zerobuf); supply_register (FP_REGNUM, zerobuf); } void fill_gregset (gdb_gregset_t *gregsetp, int regno) { int regi; register long *regp = ALPHA_REGSET_BASE (gregsetp); for (regi = 0; regi < 31; regi++) if ((regno == -1) || (regno == regi)) *(regp + regi) = *(long *) ®isters[REGISTER_BYTE (regi)]; if ((regno == -1) || (regno == PC_REGNUM)) *(regp + 31) = *(long *) ®isters[REGISTER_BYTE (PC_REGNUM)]; } /* * Now we do the same thing for floating-point registers. * Again, see the comments in m68k-tdep.c. */ void supply_fpregset (gdb_fpregset_t *fpregsetp) { register int regi; register long *regp = ALPHA_REGSET_BASE (fpregsetp); for (regi = 0; regi < 32; regi++) supply_register (regi + FP0_REGNUM, (char *) (regp + regi)); } void fill_fpregset (gdb_fpregset_t *fpregsetp, int regno) { int regi; register long *regp = ALPHA_REGSET_BASE (fpregsetp); for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++) { if ((regno == -1) || (regno == regi)) { *(regp + regi - FP0_REGNUM) = *(long *) ®isters[REGISTER_BYTE (regi)]; } } } #endif /* Register that we are able to handle alpha core file formats. */ static struct core_fns alpha_osf_core_fns = { /* This really is bfd_target_unknown_flavour. */ bfd_target_unknown_flavour, /* core_flavour */ default_check_format, /* check_format */ default_core_sniffer, /* core_sniffer */ fetch_osf_core_registers, /* core_read_registers */ NULL /* next */ }; static struct core_fns alpha_elf_core_fns = { bfd_target_elf_flavour, /* core_flavour */ default_check_format, /* check_format */ default_core_sniffer, /* core_sniffer */ fetch_elf_core_registers, /* core_read_registers */ NULL /* next */ }; void _initialize_core_alpha (void) { add_core_fns (&alpha_osf_core_fns); add_core_fns (&alpha_elf_core_fns); }