/* Low level Alpha interface, for GDB when running native. Copyright 1993, 1995 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "defs.h" #include "inferior.h" #include "gdbcore.h" #include "target.h" #include <sys/ptrace.h> #include <machine/reg.h> /* Size of elements in jmpbuf */ #define JB_ELEMENT_SIZE 8 /* The definition for JB_PC in machine/reg.h is wrong. And we can't get at the correct definition in setjmp.h as it is not always available (eg. if _POSIX_SOURCE is defined which is the default). As the defintion is unlikely to change (see comment in <setjmp.h>, define the correct value here. */ #undef JB_PC #define JB_PC 2 /* Figure out where the longjmp will land. We expect the first arg to be a pointer to the jmp_buf structure from which we extract the pc (JB_PC) that we will land at. The pc is copied into PC. This routine returns true on success. */ int get_longjmp_target (pc) CORE_ADDR *pc; { CORE_ADDR jb_addr; char raw_buffer[MAX_REGISTER_RAW_SIZE]; jb_addr = read_register(A0_REGNUM); if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer, sizeof(CORE_ADDR))) return 0; *pc = extract_address (raw_buffer, sizeof(CORE_ADDR)); return 1; } /* Extract the register values out of the core file and store them where `read_register' will find them. CORE_REG_SECT points to the register values themselves, read into memory. CORE_REG_SIZE is the size of that area. WHICH says which set of registers we are handling (0 = int, 2 = float on machines where they are discontiguous). REG_ADDR is the offset from u.u_ar0 to the register values relative to core_reg_sect. This is used with old-fashioned core files to locate the registers in a large upage-plus-stack ".reg" section. Original upage address X is at location core_reg_sect+x+reg_addr. */ void fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr) char *core_reg_sect; unsigned core_reg_size; int which; unsigned reg_addr; { register int regno; register int addr; int bad_reg = -1; /* Table to map a gdb regnum to an index in the core register section. The floating point register values are garbage in OSF/1.2 core files. */ static int core_reg_mapping[NUM_REGS] = { #define EFL (EF_SIZE / 8) EF_V0, EF_T0, EF_T1, EF_T2, EF_T3, EF_T4, EF_T5, EF_T6, EF_T7, EF_S0, EF_S1, EF_S2, EF_S3, EF_S4, EF_S5, EF_S6, EF_A0, EF_A1, EF_A2, EF_A3, EF_A4, EF_A5, EF_T8, EF_T9, EF_T10, EF_T11, EF_RA, EF_T12, EF_AT, EF_GP, EF_SP, -1, EFL+0, EFL+1, EFL+2, EFL+3, EFL+4, EFL+5, EFL+6, EFL+7, EFL+8, EFL+9, EFL+10, EFL+11, EFL+12, EFL+13, EFL+14, EFL+15, EFL+16, EFL+17, EFL+18, EFL+19, EFL+20, EFL+21, EFL+22, EFL+23, EFL+24, EFL+25, EFL+26, EFL+27, EFL+28, EFL+29, EFL+30, EFL+31, EF_PC, -1 }; static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0}; for (regno = 0; regno < NUM_REGS; regno++) { if (CANNOT_FETCH_REGISTER (regno)) { supply_register (regno, zerobuf); continue; } addr = 8 * core_reg_mapping[regno]; if (addr < 0 || addr >= core_reg_size) { if (bad_reg < 0) bad_reg = regno; } else { supply_register (regno, core_reg_sect + addr); } } if (bad_reg >= 0) { error ("Register %s not found in core file.", reg_names[bad_reg]); } } /* Map gdb internal register number to a ptrace ``address''. These ``addresses'' are defined in <sys/ptrace.h> */ #define REGISTER_PTRACE_ADDR(regno) \ (regno < FP0_REGNUM ? GPR_BASE + (regno) \ : regno == PC_REGNUM ? PC \ : regno >= FP0_REGNUM ? FPR_BASE + ((regno) - FP0_REGNUM) \ : 0) /* Return the ptrace ``address'' of register REGNO. */ unsigned int register_addr (regno, blockend) int regno; int blockend; { return REGISTER_PTRACE_ADDR (regno); } #ifdef USE_PROC_FS #include <sys/procfs.h> /* * See the comment in m68k-tdep.c regarding the utility of these functions. */ void supply_gregset (gregsetp) gregset_t *gregsetp; { register int regi; register long *regp = gregsetp->regs; for (regi = 0; regi < 31; regi++) supply_register (regi, (char *)(regp + regi)); supply_register (PC_REGNUM, (char *)(regp + 31)); } void fill_gregset (gregsetp, regno) gregset_t *gregsetp; int regno; { int regi; register long *regp = gregsetp->regs; for (regi = 0; regi < 31; regi++) if ((regno == -1) || (regno == regi)) *(regp + regi) = *(long *) ®isters[REGISTER_BYTE (regi)]; if ((regno == -1) || (regno == PC_REGNUM)) *(regp + 31) = *(long *) ®isters[REGISTER_BYTE (PC_REGNUM)]; } /* * Now we do the same thing for floating-point registers. * Again, see the comments in m68k-tdep.c. */ void supply_fpregset (fpregsetp) fpregset_t *fpregsetp; { register int regi; register long *regp = fpregsetp->regs; for (regi = 0; regi < 32; regi++) supply_register (regi + FP0_REGNUM, (char *)(regp + regi)); } void fill_fpregset (fpregsetp, regno) fpregset_t *fpregsetp; int regno; { int regi; register long *regp = fpregsetp->regs; for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++) { if ((regno == -1) || (regno == regi)) { *(regp + regi - FP0_REGNUM) = *(long *) ®isters[REGISTER_BYTE (regi)]; } } } #endif