/* symbols.c -symbol table- Copyright (C) 1987-2020 Free Software Foundation, Inc. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ /* #define DEBUG_SYMS / * to debug symbol list maintenance. */ #include "as.h" #include "safe-ctype.h" #include "obstack.h" /* For "symbols.h" */ #include "subsegs.h" #include "write.h" #ifdef HAVE_LIMITS_H #include <limits.h> #endif #ifndef CHAR_BIT #define CHAR_BIT 8 #endif struct symbol_flags { /* Whether the symbol is a local_symbol. */ unsigned int local_symbol : 1; /* Weather symbol has been written. */ unsigned int written : 1; /* Whether symbol value has been completely resolved (used during final pass over symbol table). */ unsigned int resolved : 1; /* Whether the symbol value is currently being resolved (used to detect loops in symbol dependencies). */ unsigned int resolving : 1; /* Whether the symbol value is used in a reloc. This is used to ensure that symbols used in relocs are written out, even if they are local and would otherwise not be. */ unsigned int used_in_reloc : 1; /* Whether the symbol is used as an operand or in an expression. NOTE: Not all the backends keep this information accurate; backends which use this bit are responsible for setting it when a symbol is used in backend routines. */ unsigned int used : 1; /* Whether the symbol can be re-defined. */ unsigned int volatil : 1; /* Whether the symbol is a forward reference. */ unsigned int forward_ref : 1; /* This is set if the symbol is defined in an MRI common section. We handle such sections as single common symbols, so symbols defined within them must be treated specially by the relocation routines. */ unsigned int mri_common : 1; /* This is set if the symbol is set with a .weakref directive. */ unsigned int weakrefr : 1; /* This is set when the symbol is referenced as part of a .weakref directive, but only if the symbol was not in the symbol table before. It is cleared as soon as any direct reference to the symbol is present. */ unsigned int weakrefd : 1; }; /* A pointer in the symbol may point to either a complete symbol (struct symbol below) or to a local symbol (struct local_symbol defined here). The symbol code can detect the case by examining the first field which is present in both structs. We do this because we ordinarily only need a small amount of information for a local symbol. The symbol table takes up a lot of space, and storing less information for a local symbol can make a big difference in assembler memory usage when assembling a large file. */ struct local_symbol { /* Symbol flags. Only local_symbol and resolved are relevant. */ struct symbol_flags flags; /* Hash value calculated from name. */ hashval_t hash; /* The symbol name. */ const char *name; /* The symbol frag. */ fragS *frag; /* The symbol section. */ asection *section; /* The value of the symbol. */ valueT value; }; /* The information we keep for a symbol. The symbol table holds pointers both to this and to local_symbol structures. The first three fields must be identical to struct local_symbol, and the size should be the same as or smaller than struct local_symbol. Fields that don't fit go to an extension structure. */ struct symbol { /* Symbol flags. */ struct symbol_flags flags; /* Hash value calculated from name. */ hashval_t hash; /* The symbol name. */ const char *name; /* Pointer to the frag this symbol is attached to, if any. Otherwise, NULL. */ fragS *frag; /* BFD symbol */ asymbol *bsym; /* Extra symbol fields that won't fit. */ struct xsymbol *x; }; /* Extra fields to make up a full symbol. */ struct xsymbol { /* The value of the symbol. */ expressionS value; /* Forwards and backwards chain pointers. */ struct symbol *next; struct symbol *previous; #ifdef OBJ_SYMFIELD_TYPE OBJ_SYMFIELD_TYPE obj; #endif #ifdef TC_SYMFIELD_TYPE TC_SYMFIELD_TYPE tc; #endif }; typedef union symbol_entry { struct local_symbol lsy; struct symbol sy; } symbol_entry_t; /* Hash function for a symbol_entry. */ static hashval_t hash_symbol_entry (const void *e) { symbol_entry_t *entry = (symbol_entry_t *) e; if (entry->sy.hash == 0) entry->sy.hash = htab_hash_string (entry->sy.name); return entry->sy.hash; } /* Equality function for a symbol_entry. */ static int eq_symbol_entry (const void *a, const void *b) { const symbol_entry_t *ea = (const symbol_entry_t *) a; const symbol_entry_t *eb = (const symbol_entry_t *) b; return (ea->sy.hash == eb->sy.hash && strcmp (ea->sy.name, eb->sy.name) == 0); } static void * symbol_entry_find (htab_t table, const char *name) { hashval_t hash = htab_hash_string (name); symbol_entry_t needle = { { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, hash, name, 0, 0, 0 } }; return htab_find_with_hash (table, &needle, hash); } /* This is non-zero if symbols are case sensitive, which is the default. */ int symbols_case_sensitive = 1; #ifndef WORKING_DOT_WORD extern int new_broken_words; #endif static htab_t sy_hash; /* Below are commented in "symbols.h". */ symbolS *symbol_rootP; symbolS *symbol_lastP; symbolS abs_symbol; struct xsymbol abs_symbol_x; symbolS dot_symbol; struct xsymbol dot_symbol_x; #ifdef DEBUG_SYMS #define debug_verify_symchain verify_symbol_chain #else #define debug_verify_symchain(root, last) ((void) 0) #endif #define DOLLAR_LABEL_CHAR '\001' #define LOCAL_LABEL_CHAR '\002' #ifndef TC_LABEL_IS_LOCAL #define TC_LABEL_IS_LOCAL(name) 0 #endif struct obstack notes; #ifdef TE_PE /* The name of an external symbol which is used to make weak PE symbol names unique. */ const char * an_external_name; #endif static const char *save_symbol_name (const char *); static void fb_label_init (void); static long dollar_label_instance (long); static long fb_label_instance (long); static void print_binary (FILE *, const char *, expressionS *); /* Return a pointer to a new symbol. Die if we can't make a new symbol. Fill in the symbol's values. Add symbol to end of symbol chain. This function should be called in the general case of creating a symbol. However, if the output file symbol table has already been set, and you are certain that this symbol won't be wanted in the output file, you can call symbol_create. */ symbolS * symbol_new (const char *name, segT segment, fragS *frag, valueT valu) { symbolS *symbolP = symbol_create (name, segment, frag, valu); /* Link to end of symbol chain. */ symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP); return symbolP; } /* Save a symbol name on a permanent obstack, and convert it according to the object file format. */ static const char * save_symbol_name (const char *name) { size_t name_length; char *ret; gas_assert (name != NULL); name_length = strlen (name) + 1; /* +1 for \0. */ obstack_grow (¬es, name, name_length); ret = (char *) obstack_finish (¬es); #ifdef tc_canonicalize_symbol_name ret = tc_canonicalize_symbol_name (ret); #endif if (! symbols_case_sensitive) { char *s; for (s = ret; *s != '\0'; s++) *s = TOUPPER (*s); } return ret; } static void symbol_init (symbolS *symbolP, const char *name, asection *sec, fragS *frag, valueT valu) { symbolP->frag = frag; symbolP->bsym = bfd_make_empty_symbol (stdoutput); if (symbolP->bsym == NULL) as_fatal ("bfd_make_empty_symbol: %s", bfd_errmsg (bfd_get_error ())); symbolP->bsym->name = name; symbolP->bsym->section = sec; S_SET_VALUE (symbolP, valu); symbol_clear_list_pointers (symbolP); obj_symbol_new_hook (symbolP); #ifdef tc_symbol_new_hook tc_symbol_new_hook (symbolP); #endif } /* Create a symbol. NAME is copied, the caller can destroy/modify. */ symbolS * symbol_create (const char *name, segT segment, fragS *frag, valueT valu) { const char *preserved_copy_of_name; symbolS *symbolP; size_t size; preserved_copy_of_name = save_symbol_name (name); size = sizeof (symbolS) + sizeof (struct xsymbol); symbolP = (symbolS *) obstack_alloc (¬es, size); /* symbol must be born in some fixed state. This seems as good as any. */ memset (symbolP, 0, size); symbolP->name = preserved_copy_of_name; symbolP->x = (struct xsymbol *) (symbolP + 1); symbol_init (symbolP, preserved_copy_of_name, segment, frag, valu); return symbolP; } /* Local symbol support. If we can get away with it, we keep only a small amount of information for local symbols. */ /* Used for statistics. */ static unsigned long local_symbol_count; static unsigned long local_symbol_conversion_count; /* Create a local symbol and insert it into the local hash table. */ struct local_symbol * local_symbol_make (const char *name, segT section, fragS *frag, valueT val) { const char *name_copy; struct local_symbol *ret; struct symbol_flags flags = { .local_symbol = 1, .resolved = 0 }; ++local_symbol_count; name_copy = save_symbol_name (name); ret = (struct local_symbol *) obstack_alloc (¬es, sizeof *ret); ret->flags = flags; ret->hash = 0; ret->name = name_copy; ret->frag = frag; ret->section = section; ret->value = val; htab_insert (sy_hash, ret, 1); return ret; } /* Convert a local symbol into a real symbol. */ static symbolS * local_symbol_convert (void *sym) { symbol_entry_t *ent = (symbol_entry_t *) sym; struct xsymbol *xtra; valueT val; gas_assert (ent->lsy.flags.local_symbol); ++local_symbol_conversion_count; xtra = (struct xsymbol *) obstack_alloc (¬es, sizeof (*xtra)); memset (xtra, 0, sizeof (*xtra)); val = ent->lsy.value; ent->sy.x = xtra; /* Local symbols are always either defined or used. */ ent->sy.flags.used = 1; ent->sy.flags.local_symbol = 0; symbol_init (&ent->sy, ent->lsy.name, ent->lsy.section, ent->lsy.frag, val); symbol_append (&ent->sy, symbol_lastP, &symbol_rootP, &symbol_lastP); return &ent->sy; } static void define_sym_at_dot (symbolS *symbolP) { symbolP->frag = frag_now; S_SET_VALUE (symbolP, (valueT) frag_now_fix ()); S_SET_SEGMENT (symbolP, now_seg); } /* We have just seen "<name>:". Creates a struct symbol unless it already exists. Gripes if we are redefining a symbol incompatibly (and ignores it). */ symbolS * colon (/* Just seen "x:" - rattle symbols & frags. */ const char *sym_name /* Symbol name, as a canonical string. */ /* We copy this string: OK to alter later. */) { symbolS *symbolP; /* Symbol we are working with. */ /* Sun local labels go out of scope whenever a non-local symbol is defined. */ if (LOCAL_LABELS_DOLLAR && !bfd_is_local_label_name (stdoutput, sym_name)) dollar_label_clear (); #ifndef WORKING_DOT_WORD if (new_broken_words) { struct broken_word *a; int possible_bytes; fragS *frag_tmp; char *frag_opcode; if (now_seg == absolute_section) { as_bad (_("cannot define symbol `%s' in absolute section"), sym_name); return NULL; } possible_bytes = (md_short_jump_size + new_broken_words * md_long_jump_size); frag_tmp = frag_now; frag_opcode = frag_var (rs_broken_word, possible_bytes, possible_bytes, (relax_substateT) 0, (symbolS *) broken_words, (offsetT) 0, NULL); /* We want to store the pointer to where to insert the jump table in the fr_opcode of the rs_broken_word frag. This requires a little hackery. */ while (frag_tmp && (frag_tmp->fr_type != rs_broken_word || frag_tmp->fr_opcode)) frag_tmp = frag_tmp->fr_next; know (frag_tmp); frag_tmp->fr_opcode = frag_opcode; new_broken_words = 0; for (a = broken_words; a && a->dispfrag == 0; a = a->next_broken_word) a->dispfrag = frag_tmp; } #endif /* WORKING_DOT_WORD */ #ifdef obj_frob_colon obj_frob_colon (sym_name); #endif if ((symbolP = symbol_find (sym_name)) != 0) { S_CLEAR_WEAKREFR (symbolP); #ifdef RESOLVE_SYMBOL_REDEFINITION if (RESOLVE_SYMBOL_REDEFINITION (symbolP)) return symbolP; #endif /* Now check for undefined symbols. */ if (symbolP->flags.local_symbol) { struct local_symbol *locsym = (struct local_symbol *) symbolP; if (locsym->section != undefined_section && (locsym->frag != frag_now || locsym->section != now_seg || locsym->value != frag_now_fix ())) { as_bad (_("symbol `%s' is already defined"), sym_name); return symbolP; } locsym->section = now_seg; locsym->frag = frag_now; locsym->value = frag_now_fix (); } else if (!(S_IS_DEFINED (symbolP) || symbol_equated_p (symbolP)) || S_IS_COMMON (symbolP) || S_IS_VOLATILE (symbolP)) { if (S_IS_VOLATILE (symbolP)) { symbolP = symbol_clone (symbolP, 1); S_SET_VALUE (symbolP, 0); S_CLEAR_VOLATILE (symbolP); } if (S_GET_VALUE (symbolP) == 0) { define_sym_at_dot (symbolP); #ifdef N_UNDF know (N_UNDF == 0); #endif /* if we have one, it better be zero. */ } else { /* There are still several cases to check: A .comm/.lcomm symbol being redefined as initialized data is OK A .comm/.lcomm symbol being redefined with a larger size is also OK This only used to be allowed on VMS gas, but Sun cc on the sparc also depends on it. */ if (((!S_IS_DEBUG (symbolP) && (!S_IS_DEFINED (symbolP) || S_IS_COMMON (symbolP)) && S_IS_EXTERNAL (symbolP)) || S_GET_SEGMENT (symbolP) == bss_section) && (now_seg == data_section || now_seg == bss_section || now_seg == S_GET_SEGMENT (symbolP))) { /* Select which of the 2 cases this is. */ if (now_seg != data_section) { /* New .comm for prev .comm symbol. If the new size is larger we just change its value. If the new size is smaller, we ignore this symbol. */ if (S_GET_VALUE (symbolP) < ((unsigned) frag_now_fix ())) { S_SET_VALUE (symbolP, (valueT) frag_now_fix ()); } } else { /* It is a .comm/.lcomm being converted to initialized data. */ define_sym_at_dot (symbolP); } } else { #if (!defined (OBJ_AOUT) && !defined (OBJ_MAYBE_AOUT)) static const char *od_buf = ""; #else char od_buf[100]; od_buf[0] = '\0'; if (OUTPUT_FLAVOR == bfd_target_aout_flavour) sprintf (od_buf, "%d.%d.", S_GET_OTHER (symbolP), S_GET_DESC (symbolP)); #endif as_bad (_("symbol `%s' is already defined as \"%s\"/%s%ld"), sym_name, segment_name (S_GET_SEGMENT (symbolP)), od_buf, (long) S_GET_VALUE (symbolP)); } } /* if the undefined symbol has no value */ } else { /* Don't blow up if the definition is the same. */ if (!(frag_now == symbolP->frag && S_GET_VALUE (symbolP) == frag_now_fix () && S_GET_SEGMENT (symbolP) == now_seg)) { as_bad (_("symbol `%s' is already defined"), sym_name); symbolP = symbol_clone (symbolP, 0); define_sym_at_dot (symbolP); } } } else if (! flag_keep_locals && bfd_is_local_label_name (stdoutput, sym_name)) { symbolP = (symbolS *) local_symbol_make (sym_name, now_seg, frag_now, frag_now_fix ()); } else { symbolP = symbol_new (sym_name, now_seg, frag_now, frag_now_fix ()); symbol_table_insert (symbolP); } if (mri_common_symbol != NULL) { /* This symbol is actually being defined within an MRI common section. This requires special handling. */ if (symbolP->flags.local_symbol) symbolP = local_symbol_convert (symbolP); symbolP->x->value.X_op = O_symbol; symbolP->x->value.X_add_symbol = mri_common_symbol; symbolP->x->value.X_add_number = S_GET_VALUE (mri_common_symbol); symbolP->frag = &zero_address_frag; S_SET_SEGMENT (symbolP, expr_section); symbolP->flags.mri_common = 1; } #ifdef tc_frob_label tc_frob_label (symbolP); #endif #ifdef obj_frob_label obj_frob_label (symbolP); #endif return symbolP; } /* Die if we can't insert the symbol. */ void symbol_table_insert (symbolS *symbolP) { know (symbolP); htab_insert (sy_hash, symbolP, 1); } /* If a symbol name does not exist, create it as undefined, and insert it into the symbol table. Return a pointer to it. */ symbolS * symbol_find_or_make (const char *name) { symbolS *symbolP; symbolP = symbol_find (name); if (symbolP == NULL) { if (! flag_keep_locals && bfd_is_local_label_name (stdoutput, name)) { symbolP = md_undefined_symbol ((char *) name); if (symbolP != NULL) return symbolP; symbolP = (symbolS *) local_symbol_make (name, undefined_section, &zero_address_frag, 0); return symbolP; } symbolP = symbol_make (name); symbol_table_insert (symbolP); } /* if symbol wasn't found */ return (symbolP); } symbolS * symbol_make (const char *name) { symbolS *symbolP; /* Let the machine description default it, e.g. for register names. */ symbolP = md_undefined_symbol ((char *) name); if (!symbolP) symbolP = symbol_new (name, undefined_section, &zero_address_frag, 0); return (symbolP); } symbolS * symbol_clone (symbolS *orgsymP, int replace) { symbolS *newsymP; asymbol *bsymorg, *bsymnew; /* Make sure we never clone the dot special symbol. */ gas_assert (orgsymP != &dot_symbol); /* When cloning a local symbol it isn't absolutely necessary to convert the original, but converting makes the code much simpler to cover this unexpected case. As of 2020-08-21 symbol_clone won't be called on a local symbol. */ if (orgsymP->flags.local_symbol) orgsymP = local_symbol_convert (orgsymP); bsymorg = orgsymP->bsym; newsymP = (symbolS *) obstack_alloc (¬es, (sizeof (symbolS) + sizeof (struct xsymbol))); *newsymP = *orgsymP; newsymP->x = (struct xsymbol *) (newsymP + 1); *newsymP->x = *orgsymP->x; bsymnew = bfd_make_empty_symbol (bfd_asymbol_bfd (bsymorg)); if (bsymnew == NULL) as_fatal ("bfd_make_empty_symbol: %s", bfd_errmsg (bfd_get_error ())); newsymP->bsym = bsymnew; bsymnew->name = bsymorg->name; bsymnew->flags = bsymorg->flags & ~BSF_SECTION_SYM; bsymnew->section = bsymorg->section; bfd_copy_private_symbol_data (bfd_asymbol_bfd (bsymorg), bsymorg, bfd_asymbol_bfd (bsymnew), bsymnew); #ifdef obj_symbol_clone_hook obj_symbol_clone_hook (newsymP, orgsymP); #endif #ifdef tc_symbol_clone_hook tc_symbol_clone_hook (newsymP, orgsymP); #endif if (replace) { if (symbol_rootP == orgsymP) symbol_rootP = newsymP; else if (orgsymP->x->previous) { orgsymP->x->previous->x->next = newsymP; orgsymP->x->previous = NULL; } if (symbol_lastP == orgsymP) symbol_lastP = newsymP; else if (orgsymP->x->next) orgsymP->x->next->x->previous = newsymP; /* Symbols that won't be output can't be external. */ S_CLEAR_EXTERNAL (orgsymP); orgsymP->x->previous = orgsymP->x->next = orgsymP; debug_verify_symchain (symbol_rootP, symbol_lastP); symbol_table_insert (newsymP); } else { /* Symbols that won't be output can't be external. */ S_CLEAR_EXTERNAL (newsymP); newsymP->x->previous = newsymP->x->next = newsymP; } return newsymP; } /* Referenced symbols, if they are forward references, need to be cloned (without replacing the original) so that the value of the referenced symbols at the point of use is saved by the clone. */ #undef symbol_clone_if_forward_ref symbolS * symbol_clone_if_forward_ref (symbolS *symbolP, int is_forward) { if (symbolP && !symbolP->flags.local_symbol) { symbolS *orig_add_symbol = symbolP->x->value.X_add_symbol; symbolS *orig_op_symbol = symbolP->x->value.X_op_symbol; symbolS *add_symbol = orig_add_symbol; symbolS *op_symbol = orig_op_symbol; if (symbolP->flags.forward_ref) is_forward = 1; if (is_forward) { /* assign_symbol() clones volatile symbols; pre-existing expressions hold references to the original instance, but want the current value. Just repeat the lookup. */ if (add_symbol && S_IS_VOLATILE (add_symbol)) add_symbol = symbol_find_exact (S_GET_NAME (add_symbol)); if (op_symbol && S_IS_VOLATILE (op_symbol)) op_symbol = symbol_find_exact (S_GET_NAME (op_symbol)); } /* Re-using resolving here, as this routine cannot get called from symbol resolution code. */ if ((symbolP->bsym->section == expr_section || symbolP->flags.forward_ref) && !symbolP->flags.resolving) { symbolP->flags.resolving = 1; add_symbol = symbol_clone_if_forward_ref (add_symbol, is_forward); op_symbol = symbol_clone_if_forward_ref (op_symbol, is_forward); symbolP->flags.resolving = 0; } if (symbolP->flags.forward_ref || add_symbol != orig_add_symbol || op_symbol != orig_op_symbol) { if (symbolP != &dot_symbol) { symbolP = symbol_clone (symbolP, 