/* Support for printing Ada values for GDB, the GNU debugger. Copyright (C) 1986-2020 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include #include "gdbtypes.h" #include "expression.h" #include "value.h" #include "valprint.h" #include "language.h" #include "annotate.h" #include "ada-lang.h" #include "target-float.h" #include "cli/cli-style.h" #include "gdbarch.h" static int print_field_values (struct value *, struct value *, struct ui_file *, int, const struct value_print_options *, int, const struct language_defn *); /* Make TYPE unsigned if its range of values includes no negatives. */ static void adjust_type_signedness (struct type *type) { if (type != NULL && type->code () == TYPE_CODE_RANGE && TYPE_LOW_BOUND (type) >= 0) TYPE_UNSIGNED (type) = 1; } /* Assuming TYPE is a simple array type, prints its lower bound on STREAM, if non-standard (i.e., other than 1 for numbers, other than lower bound of index type for enumerated type). Returns 1 if something printed, otherwise 0. */ static int print_optional_low_bound (struct ui_file *stream, struct type *type, const struct value_print_options *options) { struct type *index_type; LONGEST low_bound; LONGEST high_bound; if (options->print_array_indexes) return 0; if (!get_array_bounds (type, &low_bound, &high_bound)) return 0; /* If this is an empty array, then don't print the lower bound. That would be confusing, because we would print the lower bound, followed by... nothing! */ if (low_bound > high_bound) return 0; index_type = type->index_type (); while (index_type->code () == TYPE_CODE_RANGE) { /* We need to know what the base type is, in order to do the appropriate check below. Otherwise, if this is a subrange of an enumerated type, where the underlying value of the first element is typically 0, we might test the low bound against the wrong value. */ index_type = TYPE_TARGET_TYPE (index_type); } /* Don't print the lower bound if it's the default one. */ switch (index_type->code ()) { case TYPE_CODE_BOOL: case TYPE_CODE_CHAR: if (low_bound == 0) return 0; break; case TYPE_CODE_ENUM: if (low_bound == 0) return 0; low_bound = TYPE_FIELD_ENUMVAL (index_type, low_bound); break; case TYPE_CODE_UNDEF: index_type = NULL; /* FALL THROUGH */ default: if (low_bound == 1) return 0; break; } ada_print_scalar (index_type, low_bound, stream); fprintf_filtered (stream, " => "); return 1; } /* Version of val_print_array_elements for GNAT-style packed arrays. Prints elements of packed array of type TYPE from VALADDR on STREAM. Formats according to OPTIONS and separates with commas. RECURSE is the recursion (nesting) level. TYPE must have been decoded (as by ada_coerce_to_simple_array). */ static void val_print_packed_array_elements (struct type *type, const gdb_byte *valaddr, int offset, struct ui_file *stream, int recurse, const struct value_print_options *options) { unsigned int i; unsigned int things_printed = 0; unsigned len; struct type *elttype, *index_type; unsigned long bitsize = TYPE_FIELD_BITSIZE (type, 0); struct value *mark = value_mark (); LONGEST low = 0; elttype = TYPE_TARGET_TYPE (type); index_type = type->index_type (); { LONGEST high; if (get_discrete_bounds (index_type, &low, &high) < 0) len = 1; else if (low > high) { /* The array length should normally be HIGH_POS - LOW_POS + 1. But in Ada we allow LOW_POS to be greater than HIGH_POS for empty arrays. In that situation, the array length is just zero, not negative! */ len = 0; } else len = high - low + 1; } if (index_type->code () == TYPE_CODE_RANGE) index_type = TYPE_TARGET_TYPE (index_type); i = 0; annotate_array_section_begin (i, elttype); while (i < len && things_printed < options->print_max) { struct value *v0, *v1; int i0; if (i != 0) { if (options->prettyformat_arrays) { fprintf_filtered (stream, ",\n"); print_spaces_filtered (2 + 2 * recurse, stream); } else { fprintf_filtered (stream, ", "); } } else if (options->prettyformat_arrays) { fprintf_filtered (stream, "\n"); print_spaces_filtered (2 + 2 * recurse, stream); } wrap_here (n_spaces (2 + 2 * recurse)); maybe_print_array_index (index_type, i + low, stream, options); i0 = i; v0 = ada_value_primitive_packed_val (NULL, valaddr + offset, (i0 * bitsize) / HOST_CHAR_BIT, (i0 * bitsize) % HOST_CHAR_BIT, bitsize, elttype); while (1) { i += 1; if (i >= len) break; v1 = ada_value_primitive_packed_val (NULL, valaddr + offset, (i * bitsize) / HOST_CHAR_BIT, (i * bitsize) % HOST_CHAR_BIT, bitsize, elttype); if (TYPE_LENGTH (check_typedef (value_type (v0))) != TYPE_LENGTH (check_typedef (value_type (v1)))) break; if (!value_contents_eq (v0, value_embedded_offset (v0), v1, value_embedded_offset (v1), TYPE_LENGTH (check_typedef (value_type (v0))))) break; } if (i - i0 > options->repeat_count_threshold) { struct value_print_options opts = *options; opts.deref_ref = 0; common_val_print (v0, stream, recurse + 1, &opts, current_language); annotate_elt_rep (i - i0); fprintf_filtered (stream, _(" %p[%p]"), metadata_style.style ().ptr (), i - i0, nullptr); annotate_elt_rep_end (); } else { int j; struct value_print_options opts = *options; opts.deref_ref = 0; for (j = i0; j < i; j += 1) { if (j > i0) { if (options->prettyformat_arrays) { fprintf_filtered (stream, ",\n"); print_spaces_filtered (2 + 2 * recurse, stream); } else { fprintf_filtered (stream, ", "); } wrap_here (n_spaces (2 + 2 * recurse)); maybe_print_array_index (index_type, j + low, stream, options); } common_val_print (v0, stream, recurse + 1, &opts, current_language); annotate_elt (); } } things_printed += i - i0; } annotate_array_section_end (); if (i < len) { fprintf_filtered (stream, "..."); } value_free_to_mark (mark); } /* Print the character C on STREAM as part of the contents of a literal string whose delimiter is QUOTER. TYPE_LEN is the length in bytes of the character. */ void ada_emit_char (int c, struct type *type, struct ui_file *stream, int quoter, int type_len) { /* If this character fits in the normal ASCII range, and is a printable character, then print the character as if it was an ASCII character, even if this is a wide character. The UCHAR_MAX check is necessary because the isascii function requires that its argument have a value of an unsigned char, or EOF (EOF is obviously not printable). */ if (c <= UCHAR_MAX && isascii (c) && isprint (c)) { if (c == quoter && c == '"') fprintf_filtered (stream, "\"\""); else fprintf_filtered (stream, "%c", c); } else fprintf_filtered (stream, "[\"%0*x\"]", type_len * 2, c); } /* Character #I of STRING, given that TYPE_LEN is the size in bytes of a character. */ static int char_at (const gdb_byte *string, int i, int type_len, enum bfd_endian byte_order) { if (type_len == 1) return string[i]; else return (int) extract_unsigned_integer (string + type_len * i, type_len, byte_order); } /* Print a floating-point value of type TYPE, pointed to in GDB by VALADDR, on STREAM. Use Ada formatting conventions: there must be a decimal point, and at least one digit before and after the point. We use the GNAT format for NaNs and infinities. */ static void ada_print_floating (const gdb_byte *valaddr, struct type *type, struct ui_file *stream) { string_file tmp_stream; print_floating (valaddr, type, &tmp_stream); std::string &s = tmp_stream.string (); size_t skip_count = 0; /* Modify for Ada rules. */ size_t pos = s.find ("inf"); if (pos == std::string::npos) pos = s.find ("Inf"); if (pos == std::string::npos) pos = s.find ("INF"); if (pos != std::string::npos) s.replace (pos, 3, "Inf"); if (pos == std::string::npos) { pos = s.find ("nan"); if (pos == std::string::npos) pos = s.find ("NaN"); if (pos == std::string::npos) pos = s.find ("Nan"); if (pos != std::string::npos) { s[pos] = s[pos + 2] = 'N'; if (s[0] == '-') skip_count = 1; } } if (pos == std::string::npos && s.find ('.') == std::string::npos) { pos = s.find ('e'); if (pos == std::string::npos) fprintf_filtered (stream, "%s.0", s.c_str ()); else fprintf_filtered (stream, "%.