0); symbolP->flags.resolving = 0; } else { symbolP = symbol_temp_new_now (); #ifdef tc_new_dot_label tc_new_dot_label (symbolP); #endif } } symbolP->x->value.X_add_symbol = add_symbol; symbolP->x->value.X_op_symbol = op_symbol; } return symbolP; } symbolS * symbol_temp_new (segT seg, fragS *frag, valueT ofs) { return symbol_new (FAKE_LABEL_NAME, seg, frag, ofs); } symbolS * symbol_temp_new_now (void) { return symbol_temp_new (now_seg, frag_now, frag_now_fix ()); } symbolS * symbol_temp_new_now_octets (void) { return symbol_temp_new (now_seg, frag_now, frag_now_fix_octets ()); } symbolS * symbol_temp_make (void) { return symbol_make (FAKE_LABEL_NAME); } /* Implement symbol table lookup. In: A symbol's name as a string: '\0' can't be part of a symbol name. Out: NULL if the name was not in the symbol table, else the address of a struct symbol associated with that name. */ symbolS * symbol_find_exact (const char *name) { return symbol_find_exact_noref (name, 0); } symbolS * symbol_find_exact_noref (const char *name, int noref) { symbolS *sym = symbol_entry_find (sy_hash, name); /* Any references to the symbol, except for the reference in .weakref, must clear this flag, such that the symbol does not turn into a weak symbol. Note that we don't have to handle the local_symbol case, since a weakrefd is always promoted out of the local_symbol table when it is turned into a weak symbol. */ if (sym && ! noref) S_CLEAR_WEAKREFD (sym); return sym; } symbolS * symbol_find (const char *name) { return symbol_find_noref (name, 0); } symbolS * symbol_find_noref (const char *name, int noref) { symbolS * result; char * copy = NULL; #ifdef tc_canonicalize_symbol_name { copy = xstrdup (name); name = tc_canonicalize_symbol_name (copy); } #endif if (! symbols_case_sensitive) { const char *orig; char *copy2 = NULL; unsigned char c; orig = name; if (copy != NULL) copy2 = copy; name = copy = XNEWVEC (char, strlen (name) + 1); while ((c = *orig++) != '\0') *copy++ = TOUPPER (c); *copy = '\0'; free (copy2); copy = (char *) name; } result = symbol_find_exact_noref (name, noref); free (copy); return result; } /* Once upon a time, symbols were kept in a singly linked list. At least coff needs to be able to rearrange them from time to time, for which a doubly linked list is much more convenient. Loic did these as macros which seemed dangerous to me so they're now functions. xoxorich. */ /* Link symbol ADDME after symbol TARGET in the chain. */ void symbol_append (symbolS *addme, symbolS *target, symbolS **rootPP, symbolS **lastPP) { extern int symbol_table_frozen; if (symbol_table_frozen) abort (); if (addme->flags.local_symbol) abort (); if (target != NULL && target->flags.local_symbol) abort (); if (target == NULL) { know (*rootPP == NULL); know (*lastPP == NULL); addme->x->next = NULL; addme->x->previous = NULL; *rootPP = addme; *lastPP = addme; return; } /* if the list is empty */ if (target->x->next != NULL) { target->x->next->x->previous = addme; } else { know (*lastPP == target); *lastPP = addme; } /* if we have a next */ addme->x->next = target->x->next; target->x->next = addme; addme->x->previous = target; debug_verify_symchain (symbol_rootP, symbol_lastP); } /* Set the chain pointers of SYMBOL to null. */ void symbol_clear_list_pointers (symbolS *symbolP) { if (symbolP->flags.local_symbol) abort (); symbolP->x->next = NULL; symbolP->x->previous = NULL; } /* Remove SYMBOLP from the list. */ void symbol_remove (symbolS *symbolP, symbolS **rootPP, symbolS **lastPP) { if (symbolP->flags.local_symbol) abort (); if (symbolP == *rootPP) { *rootPP = symbolP->x->next; } /* if it was the root */ if (symbolP == *lastPP) { *lastPP = symbolP->x->previous; } /* if it was the tail */ if (symbolP->x->next != NULL) { symbolP->x->next->x->previous = symbolP->x->previous; } /* if not last */ if (symbolP->x->previous != NULL) { symbolP->x->previous->x->next = symbolP->x->next; } /* if not first */ debug_verify_symchain (*rootPP, *lastPP); } /* Link symbol ADDME before symbol TARGET in the chain. */ void symbol_insert (symbolS *addme, symbolS *target, symbolS **rootPP, symbolS **lastPP ATTRIBUTE_UNUSED) { extern int symbol_table_frozen; if (symbol_table_frozen) abort (); if (addme->flags.local_symbol) abort (); if (target->flags.local_symbol) abort (); if (target->x->previous != NULL) { target->x->previous->x->next = addme; } else { know (*rootPP == target); *rootPP = addme; } /* if not first */ addme->x->previous = target->x->previous; target->x->previous = addme; addme->x->next = target; debug_verify_symchain (*rootPP, *lastPP); } void verify_symbol_chain (symbolS *rootP, symbolS *lastP) { symbolS *symbolP = rootP; if (symbolP == NULL) return; for (; symbol_next (symbolP) != NULL; symbolP = symbol_next (symbolP)) { gas_assert (symbolP->bsym != NULL); gas_assert (symbolP->flags.local_symbol == 0); gas_assert (symbolP->x->next->x->previous == symbolP); } gas_assert (lastP == symbolP); } int symbol_on_chain (symbolS *s, symbolS *rootPP, symbolS *lastPP) { return (!s->flags.local_symbol && ((s->x->next != s && s->x->next != NULL && s->x->next->x->previous == s) || s == lastPP) && ((s->x->previous != s && s->x->previous != NULL && s->x->previous->x->next == s) || s == rootPP)); } #ifdef OBJ_COMPLEX_RELC static int use_complex_relocs_for (symbolS * symp) { switch (symp->x->value.X_op) { case O_constant: return 0; case O_multiply: case O_divide: case O_modulus: case O_left_shift: case O_right_shift: case O_bit_inclusive_or: case O_bit_or_not: case O_bit_exclusive_or: case O_bit_and: case O_add: case O_subtract: case O_eq: case O_ne: case O_lt: case O_le: case O_ge: case O_gt: case O_logical_and: case O_logical_or: if ((S_IS_COMMON (symp->x->value.X_op_symbol) || S_IS_LOCAL (symp->x->value.X_op_symbol)) && S_IS_DEFINED (symp->x->value.X_op_symbol) && S_GET_SEGMENT (symp->x->value.X_op_symbol) != expr_section) { case O_symbol: case O_symbol_rva: case O_uminus: case O_bit_not: case O_logical_not: if ((S_IS_COMMON (symp->x->value.X_add_symbol) || S_IS_LOCAL (symp->x->value.X_add_symbol)) && S_IS_DEFINED (symp->x->value.X_add_symbol) && S_GET_SEGMENT (symp->x->value.X_add_symbol) != expr_section) return 0; } break; default: break; } return 1; } #endif static void report_op_error (symbolS *symp, symbolS *left, operatorT op, symbolS *right) { const char *file; unsigned int line; segT seg_left = left ? S_GET_SEGMENT (left) : 0; segT seg_right = S_GET_SEGMENT (right); const char *opname; switch (op) { default: abort (); return; case O_uminus: opname = "-"; break; case O_bit_not: opname = "~"; break; case O_logical_not: opname = "!"; break; case O_multiply: opname = "*"; break; case O_divide: opname = "/"; break; case O_modulus: opname = "%"; break; case O_left_shift: opname = "<<"; break; case O_right_shift: opname = ">>"; break; case O_bit_inclusive_or: opname = "|"; break; case O_bit_or_not: opname = "|~"; break; case O_bit_exclusive_or: opname = "^"; break; case O_bit_and: opname = "&"; break; case O_add: opname = "+"; break; case O_subtract: opname = "-"; break; case O_eq: opname = "=="; break; case O_ne: opname = "!="; break; case O_lt: opname = "<"; break; case O_le: opname = "<="; break; case O_ge: opname = ">="; break; case O_gt: opname = ">"; break; case O_logical_and: opname = "&&"; break; case O_logical_or: opname = "||"; break; } if (expr_symbol_where (symp, &file, &line)) { if (left) as_bad_where (file, line, _("invalid operands (%s and %s sections) for `%s'"), seg_left->name, seg_right->name, opname); else as_bad_where (file, line, _("invalid operand (%s section) for `%s'"), seg_right->name, opname); } else { const char *sname = S_GET_NAME (symp); if (left) as_bad (_("invalid operands (%s and %s sections) for `%s' when setting `%s'"), seg_left->name, seg_right->name, opname, sname); else as_bad (_("invalid operand (%s section) for `%s' when setting `%s'"), seg_right->name, opname, sname); } } /* Resolve the value of a symbol. This is called during the final pass over the symbol table to resolve any symbols with complex values. */ valueT resolve_symbol_value (symbolS *symp) { int resolved; valueT final_val; segT final_seg; if (symp->flags.local_symbol) { struct local_symbol *locsym = (struct local_symbol *) symp; final_val = locsym->value; if (locsym->flags.resolved) return final_val; /* Symbols whose section has SEC_ELF_OCTETS set, resolve to octets instead of target bytes. */ if (locsym->section->flags & SEC_OCTETS) final_val += locsym->frag->fr_address; else final_val += locsym->frag->fr_address / OCTETS_PER_BYTE; if (finalize_syms) { locsym->value = final_val; locsym->flags.resolved = 1; } return final_val; } if (symp->flags.resolved) { final_val = 0; while (symp->x->value.X_op == O_symbol) { final_val += symp->x->value.X_add_number; symp = symp->x->value.X_add_symbol; if (symp->flags.local_symbol) { struct local_symbol *locsym = (struct local_symbol *) symp; final_val += locsym->value; return final_val; } if (!symp->flags.resolved) return 0; } if (symp->x->value.X_op == O_constant) final_val += symp->x->value.X_add_number; else final_val = 0; return final_val; } resolved = 0; final_seg = S_GET_SEGMENT (symp); if (symp->flags.resolving) { if (finalize_syms) as_bad (_("symbol definition loop encountered at `%s'"), S_GET_NAME (symp)); final_val = 0; resolved = 1; } #ifdef OBJ_COMPLEX_RELC else if (final_seg == expr_section && use_complex_relocs_for (symp)) { symbolS * relc_symbol = NULL; char * relc_symbol_name = NULL; relc_symbol_name = symbol_relc_make_expr (& symp->x->value); /* For debugging, print out conversion input & output. */ #ifdef DEBUG_SYMS print_expr (& symp->x->value); if (relc_symbol_name) fprintf (stderr, "-> relc symbol: %s\n", relc_symbol_name); #endif if (relc_symbol_name != NULL) relc_symbol = symbol_new (relc_symbol_name, undefined_section, &zero_address_frag, 0); if (relc_symbol == NULL) { as_bad (_("cannot convert expression symbol %s to complex relocation"), S_GET_NAME (symp)); resolved = 0; } else { symbol_table_insert (relc_symbol); /* S_CLEAR_EXTERNAL (relc_symbol); */ if (symp->bsym->flags & BSF_SRELC) relc_symbol->bsym->flags |= BSF_SRELC; else relc_symbol->bsym->flags |= BSF_RELC; /* symp->bsym->flags |= BSF_RELC; */ copy_symbol_attributes (symp, relc_symbol); symp->x->value.X_op = O_symbol; symp->x->value.X_add_symbol = relc_symbol; symp->x->value.X_add_number = 0; resolved = 1; } final_val = 0; final_seg = undefined_section; goto exit_dont_set_value; } #endif else { symbolS *add_symbol, *op_symbol; offsetT left, right; segT seg_left, seg_right; operatorT op; int move_seg_ok; symp->flags.resolving = 1; /* Help out with CSE. */ add_symbol = symp->x->value.X_add_symbol; op_symbol = symp->x->value.X_op_symbol; final_val = symp->x->value.X_add_number; op = symp->x->value.X_op; switch (op) { default: BAD_CASE (op); break; case O_absent: final_val = 0; /* Fall through. */ case O_constant: /* Symbols whose section has SEC_ELF_OCTETS set, resolve to octets instead of target bytes. */ if (symp->bsym->section->flags & SEC_OCTETS) final_val += symp->frag->fr_address; else final_val += symp->frag->fr_address / OCTETS_PER_BYTE; if (final_seg == expr_section) final_seg = absolute_section; /* Fall through. */ case O_register: resolved = 1; break; case O_symbol: case O_symbol_rva: left = resolve_symbol_value (add_symbol); seg_left = S_GET_SEGMENT (add_symbol); if (finalize_syms) symp->x->value.X_op_symbol = NULL; do_symbol: if (S_IS_WEAKREFR (symp)) { gas_assert (final_val == 0); if (S_IS_WEAKREFR (add_symbol)) { gas_assert (add_symbol->x->value.X_op == O_symbol && add_symbol->x->value.X_add_number == 0); add_symbol = add_symbol->x->value.X_add_symbol; gas_assert (! S_IS_WEAKREFR (add_symbol)); symp->x->value.X_add_symbol = add_symbol; } } if (symp->flags.mri_common) { /* This is a symbol inside an MRI common section. The relocation routines are going to handle it specially. Don't change the value. */ resolved = symbol_resolved_p (add_symbol); break; } /* Don't leave symbol loops. */ if (finalize_syms && !add_symbol->flags.local_symbol && add_symbol->flags.resolving) break; if (finalize_syms && final_val == 0) { if (add_symbol->flags.local_symbol) add_symbol = local_symbol_convert (add_symbol); copy_symbol_attributes (symp, add_symbol); } /* If we have equated this symbol to an undefined or common symbol, keep X_op set to O_symbol, and don't change X_add_number. This permits the routine which writes out relocation to detect this case, and convert the relocation to be against the symbol to which this symbol is equated. */ if (seg_left == undefined_section || bfd_is_com_section (seg_left) #if defined (OBJ_COFF) && defined (TE_PE) || S_IS_WEAK (add_symbol) #endif || (finalize_syms && ((final_seg == expr_section && seg_left != expr_section && seg_left != absolute_section) || symbol_shadow_p (symp)))) { if (finalize_syms) { symp->x->value.X_op = O_symbol; symp->x->value.X_add_symbol = add_symbol; symp->x->value.X_add_number = final_val; /* Use X_op_symbol as a flag. */ symp->x->value.X_op_symbol = add_symbol; } final_seg = seg_left; final_val += symp->frag->fr_address + left; resolved = symbol_resolved_p (add_symbol); symp->flags.resolving = 0; goto exit_dont_set_value; } else { final_val += symp->frag->fr_address + left; if (final_seg == expr_section || final_seg == undefined_section) final_seg = seg_left; } resolved = symbol_resolved_p (add_symbol); if (S_IS_WEAKREFR (symp)) { symp->flags.resolving = 0; goto exit_dont_set_value; } break; case O_uminus: case O_bit_not: case O_logical_not: left = resolve_symbol_value (add_symbol); seg_left = S_GET_SEGMENT (add_symbol); /* By reducing these to the relevant dyadic operator, we get !S -> S == 0 permitted on anything, -S -> 0 - S only permitted on absolute ~S -> S ^ ~0 only permitted on absolute */ if (op != O_logical_not && seg_left != absolute_section && finalize_syms) report_op_error (symp, NULL, op, add_symbol); if (final_seg == expr_section || final_seg == undefined_section) final_seg = absolute_section; if (op == O_uminus) left = -left; else if (op == O_logical_not) left = !left; else left = ~left; final_val += left + symp->frag->fr_address; resolved = symbol_resolved_p (add_symbol); break; case O_multiply: case O_divide: case O_modulus: case O_left_shift: case O_right_shift: case O_bit_inclusive_or: case O_bit_or_not: case O_bit_exclusive_or: case O_bit_and: case O_add: case O_subtract: case O_eq: case O_ne: case O_lt: case O_le: case O_ge: case O_gt: case O_logical_and: case O_logical_or: left = resolve_symbol_value (add_symbol); right = resolve_symbol_value (op_symbol); seg_left = S_GET_SEGMENT (add_symbol); seg_right = S_GET_SEGMENT (op_symbol); /* Simplify addition or subtraction of a constant by folding the constant into X_add_number. */ if (op == O_add) { if (seg_right == absolute_section) { final_val += right; goto do_symbol; } else if (seg_left == absolute_section) { final_val += left; add_symbol = op_symbol; left = right; seg_left = seg_right; goto do_symbol; } } else if (op == O_subtract) { if (seg_right == absolute_section) { final_val -= right; goto do_symbol; } } move_seg_ok = 1; /* Equality and non-equality tests are permitted on anything. Subtraction, and other comparison operators are permitted if both operands are in the same section. Otherwise, both operands must be absolute. We already handled the case of addition or subtraction of a constant above. This will probably need to be changed for an object file format which supports arbitrary expressions. */ if (!(seg_left == absolute_section && seg_right == absolute_section) && !(op == O_eq || op == O_ne) && !((op == O_subtract || op == O_lt || op == O_le || op == O_ge || op == O_gt) && seg_left == seg_right && (seg_left != undefined_section || add_symbol == op_symbol))) { /* Don't emit messages unless we're finalizing the symbol value, otherwise we may get the same message multiple times. */ if (finalize_syms) report_op_error (symp, add_symbol, op, op_symbol); /* However do not move the symbol into the absolute section if it cannot currently be resolved - this would confuse other parts of the assembler into believing that the expression had been evaluated to zero. */ else move_seg_ok = 0; } if (move_seg_ok && (final_seg == expr_section || final_seg == undefined_section)) final_seg = absolute_section; /* Check for division by zero. */ if ((op == O_divide || op == O_modulus) && right == 0) { /* If seg_right is not absolute_section, then we've already issued a warning about using a bad symbol. */ if (seg_right == absolute_section && finalize_syms) { const char *file; unsigned int line; if (expr_symbol_where (symp, &file, &line)) as_bad_where (file, line, _("division by zero")); else as_bad (_("division by zero when setting `%s'"), S_GET_NAME (symp)); } right = 1; } if ((op == O_left_shift || op == O_right_shift) && (valueT) right >= sizeof (valueT) * CHAR_BIT) { as_warn_value_out_of_range (_("shift count"), right, 0, sizeof (valueT) * CHAR_BIT - 1, NULL, 0); left = right = 0; } switch (symp->x->value.X_op) { case O_multiply: left *= right; break; case O_divide: left /= right; break; case O_modulus: left %= right; break; case O_left_shift: left = (valueT) left << (valueT) right; break; case O_right_shift: left = (valueT) left >> (valueT) right; break; case O_bit_inclusive_or: left |= right; break; case O_bit_or_not: left |= ~right; break; case O_bit_exclusive_or: left ^= right; break; case O_bit_and: left &= right; break; case O_add: left += right; break; case O_subtract: left -= right; break; case O_eq: case O_ne: left = (left == right && seg_left == seg_right && (seg_left != undefined_section || add_symbol == op_symbol) ? ~ (offsetT) 0 : 0); if (symp->x->value.X_op == O_ne) left = ~left; break; case O_lt: left = left < right ? ~ (offsetT) 0 : 0; break; case O_le: left = left <= right ? ~ (offsetT) 0 : 0; break; case O_ge: left = left >= right ? ~ (offsetT) 0 : 0; break; case O_gt: left = left > right ? ~ (offsetT) 0 : 0; break; case O_logical_and: left = left && right; break; case O_logical_or: left = left || right; break; case O_illegal: case O_absent: case O_constant: /* See PR 20895 for a reproducer. */ as_bad (_("Invalid operation on symbol")); goto exit_dont_set_value; default: abort (); } final_val += symp->frag->fr_address + left; if (final_seg == expr_section || final_seg == undefined_section) { if (seg_left == undefined_section || seg_right == undefined_section) final_seg = undefined_section; else if (seg_left == absolute_section) final_seg = seg_right; else final_seg = seg_left; } resolved = (symbol_resolved_p (add_symbol) && symbol_resolved_p (op_symbol)); break; case O_big: case O_illegal: /* Give an error (below) if not in expr_section. We don't want to worry about expr_section symbols, because they are fictional (they are created as part of expression resolution), and any problems may not actually mean anything. */ break; } symp->flags.resolving = 0; } if (finalize_syms) S_SET_VALUE (symp, final_val); exit_dont_set_value: /* Always set the segment, even if not finalizing the value. The segment is used to determine whether a symbol is defined. */ S_SET_SEGMENT (symp, final_seg); /* Don't worry if we can't resolve an expr_section symbol. */ if (finalize_syms) { if (resolved) symp->flags.resolved = 1; else if (S_GET_SEGMENT (symp) != expr_section) { as_bad (_("can't resolve value for symbol `%s'"), S_GET_NAME (symp)); symp->flags.resolved = 1; } } return final_val; } /* A static function passed to hash_traverse. */ static int resolve_local_symbol (void **slot, void *arg ATTRIBUTE_UNUSED) { symbol_entry_t *entry = *((symbol_entry_t **) slot); if (entry->sy.flags.local_symbol) resolve_symbol_value (&entry->sy); return 1; } /* Resolve all local symbols. */ void resolve_local_symbol_values (void) { htab_traverse (sy_hash, resolve_local_symbol, NULL); } /* Obtain the current value of a symbol without changing any sub-expressions used. */ int snapshot_symbol (symbolS **symbolPP, valueT *valueP, segT *segP, fragS **fragPP) { symbolS *symbolP = *symbolPP; if (symbolP->flags.local_symbol) { struct local_symbol *locsym = (struct local_symbol *) symbolP; *valueP = locsym->value; *segP = locsym->section; *fragPP = locsym->frag; } else { expressionS exp = symbolP->x->value; if (!symbolP->flags.resolved && exp.X_op != O_illegal) { int resolved; if (symbolP->flags.resolving) return 0; symbolP->flags.resolving = 1; resolved = resolve_expression (&exp); symbolP->flags.resolving = 0; if (!resolved) return 0; switch (exp.X_op) { case O_constant: case O_register: if (!symbol_equated_p (symbolP)) break; /* Fallthru. */ case O_symbol: case O_symbol_rva: symbolP = exp.X_add_symbol; break; default: return 0; } } *symbolPP = symbolP; /* A bogus input file can result in resolve_expression() generating a local symbol, so we have to check again. */ if (symbolP->flags.local_symbol) { struct local_symbol *locsym = (struct local_symbol *) symbolP; *valueP = locsym->value; *segP = locsym->section; *fragPP = locsym->frag; } else { *valueP = exp.X_add_number; *segP = symbolP->bsym->section; *fragPP = symbolP->frag; } if (*segP == expr_section) switch (exp.X_op) { case O_constant: *segP = absolute_section; break; case O_register: *segP = reg_section; break; default: break; } } return 1; } /* Dollar labels look like a number followed by a dollar sign. Eg, "42$". They are *really* local. That is, they go out of scope whenever we see a label that isn't local. Also, like fb labels, there can be multiple instances of a dollar label. Therefor, we name encode each instance with the instance number, keep a list of defined symbols separate from the real symbol table, and we treat these buggers as a sparse array. */ static long *dollar_labels; static long *dollar_label_instances; static char *dollar_label_defines; static size_t dollar_label_count; static size_t dollar_label_max; int dollar_label_defined (long label) { long *i; know ((dollar_labels != NULL) || (dollar_label_count == 0)); for (i = dollar_labels; i < dollar_labels + dollar_label_count; ++i) if (*i == label) return dollar_label_defines[i - dollar_labels]; /* If we get here, label isn't defined. */ return 0; } static long dollar_label_instance (long label) { long *i; know ((dollar_labels != NULL) || (dollar_label_count == 0)); for (i = dollar_labels; i < dollar_labels + dollar_label_count; ++i) if (*i == label) return (dollar_label_instances[i - dollar_labels]); /* If we get here, we haven't seen the label before. Therefore its instance count is zero. */ return 0; } void dollar_label_clear (void) { if (dollar_label_count) memset (dollar_label_defines, '\0', dollar_label_count); } #define DOLLAR_LABEL_BUMP_BY 10 void define_dollar_label (long label) { long *i; for (i = dollar_labels; i < dollar_labels + dollar_label_count; ++i) if (*i == label) { ++dollar_label_instances[i - dollar_labels]; dollar_label_defines[i - dollar_labels] = 1; return; } /* If we get to here, we don't have label listed yet. */ if (dollar_labels == NULL) { dollar_labels = XNEWVEC (long, DOLLAR_LABEL_BUMP_BY); dollar_label_instances = XNEWVEC (long, DOLLAR_LABEL_BUMP_BY); dollar_label_defines = XNEWVEC (char, DOLLAR_LABEL_BUMP_BY); dollar_label_max = DOLLAR_LABEL_BUMP_BY; dollar_label_count = 0; } else if (dollar_label_count == dollar_label_max) { dollar_label_max += DOLLAR_LABEL_BUMP_BY; dollar_labels = XRESIZEVEC (long, dollar_labels, dollar_label_max); dollar_label_instances = XRESIZEVEC (long, dollar_label_instances, dollar_label_max); dollar_label_defines = XRESIZEVEC (char, dollar_label_defines, dollar_label_max); } /* if we needed to grow */ dollar_labels[dollar_label_count] = label; dollar_label_instances[dollar_label_count] = 1; dollar_label_defines[dollar_label_count] = 1; ++dollar_label_count; } /* Caller must copy returned name: we re-use the area for the next name. The mth occurrence of label n: is turned into the symbol "Ln^Am" where n is the label number and m is the instance number. "L" makes it a label discarded unless debugging and "^A"('\1') ensures no ordinary symbol SHOULD get the same name as a local label symbol. The first "4:" is "L4^A1" - the m numbers begin at 1. fb labels get the same treatment, except that ^B is used in place of ^A. */ char * /* Return local label name. */ dollar_label_name (long n, /* we just saw "n$:" : n a number. */ int augend /* 0 for current instance, 1 for new instance. */) { long i; /* Returned to caller, then copied. Used for created names ("4f"). */ static char symbol_name_build[24]; char *p; char *q; char symbol_name_temporary[20]; /* Build up a number, BACKWARDS. */ know (n >= 0); know (augend == 0 || augend == 1); p = symbol_name_build; #ifdef LOCAL_LABEL_PREFIX *p++ = LOCAL_LABEL_PREFIX; #endif *p++ = 'L'; /* Next code just does sprintf( {}, "%d", n); */ /* Label number. */ q = symbol_name_temporary; for (*q++ = 0, i = n; i; ++q) { *q = i % 10 + '0'; i /= 10; } while ((*p = *--q) != '\0') ++p; *p++ = DOLLAR_LABEL_CHAR; /* ^A */ /* Instance number. */ q = symbol_name_temporary; for (*q++ = 0, i = dollar_label_instance (n) + augend; i; ++q) { *q = i % 10 + '0'; i /= 10; } while ((*p++ = *--q) != '\0'); /* The label, as a '\0' ended string, starts at symbol_name_build. */ return symbol_name_build; } /* Somebody else's idea of local labels. They are made by "n:" where n is any decimal digit. Refer to them with "nb" for previous (backward) n: or "nf" for next (forward) n:. We do a little better and let n be any number, not just a single digit, but since the other guy's assembler only does ten, we treat the first ten specially. Like someone else's assembler, we have one set of local label counters for entire assembly, not one set per (sub)segment like in most assemblers. This implies that one can refer to a label in another segment, and indeed some crufty compilers have done just that. Since there could be a LOT of these things, treat them as a sparse array. */ #define FB_LABEL_SPECIAL (10) static long fb_low_counter[FB_LABEL_SPECIAL]; static long *fb_labels; static long *fb_label_instances; static long fb_label_count; static long fb_label_max; /* This must be more than FB_LABEL_SPECIAL. */ #define FB_LABEL_BUMP_BY (FB_LABEL_SPECIAL + 6) static void fb_label_init (void) { memset ((void *) fb_low_counter, '\0', sizeof (fb_low_counter)); } /* Add one to the instance number of this fb label. */ void fb_label_instance_inc (long label) { long *i; if ((unsigned long) label < FB_LABEL_SPECIAL) { ++fb_low_counter[label]; return; } if (fb_labels != NULL) { for (i = fb_labels + FB_LABEL_SPECIAL; i < fb_labels + fb_label_count; ++i) { if (*i == label) { ++fb_label_instances[i - fb_labels]; return; } /* if we find it */ } /* for each existing label */ } /* If we get to here, we don't have label listed yet. */ if (fb_labels == NULL) { fb_labels = XNEWVEC (long, FB_LABEL_BUMP_BY); fb_label_instances = XNEWVEC (long, FB_LABEL_BUMP_BY); fb_label_max = FB_LABEL_BUMP_BY; fb_label_count = FB_LABEL_SPECIAL; } else if (fb_label_count == fb_label_max) { fb_label_max += FB_LABEL_BUMP_BY; fb_labels = XRESIZEVEC (long, fb_labels, fb_label_max); fb_label_instances = XRESIZEVEC (long, fb_label_instances, fb_label_max); } /* if we needed to grow */ fb_labels[fb_label_count] = label; fb_label_instances[fb_label_count] = 1; ++fb_label_count; } static long fb_label_instance (long label) { long *i; if ((unsigned long) label < FB_LABEL_SPECIAL) { return (fb_low_counter[label]); } if (fb_labels != NULL) { for (i = fb_labels + FB_LABEL_SPECIAL; i < fb_labels + fb_label_count; ++i) { if (*i == label) { return (fb_label_instances[i - fb_labels]); } /* if we find it */ } /* for each existing label */ } /* We didn't find the label, so this must be a reference to the first instance. */ return 0; } /* Caller must copy returned name: we re-use the area for the next name. The mth occurrence of label n: is turned into the symbol "Ln^Bm" where n is the label number and m is the instance number. "L" makes it a label discarded unless debugging and "^B"('\2') ensures no ordinary symbol SHOULD get the same name as a local label symbol. The first "4:" is "L4^B1" - the m numbers begin at 1. dollar labels get the same treatment, except that ^A is used in place of ^B. */ char * /* Return local label name. */ fb_label_name (long n, /* We just saw "n:", "nf" or "nb" : n a number. */ long augend /* 0 for nb, 1 for n:, nf. */) { long i; /* Returned to caller, then copied. Used for created names ("4f"). */ static char symbol_name_build[24]; char *p; char *q; char symbol_name_temporary[20]; /* Build up a number, BACKWARDS. */ know (n >= 0); #ifdef TC_MMIX know ((unsigned long) augend <= 2 /* See mmix_fb_label. */); #else know ((unsigned long) augend <= 1); #endif p = symbol_name_build; #ifdef LOCAL_LABEL_PREFIX *p++ = LOCAL_LABEL_PREFIX; #endif *p++ = 'L'; /* Next code just does sprintf( {}, "%d", n); */ /* Label number. */ q = symbol_name_temporary; for (*q++ = 0, i = n; i; ++q) { *q = i % 10 + '0'; i /= 10; } while ((*p = *--q) != '\0') ++p; *p++ = LOCAL_LABEL_CHAR; /* ^B */ /* Instance number. */ q = symbol_name_temporary; for (*q++ = 0, i = fb_label_instance (n) + augend; i; ++q) { *q = i % 10 + '0'; i /= 10; } while ((*p++ = *--q) != '\0'); /* The label, as a '\0' ended string, starts at symbol_name_build. */ return (symbol_name_build); } /* Decode name that may have been generated by foo_label_name() above. If the name wasn't generated by foo_label_name(), then return it unaltered. This is used for error messages. */ char * decode_local_label_name (char *s) { char *p; char *symbol_decode; int label_number; int instance_number; const char *type; const char *message_format; int lindex = 0; #ifdef LOCAL_LABEL_PREFIX if (s[lindex] == LOCAL_LABEL_PREFIX) ++lindex; #endif if (s[lindex] != 'L') return s; for (label_number = 0, p = s + lindex + 1; ISDIGIT (*p); ++p) label_number = (10 * label_number) + *p - '0'; if (*p == DOLLAR_LABEL_CHAR) type = "dollar"; else if (*p == LOCAL_LABEL_CHAR) type = "fb"; else return s; for (instance_number = 0, p++; ISDIGIT (*p); ++p) instance_number = (10 * instance_number) + *p - '0'; message_format = _("\"%d\" (instance number %d of a %s label)"); symbol_decode = (char *) obstack_alloc (¬es, strlen (message_format) + 30); sprintf (symbol_decode, message_format, label_number, instance_number, type); return symbol_decode; } /* Get the value of a symbol. */ valueT S_GET_VALUE (symbolS *s) { if (s->flags.local_symbol) return resolve_symbol_value (s); if (!s->flags.resolved) { valueT val = resolve_symbol_value (s); if (!finalize_syms) return val; } if (S_IS_WEAKREFR (s)) return S_GET_VALUE (s->x->value.X_add_symbol); if (s->x->value.X_op != O_constant) { if (! s->flags.resolved || s->x->value.X_op != O_symbol || (S_IS_DEFINED (s) && ! S_IS_COMMON (s))) as_bad (_("attempt to get value of unresolved symbol `%s'"), S_GET_NAME (s)); } return (valueT) s->x->value.X_add_number; } /* Set the value of a symbol. */ void S_SET_VALUE (symbolS *s, valueT val) { if (s->flags.local_symbol) { ((struct local_symbol *) s)->value = val; return; } s->x->value.X_op = O_constant; s->x->value.X_add_number = (offsetT) val; s->x->value.X_unsigned = 0; S_CLEAR_WEAKREFR (s); } void copy_symbol_attributes (symbolS *dest, symbolS *src) { if (dest->flags.local_symbol) dest = local_symbol_convert (dest); if (src->flags.local_symbol) src = local_symbol_convert (src); /* In an expression, transfer the settings of these flags. The user can override later, of course. */ #define COPIED_SYMFLAGS (BSF_FUNCTION | BSF_OBJECT \ | BSF_GNU_INDIRECT_FUNCTION) dest->bsym->flags |= src->bsym->flags & COPIED_SYMFLAGS; #ifdef OBJ_COPY_SYMBOL_ATTRIBUTES OBJ_COPY_SYMBOL_ATTRIBUTES (dest, src); #endif #ifdef TC_COPY_SYMBOL_ATTRIBUTES TC_COPY_SYMBOL_ATTRIBUTES (dest, src); #endif } int S_IS_FUNCTION (symbolS *s) { flagword flags; if (s->flags.local_symbol) return 0; flags = s->bsym->flags; return (flags & BSF_FUNCTION) != 0; } int S_IS_EXTERNAL (symbolS *s) { flagword flags; if (s->flags.local_symbol) return 0; flags = s->bsym->flags; /* Sanity check. */ if ((flags & BSF_LOCAL) && (flags & BSF_GLOBAL)) abort (); return (flags & BSF_GLOBAL) != 0; } int S_IS_WEAK (symbolS *s) { if (s->flags.local_symbol) return 0; /* Conceptually, a weakrefr is weak if the referenced symbol is. We could probably handle a WEAKREFR as always weak though. E.g., if the referenced symbol has lost its weak status, there's no reason to keep handling the weakrefr as if it was weak. */ if (S_IS_WEAKREFR (s)) return S_IS_WEAK (s->x->value.X_add_symbol); return (s->bsym->flags & BSF_WEAK) != 0; } int S_IS_WEAKREFR (symbolS *s) { if (s->flags.local_symbol) return 0; return s->flags.weakrefr != 0; } int S_IS_WEAKREFD (symbolS *s) { if (s->flags.local_symbol) return 0; return s->flags.weakrefd != 0; } int S_IS_COMMON (symbolS *s) { if (s->flags.local_symbol) return 0; return bfd_is_com_section (s->bsym->section); } int S_IS_DEFINED (symbolS *s) { if (s->flags.local_symbol) return ((struct local_symbol *) s)->section != undefined_section; return s->bsym->section != undefined_section; } #ifndef EXTERN_FORCE_RELOC #define EXTERN_FORCE_RELOC IS_ELF #endif /* Return true for symbols that should not be reduced to section symbols or eliminated from expressions, because they may be overridden by the linker. */ int S_FORCE_RELOC (symbolS *s, int strict) { segT sec; if (s->flags.local_symbol) sec = ((struct local_symbol *) s)->section; else { if ((strict && ((s->bsym->flags & BSF_WEAK) != 0 || (EXTERN_FORCE_RELOC && (s->bsym->flags & BSF_GLOBAL) != 0))) || (s->bsym->flags & BSF_GNU_INDIRECT_FUNCTION) != 0) return TRUE; sec = s->bsym->section; } return bfd_is_und_section (sec) || bfd_is_com_section (sec); } int S_IS_DEBUG (symbolS *s) { if (s->flags.local_symbol) return 0; if (s->bsym->flags & BSF_DEBUGGING) return 1; return 0; } int S_IS_LOCAL (symbolS *s) { flagword flags; const char *name; if (s->flags.local_symbol) return 1; flags = s->bsym->flags; /* Sanity check. */ if ((flags & BSF_LOCAL) && (flags & BSF_GLOBAL)) abort (); if (bfd_asymbol_section (s->bsym) == reg_section) return 1; if (flag_strip_local_absolute /* Keep BSF_FILE symbols in order to allow debuggers to identify the source file even when the object file is stripped. */ && (flags & (BSF_GLOBAL | BSF_FILE)) == 0 && bfd_asymbol_section (s->bsym) == absolute_section) return 1; name = S_GET_NAME (s); return (name != NULL && ! S_IS_DEBUG (s) && (strchr (name, DOLLAR_LABEL_CHAR) || strchr (name, LOCAL_LABEL_CHAR) #if FAKE_LABEL_CHAR != DOLLAR_LABEL_CHAR || strchr (name, FAKE_LABEL_CHAR) #endif || TC_LABEL_IS_LOCAL (name) || (! flag_keep_locals && (bfd_is_local_label (stdoutput, s->bsym) || (flag_mri && name[0] == '?' && name[1] == '?'))))); } int S_IS_STABD (symbolS *s) { return S_GET_NAME (s) == 0; } int S_CAN_BE_REDEFINED (const symbolS *s) { if (s->flags.local_symbol) return (((struct local_symbol *) s)->frag == &predefined_address_frag); /* Permit register names to be redefined. */ return s->bsym->section == reg_section; } int S_IS_VOLATILE (const symbolS *s) { if (s->flags.local_symbol) return 0; return s->flags.volatil; } int S_IS_FORWARD_REF (const symbolS *s) { if (s->flags.local_symbol) return 0; return s->flags.forward_ref; } const char * S_GET_NAME (symbolS *s) { return s->name; } segT S_GET_SEGMENT (symbolS *s) { if (s->flags.local_symbol) return ((struct local_symbol *) s)->section; return s->bsym->section; } void S_SET_SEGMENT (symbolS *s, segT seg) { if (s->flags.local_symbol) { ((struct local_symbol *) s)->section = seg; return; } /* Don't reassign section symbols. The direct reason is to prevent seg faults assigning back to const global symbols such as *ABS*, but it shouldn't happen anyway. */ if (s->bsym->flags & BSF_SECTION_SYM) { if (s->bsym->section != seg) abort (); } else s->bsym->section = seg; } void S_SET_EXTERNAL (symbolS *s) { if (s->flags.local_symbol) s = local_symbol_convert (s); if ((s->bsym->flags & BSF_WEAK) != 0) { /* Let .weak override .global. */ return; } if (s->bsym->flags & BSF_SECTION_SYM) { /* Do not reassign section symbols. */ as_warn (_("section symbols are already global")); return; } #ifndef TC_GLOBAL_REGISTER_SYMBOL_OK if (S_GET_SEGMENT (s) == reg_section) { as_bad ("can't make register symbol `%s' global", S_GET_NAME (s)); return; } #endif s->bsym->flags |= BSF_GLOBAL; s->bsym->flags &= ~(BSF_LOCAL | BSF_WEAK); #ifdef TE_PE if (! an_external_name && S_GET_NAME(s)[0] != '.') an_external_name = S_GET_NAME (s); #endif } void S_CLEAR_EXTERNAL (symbolS *s) { if (s->flags.local_symbol) return; if ((s->bsym->flags & BSF_WEAK) != 0) { /* Let .weak override. */ return; } s->bsym->flags |= BSF_LOCAL; s->bsym->flags &= ~(BSF_GLOBAL | BSF_WEAK); } void S_SET_WEAK (symbolS *s) { if (s->flags.local_symbol) s = local_symbol_convert (s); #ifdef obj_set_weak_hook obj_set_weak_hook (s); #endif s->bsym->flags |= BSF_WEAK; s->bsym->flags &= ~(BSF_GLOBAL | BSF_LOCAL); } void S_SET_WEAKREFR (symbolS *s) { if (s->flags.local_symbol) s = local_symbol_convert (s); s->flags.weakrefr = 1; /* If the alias was already used, make sure we mark the target as used as well, otherwise it might be dropped from the symbol table. This may have unintended side effects if the alias is later redirected to another symbol, such as keeping the unused previous target in the symbol table. Since it will be weak, it's not a big deal. */ if (s->flags.used) symbol_mark_used (s->x->value.X_add_symbol); } void S_CLEAR_WEAKREFR (symbolS *s) { if (s->flags.local_symbol) return; s->flags.weakrefr = 0; } void S_SET_WEAKREFD (symbolS *s) { if (s->flags.local_symbol) s = local_symbol_convert (s); s->flags.weakrefd = 1; S_SET_WEAK (s); } void S_CLEAR_WEAKREFD (symbolS *s) { if (s->flags.local_symbol) return; if (s->flags.weakrefd) { s->flags.weakrefd = 0; /* If a weakref target symbol is weak, then it was never referenced directly before, not even in a .global directive, so decay it to local. If it remains undefined, it will be later turned into a global, like any other undefined symbol. */ if (s->bsym->flags & BSF_WEAK) { #ifdef obj_clear_weak_hook obj_clear_weak_hook (s); #endif s->bsym->flags &= ~BSF_WEAK; s->bsym->flags |= BSF_LOCAL; } } } void S_SET_THREAD_LOCAL (symbolS *s) { if (s->flags.local_symbol) s = local_symbol_convert (s); if (bfd_is_com_section (s->bsym->section) && (s->bsym->flags & BSF_THREAD_LOCAL) != 0) return; s->bsym->flags |= BSF_THREAD_LOCAL; if ((s->bsym->flags & BSF_FUNCTION) != 0) as_bad (_("Accessing function `%s' as thread-local object"), S_GET_NAME (s)); else if (! bfd_is_und_section (s->bsym->section) && (s->bsym->section->flags & SEC_THREAD_LOCAL) == 0) as_bad (_("Accessing `%s' as thread-local object"), S_GET_NAME (s)); } void S_SET_NAME (symbolS *s, const char *name) { s->name = name; if (s->flags.local_symbol) return; s->bsym->name = name; } void S_SET_VOLATILE (symbolS *s) { if (s->flags.local_symbol) s = local_symbol_convert (s); s->flags.volatil = 1; } void S_CLEAR_VOLATILE (symbolS *s) { if (!s->flags.local_symbol) s->flags.volatil = 0; } void S_SET_FORWARD_REF (symbolS *s) { if (s->flags.local_symbol) s = local_symbol_convert (s); s->flags.forward_ref = 1; } /* Return the previous symbol in a chain. */ symbolS * symbol_previous (symbolS *s) { if (s->flags.local_symbol) abort (); return s->x->previous; } /* Return the next symbol in a chain. */ symbolS * symbol_next (symbolS *s) { if (s->flags.local_symbol) abort (); return s->x->next; } /* Return a pointer to the value of a symbol as an expression. */ expressionS * symbol_get_value_expression (symbolS *s) { if (s->flags.local_symbol) s = local_symbol_convert (s); return &s->x->value; } /* Set the value of a symbol to an expression. */ void symbol_set_value_expression (symbolS *s, const expressionS *exp) { if (s->flags.local_symbol) s = local_symbol_convert (s); s->x->value = *exp; S_CLEAR_WEAKREFR (s); } /* Return whether 2 symbols are the same. */ int symbol_same_p (symbolS *s1, symbolS *s2) { return s1 == s2; } /* Return a pointer to the X_add_number component of a symbol. */ offsetT * symbol_X_add_number (symbolS *s) { if (s->flags.local_symbol) return (offsetT *) &((struct local_symbol *) s)->value; return &s->x->value.X_add_number; } /* Set the value of SYM to the current position in the current segment. */ void symbol_set_value_now (symbolS *sym) { S_SET_SEGMENT (sym, now_seg); S_SET_VALUE (sym, frag_now_fix ()); symbol_set_frag (sym, frag_now); } /* Set the frag of a symbol. */ void symbol_set_frag (symbolS *s, fragS *f) { if (s->flags.local_symbol) { ((struct local_symbol *) s)->frag = f; return; } s->frag = f; S_CLEAR_WEAKREFR (s); } /* Return the frag of a symbol. */ fragS * symbol_get_frag (symbolS *s) { if (s->flags.local_symbol) return ((struct local_symbol *) s)->frag; return s->frag; } /* Mark a symbol as having been used. */ void symbol_mark_used (symbolS *s) { if (s->flags.local_symbol) return; s->flags.used = 1; if (S_IS_WEAKREFR (s)) symbol_mark_used (s->x->value.X_add_symbol); } /* Clear the mark of whether a symbol has been used. */ void symbol_clear_used (symbolS *s) { if (s->flags.local_symbol) s = local_symbol_convert (s); s->flags.used = 0; } /* Return whether a symbol has been used. */ int symbol_used_p (symbolS *s) { if (s->flags.local_symbol) return 1; return s->flags.used; } /* Mark a symbol as having been used in a reloc. */ void symbol_mark_used_in_reloc (symbolS *s) { if (s->flags.local_symbol) s = local_symbol_convert (s); s->flags.used_in_reloc = 1; } /* Clear the mark of whether a symbol has been used in a reloc. */ void symbol_clear_used_in_reloc (symbolS *s) { if (s->flags.local_symbol) return; s->flags.used_in_reloc = 0; } /* Return whether a symbol has been used in a reloc. */ int symbol_used_in_reloc_p (symbolS *s) { if (s->flags.local_symbol) return 0; return s->flags.used_in_reloc; } /* Mark a symbol as an MRI common symbol. */ void symbol_mark_mri_common (symbolS *s) { if (s->flags.local_symbol) s = local_symbol_convert (s); s->flags.mri_common = 1; } /* Clear the mark of whether a symbol is an MRI common symbol. */ void symbol_clear_mri_common (symbolS *s) { if (s->flags.local_symbol) return; s->flags.mri_common = 0; } /* Return whether a symbol is an MRI common symbol. */ int symbol_mri_common_p (symbolS *s) { if (s->flags.local_symbol) return 0; return s->flags.mri_common; } /* Mark a symbol as having been written. */ void symbol_mark_written (symbolS *s) { if (s->flags.local_symbol) return; s->flags.written = 1; } /* Clear the mark of whether a symbol has been written. */ void symbol_clear_written (symbolS *s) { if (s->flags.local_symbol) return; s->flags.written = 0; } /* Return whether a symbol has been written. */ int symbol_written_p (symbolS *s) { if (s->flags.local_symbol) return 0; return s->flags.written; } /* Mark a symbol has having been resolved. */ void symbol_mark_resolved (symbolS *s) { s->flags.resolved = 1; } /* Return whether a symbol has been resolved. */ int symbol_resolved_p (symbolS *s) { return s->flags.resolved; } /* Return whether a symbol is a section symbol. */ int symbol_section_p (symbolS *s) { if (s->flags.local_symbol) return 0; return (s->bsym->flags & BSF_SECTION_SYM) != 0; } /* Return whether a symbol is equated to another symbol. */ int symbol_equated_p (symbolS *s) { if (s->flags.local_symbol) return 0; return s->x->value.X_op == O_symbol; } /* Return whether a symbol is equated to another symbol, and should be treated specially when writing out relocs. */ int symbol_equated_reloc_p (symbolS *s) { if (s->flags.local_symbol) return 0; /* X_op_symbol, normally not used for O_symbol, is set by resolve_symbol_value to flag expression syms that have been equated. */ return (s->x->value.X_op == O_symbol #if defined (OBJ_COFF) && defined (TE_PE) && ! S_IS_WEAK (s) #endif && ((s->flags.resolved && s->x->value.X_op_symbol != NULL) || ! S_IS_DEFINED (s) || S_IS_COMMON (s))); } /* Return whether a symbol has a constant value. */ int symbol_constant_p (symbolS *s) { if (s->flags.local_symbol) return 1; return s->x->value.X_op == O_constant; } /* Return whether a symbol was cloned and thus removed from the global symbol list. */ int symbol_shadow_p (symbolS *s) { if (s->flags.local_symbol) return 0; return s->x->next == s; } /* If S is a struct symbol return S, otherwise return NULL. */ symbolS * symbol_symbolS (symbolS *s) { if (s->flags.local_symbol) return NULL; return s; } /* Return the BFD symbol for a symbol. */ asymbol * symbol_get_bfdsym (symbolS *s) { if (s->flags.local_symbol) s = local_symbol_convert (s); return s->bsym; } /* Set the BFD symbol for a symbol. */ void symbol_set_bfdsym (symbolS *s, asymbol *bsym) { if (s->flags.local_symbol) s = local_symbol_convert (s); /* Usually, it is harmless to reset a symbol to a BFD section symbol. For example, obj_elf_change_section sets the BFD symbol of an old symbol with the newly created section symbol. But when we have multiple sections with the same name, the newly created section may have the same name as an old section. We check if the old symbol has been already marked as a section symbol before resetting it. */ if ((s->bsym->flags & BSF_SECTION_SYM) == 0) s->bsym = bsym; /* else XXX - What do we do now ? */ } #ifdef OBJ_SYMFIELD_TYPE /* Get a pointer to the object format information for a symbol. */ OBJ_SYMFIELD_TYPE * symbol_get_obj (symbolS *s) { if (s->flags.local_symbol) s = local_symbol_convert (s); return &s->x->obj; } /* Set the object format information for a symbol. */ void symbol_set_obj (symbolS *s, OBJ_SYMFIELD_TYPE *o) { if (s->flags.local_symbol) s = local_symbol_convert (s); s->x->obj = *o; } #endif /* OBJ_SYMFIELD_TYPE */ #ifdef TC_SYMFIELD_TYPE /* Get a pointer to the processor information for a symbol. */ TC_SYMFIELD_TYPE * symbol_get_tc (symbolS *s) { if (s->flags.local_symbol) s = local_symbol_convert (s); return &s->x->tc; } /* Set the processor information for a symbol. */ void symbol_set_tc (symbolS *s, TC_SYMFIELD_TYPE *o) { if (s->flags.local_symbol) s = local_symbol_convert (s); s->x->tc = *o; } #endif /* TC_SYMFIELD_TYPE */ void symbol_begin (void) { symbol_lastP = NULL; symbol_rootP = NULL; /* In case we have 0 symbols (!!) */ sy_hash = htab_create_alloc (16, hash_symbol_entry, eq_symbol_entry, NULL, xcalloc, free); #if defined (EMIT_SECTION_SYMBOLS) || !defined (RELOC_REQUIRES_SYMBOL) abs_symbol.bsym = bfd_abs_section_ptr->symbol; #endif abs_symbol.x = &abs_symbol_x; abs_symbol.x->value.X_op = O_constant; abs_symbol.frag = &zero_address_frag; if (LOCAL_LABELS_FB) fb_label_init (); } void dot_symbol_init (void) { dot_symbol.name = "."; dot_symbol.flags.forward_ref = 1; dot_symbol.bsym = bfd_make_empty_symbol (stdoutput); if (dot_symbol.bsym == NULL) as_fatal ("bfd_make_empty_symbol: %s", bfd_errmsg (bfd_get_error ())); dot_symbol.bsym->name = "."; dot_symbol.x = &dot_symbol_x; dot_symbol.x->value.X_op = O_constant; } int indent_level; /* Maximum indent level. Available for modification inside a gdb session. */ static int max_indent_level = 8; void print_symbol_value_1 (FILE *file, symbolS *sym) { const char *name = S_GET_NAME (sym); if (!name || !name[0]) name = "(unnamed)"; fprintf (file, "sym "); fprintf_vma (file, (bfd_vma) ((bfd_hostptr_t) sym)); fprintf (file, " %s", name); if (sym->flags.local_symbol) { struct local_symbol *locsym = (struct local_symbol *) sym; if (locsym->frag != &zero_address_frag && locsym->frag != NULL) { fprintf (file, " frag "); fprintf_vma (file, (bfd_vma) ((bfd_hostptr_t) locsym->frag)); } if (locsym->flags.resolved) fprintf (file, " resolved"); fprintf (file, " local"); } else { if (sym->frag != &zero_address_frag) { fprintf (file, " frag "); fprintf_vma (file, (bfd_vma) ((bfd_hostptr_t) sym->frag)); } if (sym->flags.written) fprintf (file, " written"); if (sym->flags.resolved) fprintf (file, " resolved"); else if (sym->flags.resolving) fprintf (file, " resolving"); if (sym->flags.used_in_reloc) fprintf (file, " used-in-reloc"); if (sym->flags.used) fprintf (file, " used"); if (S_IS_LOCAL (sym)) fprintf (file, " local"); if (S_IS_EXTERNAL (sym)) fprintf (file, " extern"); if (S_IS_WEAK (sym)) fprintf (file, " weak"); if (S_IS_DEBUG (sym)) fprintf (file, " debug"); if (S_IS_DEFINED (sym)) fprintf (file, " defined"); } if (S_IS_WEAKREFR (sym)) fprintf (file, " weakrefr"); if (S_IS_WEAKREFD (sym)) fprintf (file, " weakrefd"); fprintf (file, " %s", segment_name (S_GET_SEGMENT (sym))); if (symbol_resolved_p (sym)) { segT s = S_GET_SEGMENT (sym); if (s != undefined_section && s != expr_section) fprintf (file, " %lx", (unsigned long) S_GET_VALUE (sym)); } else if (indent_level < max_indent_level && S_GET_SEGMENT (sym) != undefined_section) { indent_level++; fprintf (file, "\n%*s<", indent_level * 4, ""); if (sym->flags.local_symbol) fprintf (file, "constant %lx", (unsigned long) ((struct local_symbol *) sym)->value); else print_expr_1 (file, &sym->x->value); fprintf (file, ">"); indent_level--; } fflush (file); } void print_symbol_value (symbolS *sym) { indent_level = 0; print_symbol_value_1 (stderr, sym); fprintf (stderr, "\n"); } static void print_binary (FILE *file, const char *name, expressionS *exp) { indent_level++; fprintf (file, "%s\n%*s<", name, indent_level * 4, ""); print_symbol_value_1 (file, exp->X_add_symbol); fprintf (file, ">\n%*s<", indent_level * 4, ""); print_symbol_value_1 (file, exp->X_op_symbol); fprintf (file, ">"); indent_level--; } void print_expr_1 (FILE *file, expressionS *exp) { fprintf (file, "expr "); fprintf_vma (file, (bfd_vma) ((bfd_hostptr_t) exp)); fprintf (file, " "); switch (exp->X_op) { case O_illegal: fprintf (file, "illegal"); break; case O_absent: fprintf (file, "absent"); break; case O_constant: fprintf (file, "constant %lx", (unsigned long) exp->X_add_number); break; case O_symbol: indent_level++; fprintf (file, "symbol\n%*s<", indent_level * 4, ""); print_symbol_value_1 (file, exp->X_add_symbol); fprintf (file, ">"); maybe_print_addnum: if (exp->X_add_number) fprintf (file, "\n%*s%lx", indent_level * 4, "", (unsigned long) exp->X_add_number); indent_level--; break; case O_register: fprintf (file, "register #%d", (int) exp->X_add_number); break; case O_big: fprintf (file, "big"); break; case O_uminus: fprintf (file, "uminus -<"); indent_level++; print_symbol_value_1 (file, exp->X_add_symbol); fprintf (file, ">"); goto maybe_print_addnum; case O_bit_not: fprintf (file, "bit_not"); break; case O_multiply: print_binary (file, "multiply", exp); break; case O_divide: print_binary (file, "divide", exp); break; case O_modulus: print_binary (file, "modulus", exp); break; case O_left_shift: print_binary (file, "lshift", exp); break; case O_right_shift: print_binary (file, "rshift", exp); break; case O_bit_inclusive_or: print_binary (file, "bit_ior", exp); break; case O_bit_exclusive_or: print_binary (file, "bit_xor", exp); break; case O_bit_and: print_binary (file, "bit_and", exp); break; case O_eq: print_binary (file, "eq", exp); break; case O_ne: print_binary (file, "ne", exp); break; case O_lt: print_binary (file, "lt", exp); break; case O_le: print_binary (file, "le", exp); break; case O_ge: print_binary (file, "ge", exp); break; case O_gt: print_binary (file, "gt", exp); break; case O_logical_and: print_binary (file, "logical_and", exp); break; case O_logical_or: print_binary (file, "logical_or", exp); break; case O_add: indent_level++; fprintf (file, "add\n%*s<", indent_level * 4, ""); print_symbol_value_1 (file, exp->X_add_symbol); fprintf (file, ">\n%*s<", indent_level * 4, ""); print_symbol_value_1 (file, exp->X_op_symbol); fprintf (file, ">"); goto maybe_print_addnum; case O_subtract: indent_level++; fprintf (file, "subtract\n%*s<", indent_level * 4, ""); print_symbol_value_1 (file, exp->X_add_symbol); fprintf (file, ">\n%*s<", indent_level * 4, ""); print_symbol_value_1 (file, exp->X_op_symbol); fprintf (file, ">"); goto maybe_print_addnum; default: fprintf (file, "{unknown opcode %d}", (int) exp->X_op); break; } fflush (stdout); } void print_expr (expressionS *exp) { print_expr_1 (stderr, exp); fprintf (stderr, "\n"); } void symbol_print_statistics (FILE *file) { htab_print_statistics (file, "symbol table", sy_hash); fprintf (file, "%lu mini local symbols created, %lu converted\n", local_symbol_count, local_symbol_conversion_count); } #ifdef OBJ_COMPLEX_RELC /* Convert given symbol to a new complex-relocation symbol name. This may be a recursive function, since it might be called for non-leaf nodes (plain symbols) in the expression tree. The caller owns the returning string, so should free it eventually. Errors are indicated via as_bad and a NULL return value. The given symbol is marked with used_in_reloc. */ char * symbol_relc_make_sym (symbolS * sym) { char * terminal = NULL; const char * sname; char typetag; int sname_len; gas_assert (sym != NULL); /* Recurse to symbol_relc_make_expr if this symbol is defined as an expression or a plain value. */ if ( S_GET_SEGMENT (sym) == expr_section || S_GET_SEGMENT (sym) == absolute_section) return symbol_relc_make_expr (symbol_get_value_expression (sym)); /* This may be a "fake symbol", referring to ".". Write out a special null symbol to refer to this position. */ if (! strcmp (S_GET_NAME (sym), FAKE_LABEL_NAME)) return xstrdup ("."); /* We hope this is a plain leaf symbol. Construct the encoding as {S,s}II...:CCCCCCC.... where 'S'/'s' means section symbol / plain symbol III is decimal for the symbol name length CCC is the symbol name itself. */ symbol_mark_used_in_reloc (sym); sname = S_GET_NAME (sym); sname_len = strlen (sname); typetag = symbol_section_p (sym) ? 'S' : 's'; terminal = XNEWVEC (char, (1 /* S or s */ + 8 /* sname_len in decimal */ + 1 /* _ spacer */ + sname_len /* name itself */ + 1 /* \0 */ )); sprintf (terminal, "%c%d:%s", typetag, sname_len, sname); return terminal; } /* Convert given value to a new complex-relocation symbol name. This is a non-recursive function, since it is be called for leaf nodes (plain values) in the expression tree. The caller owns the returning string, so should free() it eventually. No errors. */ char * symbol_relc_make_value (offsetT val) { char * terminal = XNEWVEC (char, 28); /* Enough for long long. */ terminal[0] = '#'; bfd_sprintf_vma (stdoutput, terminal + 1, val); return terminal; } /* Convert given expression to a new complex-relocation symbol name. This is a recursive function, since it traverses the entire given expression tree. The caller owns the returning string, so should free() it eventually. Errors are indicated via as_bad() and a NULL return value. */ char * symbol_relc_make_expr (expressionS * exp) { const char * opstr = NULL; /* Operator prefix string. */ int arity = 0; /* Arity of this operator. */ char * operands[3]; /* Up to three operands. */ char * concat_string = NULL; operands[0] = operands[1] = operands[2] = NULL; gas_assert (exp != NULL); /* Match known operators -> fill in opstr, arity, operands[] and fall through to construct subexpression fragments; may instead return string directly for leaf nodes. */ /* See expr.h for the meaning of all these enums. Many operators have an unnatural arity (X_add_number implicitly added). The conversion logic expands them to explicit "+" subexpressions. */ switch (exp->X_op) { default: as_bad ("Unknown expression operator (enum %d)", exp->X_op); break; /* Leaf nodes. */ case O_constant: return symbol_relc_make_value (exp->X_add_number); case O_symbol: if (exp->X_add_number) { arity = 2; opstr = "+"; operands[0] = symbol_relc_make_sym (exp->X_add_symbol); operands[1] = symbol_relc_make_value (exp->X_add_number); break; } else return symbol_relc_make_sym (exp->X_add_symbol); /* Helper macros for nesting nodes. */ #define HANDLE_XADD_OPT1(str_) \ if (exp->X_add_number) \ { \ arity = 2; \ opstr = "+:" str_; \ operands[0] = symbol_relc_make_sym (exp->X_add_symbol); \ operands[1] = symbol_relc_make_value (exp->X_add_number); \ break; \ } \ else \ { \ arity = 1; \ opstr = str_; \ operands[0] = symbol_relc_make_sym (exp->X_add_symbol); \ } \ break #define HANDLE_XADD_OPT2(str_) \ if (exp->X_add_number) \ { \ arity = 3; \ opstr = "+:" str_; \ operands[0] = symbol_relc_make_sym (exp->X_add_symbol); \ operands[1] = symbol_relc_make_sym (exp->X_op_symbol); \ operands[2] = symbol_relc_make_value (exp->X_add_number); \ } \ else \ { \ arity = 2; \ opstr = str_; \ operands[0] = symbol_relc_make_sym (exp->X_add_symbol); \ operands[1] = symbol_relc_make_sym (exp->X_op_symbol); \ } \ break /* Nesting nodes. */ case O_uminus: HANDLE_XADD_OPT1 ("0-"); case O_bit_not: HANDLE_XADD_OPT1 ("~"); case O_logical_not: HANDLE_XADD_OPT1 ("!"); case O_multiply: HANDLE_XADD_OPT2 ("*"); case O_divide: HANDLE_XADD_OPT2 ("/"); case O_modulus: HANDLE_XADD_OPT2 ("%"); case O_left_shift: HANDLE_XADD_OPT2 ("<<"); case O_right_shift: HANDLE_XADD_OPT2 (">>"); case O_bit_inclusive_or: HANDLE_XADD_OPT2 ("|"); case O_bit_exclusive_or: HANDLE_XADD_OPT2 ("^"); case O_bit_and: HANDLE_XADD_OPT2 ("&"); case O_add: HANDLE_XADD_OPT2 ("+"); case O_subtract: HANDLE_XADD_OPT2 ("-"); case O_eq: HANDLE_XADD_OPT2 ("=="); case O_ne: HANDLE_XADD_OPT2 ("!="); case O_lt: HANDLE_XADD_OPT2 ("<"); case O_le: HANDLE_XADD_OPT2 ("<="); case O_ge: HANDLE_XADD_OPT2 (">="); case O_gt: HANDLE_XADD_OPT2 (">"); case O_logical_and: HANDLE_XADD_OPT2 ("&&"); case O_logical_or: HANDLE_XADD_OPT2 ("||"); } /* Validate & reject early. */ if (arity >= 1 && ((operands[0] == NULL) || (strlen (operands[0]) == 0))) opstr = NULL; if (arity >= 2 && ((operands[1] == NULL) || (strlen (operands[1]) == 0))) opstr = NULL; if (arity >= 3 && ((operands[2] == NULL) || (strlen (operands[2]) == 0))) opstr = NULL; if (opstr == NULL) concat_string = NULL; else if (arity == 0) concat_string = xstrdup (opstr); else if (arity == 1) concat_string = concat (opstr, ":", operands[0], (char *) NULL); else if (arity == 2) concat_string = concat (opstr, ":", operands[0], ":", operands[1], (char *) NULL); else concat_string = concat (opstr, ":", operands[0], ":", operands[1], ":", operands[2], (char *) NULL); /* Free operand strings (not opstr). */ if (arity >= 1) xfree (operands[0]); if (arity >= 2) xfree (operands[1]); if (arity >= 3) xfree (operands[2]); return concat_string; } #endif