*s.0%s", (int) pos, s.c_str (), &s[pos]); } else fprintf_filtered (stream, "%s", &s[skip_count]); } void ada_printchar (int c, struct type *type, struct ui_file *stream) { fputs_filtered ("'", stream); ada_emit_char (c, type, stream, '\'', TYPE_LENGTH (type)); fputs_filtered ("'", stream); } /* [From print_type_scalar in typeprint.c]. Print VAL on STREAM in a form appropriate for TYPE, if non-NULL. If TYPE is NULL, print VAL like a default signed integer. */ void ada_print_scalar (struct type *type, LONGEST val, struct ui_file *stream) { unsigned int i; unsigned len; if (!type) { print_longest (stream, 'd', 0, val); return; } type = ada_check_typedef (type); switch (type->code ()) { case TYPE_CODE_ENUM: len = type->num_fields (); for (i = 0; i < len; i++) { if (TYPE_FIELD_ENUMVAL (type, i) == val) { break; } } if (i < len) { fputs_styled (ada_enum_name (TYPE_FIELD_NAME (type, i)), variable_name_style.style (), stream); } else { print_longest (stream, 'd', 0, val); } break; case TYPE_CODE_INT: print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0, val); break; case TYPE_CODE_CHAR: LA_PRINT_CHAR (val, type, stream); break; case TYPE_CODE_BOOL: fprintf_filtered (stream, val ? "true" : "false"); break; case TYPE_CODE_RANGE: ada_print_scalar (TYPE_TARGET_TYPE (type), val, stream); return; case TYPE_CODE_UNDEF: case TYPE_CODE_PTR: case TYPE_CODE_ARRAY: case TYPE_CODE_STRUCT: case TYPE_CODE_UNION: case TYPE_CODE_FUNC: case TYPE_CODE_FLT: case TYPE_CODE_VOID: case TYPE_CODE_SET: case TYPE_CODE_STRING: case TYPE_CODE_ERROR: case TYPE_CODE_MEMBERPTR: case TYPE_CODE_METHODPTR: case TYPE_CODE_METHOD: case TYPE_CODE_REF: warning (_("internal error: unhandled type in ada_print_scalar")); break; default: error (_("Invalid type code in symbol table.")); } } /* Print the character string STRING, printing at most LENGTH characters. Printing stops early if the number hits print_max; repeat counts are printed as appropriate. Print ellipses at the end if we had to stop before printing LENGTH characters, or if FORCE_ELLIPSES. TYPE_LEN is the length (1 or 2) of the character type. */ static void printstr (struct ui_file *stream, struct type *elttype, const gdb_byte *string, unsigned int length, int force_ellipses, int type_len, const struct value_print_options *options) { enum bfd_endian byte_order = type_byte_order (elttype); unsigned int i; unsigned int things_printed = 0; int in_quotes = 0; int need_comma = 0; if (length == 0) { fputs_filtered ("\"\"", stream); return; } for (i = 0; i < length && things_printed < options->print_max; i += 1) { /* Position of the character we are examining to see whether it is repeated. */ unsigned int rep1; /* Number of repetitions we have detected so far. */ unsigned int reps; QUIT; if (need_comma) { fputs_filtered (", ", stream); need_comma = 0; } rep1 = i + 1; reps = 1; while (rep1 < length && char_at (string, rep1, type_len, byte_order) == char_at (string, i, type_len, byte_order)) { rep1 += 1; reps += 1; } if (reps > options->repeat_count_threshold) { if (in_quotes) { fputs_filtered ("\", ", stream); in_quotes = 0; } fputs_filtered ("'", stream); ada_emit_char (char_at (string, i, type_len, byte_order), elttype, stream, '\'', type_len); fputs_filtered ("'", stream); fprintf_filtered (stream, _(" %p[%p]"), metadata_style.style ().ptr (), reps, nullptr); i = rep1 - 1; things_printed += options->repeat_count_threshold; need_comma = 1; } else { if (!in_quotes) { fputs_filtered ("\"", stream); in_quotes = 1; } ada_emit_char (char_at (string, i, type_len, byte_order), elttype, stream, '"', type_len); things_printed += 1; } } /* Terminate the quotes if necessary. */ if (in_quotes) fputs_filtered ("\"", stream); if (force_ellipses || i < length) fputs_filtered ("...", stream); } void ada_printstr (struct ui_file *stream, struct type *type, const gdb_byte *string, unsigned int length, const char *encoding, int force_ellipses, const struct value_print_options *options) { printstr (stream, type, string, length, force_ellipses, TYPE_LENGTH (type), options); } static int print_variant_part (struct value *value, int field_num, struct value *outer_value, struct ui_file *stream, int recurse, const struct value_print_options *options, int comma_needed, const struct language_defn *language) { struct type *type = value_type (value); struct type *var_type = type->field (field_num).type (); int which = ada_which_variant_applies (var_type, outer_value); if (which < 0) return 0; struct value *variant_field = value_field (value, field_num); struct value *active_component = value_field (variant_field, which); return print_field_values (active_component, outer_value, stream, recurse, options, comma_needed, language); } /* Print out fields of VALUE. STREAM, RECURSE, and OPTIONS have the same meanings as in ada_print_value and ada_value_print. OUTER_VALUE gives the enclosing record (used to get discriminant values when printing variant parts). COMMA_NEEDED is 1 if fields have been printed at the current recursion level, so that a comma is needed before any field printed by this call. Returns 1 if COMMA_NEEDED or any fields were printed. */ static int print_field_values (struct value *value, struct value *outer_value, struct ui_file *stream, int recurse, const struct value_print_options *options, int comma_needed, const struct language_defn *language) { int i, len; struct type *type = value_type (value); len = type->num_fields (); for (i = 0; i < len; i += 1) { if (ada_is_ignored_field (type, i)) continue; if (ada_is_wrapper_field (type, i)) { struct value *field_val = ada_value_primitive_field (value, 0, i, type); comma_needed = print_field_values (field_val, field_val, stream, recurse, options, comma_needed, language); continue; } else if (ada_is_variant_part (type, i)) { comma_needed = print_variant_part (value, i, outer_value, stream, recurse, options, comma_needed, language); continue; } if (comma_needed) fprintf_filtered (stream, ", "); comma_needed = 1; if (options->prettyformat) { fprintf_filtered (stream, "\n"); print_spaces_filtered (2 + 2 * recurse, stream); } else { wrap_here (n_spaces (2 + 2 * recurse)); } annotate_field_begin (type->field (i).type ()); fprintf_filtered (stream, "%.*s", ada_name_prefix_len (TYPE_FIELD_NAME (type, i)), TYPE_FIELD_NAME (type, i)); annotate_field_name_end (); fputs_filtered (" => ", stream); annotate_field_value (); if (TYPE_FIELD_PACKED (type, i)) { /* Bitfields require special handling, especially due to byte order problems. */ if (HAVE_CPLUS_STRUCT (type) && TYPE_FIELD_IGNORE (type, i)) { fputs_styled (_(""), metadata_style.style (), stream); } else { struct value *v; int bit_pos = TYPE_FIELD_BITPOS (type, i); int bit_size = TYPE_FIELD_BITSIZE (type, i); struct value_print_options opts; adjust_type_signedness (type->field (i).type ()); v = ada_value_primitive_packed_val (value, nullptr, bit_pos / HOST_CHAR_BIT, bit_pos % HOST_CHAR_BIT, bit_size, type->field (i).type ()); opts = *options; opts.deref_ref = 0; common_val_print (v, stream, recurse + 1, &opts, language); } } else { struct value_print_options opts = *options; opts.deref_ref = 0; struct value *v = value_field (value, i); common_val_print (v, stream, recurse + 1, &opts, language); } annotate_field_end (); } return comma_needed; } /* Implement Ada val_print'ing for the case where TYPE is a TYPE_CODE_ARRAY of characters. */ static void ada_val_print_string (struct type *type, const gdb_byte *valaddr, int offset_aligned, struct ui_file *stream, int recurse, const struct value_print_options *options) { enum bfd_endian byte_order = type_byte_order (type); struct type *elttype = TYPE_TARGET_TYPE (type); unsigned int eltlen; unsigned int len; /* We know that ELTTYPE cannot possibly be null, because we assume that we're called only when TYPE is a string-like type. Similarly, the size of ELTTYPE should also be non-null, since it's a character-like type. */ gdb_assert (elttype != NULL); gdb_assert (TYPE_LENGTH (elttype) != 0); eltlen = TYPE_LENGTH (elttype); len = TYPE_LENGTH (type) / eltlen; /* If requested, look for the first null char and only print elements up to it. */ if (options->stop_print_at_null) { int temp_len; /* Look for a NULL char. */ for (temp_len = 0; (temp_len < len && temp_len < options->print_max && char_at (valaddr + offset_aligned, temp_len, eltlen, byte_order) != 0); temp_len += 1); len = temp_len; } printstr (stream, elttype, valaddr + offset_aligned, len, 0, eltlen, options); } /* Implement Ada val_print-ing for GNAT arrays (Eg. fat pointers, thin pointers, etc). */ static void ada_val_print_gnat_array (struct value *val, struct ui_file *stream, int recurse, const struct value_print_options *options) { scoped_value_mark free_values; struct type *type = ada_check_typedef (value_type (val)); /* If this is a reference, coerce it now. This helps taking care of the case where ADDRESS is meaningless because original_value was not an lval. */ val = coerce_ref (val); if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */ val = ada_coerce_to_simple_array_ptr (val); else val = ada_coerce_to_simple_array (val); if (val == NULL) { gdb_assert (type->code () == TYPE_CODE_TYPEDEF); fprintf_filtered (stream, "0x0"); } else common_val_print (val, stream, recurse, options, language_def (language_ada)); } /* Implement Ada value_print'ing for the case where TYPE is a TYPE_CODE_PTR. */ static void ada_value_print_ptr (struct value *val, struct ui_file *stream, int recurse, const struct value_print_options *options) { common_val_print (val, stream, recurse, options, language_def (language_c)); struct type *type = ada_check_typedef (value_type (val)); if (ada_is_tag_type (type)) { const char *name = ada_tag_name (val); if (name != NULL) fprintf_filtered (stream, " (%s)", name); } } /* Implement Ada val_print'ing for the case where TYPE is a TYPE_CODE_INT or TYPE_CODE_RANGE. */ static void ada_value_print_num (struct value *val, struct ui_file *stream, int recurse, const struct value_print_options *options) { struct type *type = ada_check_typedef (value_type (val)); const gdb_byte *valaddr = value_contents_for_printing (val); if (ada_is_gnat_encoded_fixed_point_type (type)) { struct value *scale = ada_scaling_factor (type); val = value_cast (value_type (scale), val); val = value_binop (val, scale, BINOP_MUL); const char *fmt = TYPE_LENGTH (type) < 4 ? "%.11g" : "%.17g"; std::string str = target_float_to_string (value_contents (val), value_type (val), fmt); fputs_filtered (str.c_str (), stream); return; } else if (type->code () == TYPE_CODE_RANGE && (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM || TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_BOOL || TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_CHAR)) { /* For enum-valued ranges, we want to recurse, because we'll end up printing the constant's name rather than its numeric value. Character and fixed-point types are also printed differently, so recuse for those as well. */ struct type *target_type = TYPE_TARGET_TYPE (type); val = value_cast (target_type, val); common_val_print (val, stream, recurse + 1, options, language_def (language_ada)); return; } else { int format = (options->format ? options->format : options->output_format); if (format) { struct value_print_options opts = *options; opts.format = format; value_print_scalar_formatted (val, &opts, 0, stream); } else if (ada_is_system_address_type (type)) { /* FIXME: We want to print System.Address variables using the same format as for any access type. But for some reason GNAT encodes the System.Address type as an int, so we have to work-around this deficiency by handling System.Address values as a special case. */ struct gdbarch *gdbarch = get_type_arch (type); struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; CORE_ADDR addr = extract_typed_address (valaddr, ptr_type); fprintf_filtered (stream, "("); type_print (type, "", stream, -1); fprintf_filtered (stream, ") "); fputs_filtered (paddress (gdbarch, addr), stream); } else { value_print_scalar_formatted (val, options, 0, stream); if (ada_is_character_type (type)) { LONGEST c; fputs_filtered (" ", stream); c = unpack_long (type, valaddr); ada_printchar (c, type, stream); } } return; } } /* Implement Ada val_print'ing for the case where TYPE is a TYPE_CODE_ENUM. */ static void ada_val_print_enum (struct value *value, struct ui_file *stream, int recurse, const struct value_print_options *options) { int i; unsigned int len; LONGEST val; if (options->format) { value_print_scalar_formatted (value, options, 0, stream); return; } struct type *type = ada_check_typedef (value_type (value)); const gdb_byte *valaddr = value_contents_for_printing (value); int offset_aligned = ada_aligned_value_addr (type, valaddr) - valaddr; len = type->num_fields (); val = unpack_long (type, valaddr + offset_aligned); for (i = 0; i < len; i++) { QUIT; if (val == TYPE_FIELD_ENUMVAL (type, i)) break; } if (i < len) { const char *name = ada_enum_name (TYPE_FIELD_NAME (type, i)); if (name[0] == '\'') fprintf_filtered (stream, "%ld %ps", (long) val, styled_string (variable_name_style.style (), name)); else fputs_styled (name, variable_name_style.style (), stream); } else print_longest (stream, 'd', 0, val); } /* Implement Ada val_print'ing for the case where the type is TYPE_CODE_STRUCT or TYPE_CODE_UNION. */ static void ada_val_print_struct_union (struct value *value, struct ui_file *stream, int recurse, const struct value_print_options *options) { if (ada_is_bogus_array_descriptor (value_type (value))) { fprintf_filtered (stream, "(...?)"); return; } fprintf_filtered (stream, "("); if (print_field_values (value, value, stream, recurse, options, 0, language_def (language_ada)) != 0 && options->prettyformat) { fprintf_filtered (stream, "\n"); print_spaces_filtered (2 * recurse, stream); } fprintf_filtered (stream, ")"); } /* Implement Ada value_print'ing for the case where TYPE is a TYPE_CODE_ARRAY. */ static void ada_value_print_array (struct value *val, struct ui_file *stream, int recurse, const struct value_print_options *options) { struct type *type = ada_check_typedef (value_type (val)); /* For an array of characters, print with string syntax. */ if (ada_is_string_type (type) && (options->format == 0 || options->format == 's')) { const gdb_byte *valaddr = value_contents_for_printing (val); int offset_aligned = ada_aligned_value_addr (type, valaddr) - valaddr; ada_val_print_string (type, valaddr, offset_aligned, stream, recurse, options); return; } fprintf_filtered (stream, "("); print_optional_low_bound (stream, type, options); if (TYPE_FIELD_BITSIZE (type, 0) > 0) { const gdb_byte *valaddr = value_contents_for_printing (val); int offset_aligned = ada_aligned_value_addr (type, valaddr) - valaddr; val_print_packed_array_elements (type, valaddr, offset_aligned, stream, recurse, options); } else value_print_array_elements (val, stream, recurse, options, 0); fprintf_filtered (stream, ")"); } /* Implement Ada val_print'ing for the case where TYPE is a TYPE_CODE_REF. */ static void ada_val_print_ref (struct type *type, const gdb_byte *valaddr, int offset, int offset_aligned, CORE_ADDR address, struct ui_file *stream, int recurse, struct value *original_value, const struct value_print_options *options) { /* For references, the debugger is expected to print the value as an address if DEREF_REF is null. But printing an address in place of the object value would be confusing to an Ada programmer. So, for Ada values, we print the actual dereferenced value regardless. */ struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type)); struct value *deref_val; CORE_ADDR deref_val_int; if (elttype->code () == TYPE_CODE_UNDEF) { fputs_styled ("", metadata_style.style (), stream); return; } deref_val = coerce_ref_if_computed (original_value); if (deref_val) { if (ada_is_tagged_type (value_type (deref_val), 1)) deref_val = ada_tag_value_at_base_address (deref_val); common_val_print (deref_val, stream, recurse + 1, options, language_def (language_ada)); return; } deref_val_int = unpack_pointer (type, valaddr + offset_aligned); if (deref_val_int == 0) { fputs_filtered ("(null)", stream); return; } deref_val = ada_value_ind (value_from_pointer (lookup_pointer_type (elttype), deref_val_int)); if (ada_is_tagged_type (value_type (deref_val), 1)) deref_val = ada_tag_value_at_base_address (deref_val); /* Make sure that the object does not have an unreasonable size before trying to print it. This can happen for instance with references to dynamic objects whose contents is uninitialized (Eg: an array whose bounds are not set yet). */ ada_ensure_varsize_limit (value_type (deref_val)); if (value_lazy (deref_val)) value_fetch_lazy (deref_val); common_val_print (deref_val, stream, recurse + 1, options, language_def (language_ada)); } /* See the comment on ada_value_print. This function differs in that it does not catch evaluation errors (leaving that to ada_value_print). */ static void ada_value_print_1 (struct value *val, struct ui_file *stream, int recurse, const struct value_print_options *options) { struct type *type = ada_check_typedef (value_type (val)); if (ada_is_array_descriptor_type (type) || (ada_is_constrained_packed_array_type (type) && type->code () != TYPE_CODE_PTR)) { ada_val_print_gnat_array (val, stream, recurse, options); return; } val = ada_to_fixed_value (val); type = value_type (val); struct type *saved_type = type; const gdb_byte *valaddr = value_contents_for_printing (val); CORE_ADDR address = value_address (val); gdb::array_view view = gdb::make_array_view (valaddr, TYPE_LENGTH (type)); type = ada_check_typedef (resolve_dynamic_type (type, view, address)); if (type != saved_type) { val = value_copy (val); deprecated_set_value_type (val, type); } switch (type->code ()) { default: common_val_print (val, stream, recurse, options, language_def (language_c)); break; case TYPE_CODE_PTR: ada_value_print_ptr (val, stream, recurse, options); break; case TYPE_CODE_INT: case TYPE_CODE_RANGE: ada_value_print_num (val, stream, recurse, options); break; case TYPE_CODE_ENUM: ada_val_print_enum (val, stream, recurse, options); break; case TYPE_CODE_FLT: if (options->format) { common_val_print (val, stream, recurse, options, language_def (language_c)); break; } ada_print_floating (valaddr, type, stream); break; case TYPE_CODE_UNION: case TYPE_CODE_STRUCT: ada_val_print_struct_union (val, stream, recurse, options); break; case TYPE_CODE_ARRAY: ada_value_print_array (val, stream, recurse, options); return; case TYPE_CODE_REF: ada_val_print_ref (type, valaddr, 0, 0, address, stream, recurse, val, options); break; } } /* See ada-lang.h. */ void ada_value_print_inner (struct value *val, struct ui_file *stream, int recurse, const struct value_print_options *options) { try { ada_value_print_1 (val, stream, recurse, options); } catch (const gdb_exception_error &except) { fprintf_styled (stream, metadata_style.style (), _(""), except.what ()); } } void ada_value_print (struct value *val0, struct ui_file *stream, const struct value_print_options *options) { struct value *val = ada_to_fixed_value (val0); struct type *type = ada_check_typedef (value_type (val)); struct value_print_options opts; /* If it is a pointer, indicate what it points to. */ if (type->code () == TYPE_CODE_PTR) { /* Hack: don't print (char *) for char strings. Their type is indicated by the quoted string anyway. */ if (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) != sizeof (char) || TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_INT || TYPE_UNSIGNED (TYPE_TARGET_TYPE (type))) { fprintf_filtered (stream, "("); type_print (type, "", stream, -1); fprintf_filtered (stream, ") "); } } else if (ada_is_array_descriptor_type (type)) { /* We do not print the type description unless TYPE is an array access type (this is encoded by the compiler as a typedef to a fat pointer - hence the check against TYPE_CODE_TYPEDEF). */ if (type->code () == TYPE_CODE_TYPEDEF) { fprintf_filtered (stream, "("); type_print (type, "", stream, -1); fprintf_filtered (stream, ") "); } } else if (ada_is_bogus_array_descriptor (type)) { fprintf_filtered (stream, "("); type_print (type, "", stream, -1); fprintf_filtered (stream, ") (...?)"); return; } opts = *options; opts.deref_ref = 1; common_val_print (val, stream, 0, &opts, current_language); }