@c Copyright (C) 2013-2019 Free Software Foundation, Inc. @c This is part of the GAS manual. @c For copying conditions, see the file as.texinfo. @c man end @ifset GENERIC @page @node NDS32-Dependent @chapter NDS32 Dependent Features @end ifset @ifclear GENERIC @node Machine Dependencies @chapter NDS32 Dependent Features @end ifclear @cindex NDS32 processor The NDS32 processors family includes high-performance and low-power 32-bit processors for high-end to low-end. @sc{gnu} @code{@value{AS}} for NDS32 architectures supports NDS32 ISA version 3. For detail about NDS32 instruction set, please see the AndeStar ISA User Manual which is available at http://www.andestech.com/en/index/index.htm @menu * NDS32 Options:: Assembler options * NDS32 Syntax:: High-level assembly macros @end menu @node NDS32 Options @section NDS32 Options @cindex NDS32 options @cindex options for NDS32 The NDS32 configurations of @sc{gnu} @code{@value{AS}} support these special options: @c man begin OPTIONS @table @code @item -O1 Optimize for performance. @item -Os Optimize for space. @item -EL Produce little endian data output. @item -EB Produce little endian data output. @item -mpic Generate PIC. @item -mno-fp-as-gp-relax Suppress fp-as-gp relaxation for this file. @item -mb2bb-relax Back-to-back branch optimization. @item -mno-all-relax Suppress all relaxation for this file. @item -march=<arch name> Assemble for architecture <arch name> which could be v3, v3j, v3m, v3f, v3s, v2, v2j, v2f, v2s. @item -mbaseline=<baseline> Assemble for baseline <baseline> which could be v2, v3, v3m. @item -mfpu-freg=@var{FREG} Specify a FPU configuration. @table @code @item 0 8 SP / 4 DP registers @item 1 16 SP / 8 DP registers @item 2 32 SP / 16 DP registers @item 3 32 SP / 32 DP registers @end table @item -mabi=@var{abi} Specify a abi version <abi> could be v1, v2, v2fp, v2fpp. @item -m[no-]mac Enable/Disable Multiply instructions support. @item -m[no-]div Enable/Disable Divide instructions support. @item -m[no-]16bit-ext Enable/Disable 16-bit extension @item -m[no-]dx-regs Enable/Disable d0/d1 registers @item -m[no-]perf-ext Enable/Disable Performance extension @item -m[no-]perf2-ext Enable/Disable Performance extension 2 @item -m[no-]string-ext Enable/Disable String extension @item -m[no-]reduced-regs Enable/Disable Reduced Register configuration (GPR16) option @item -m[no-]audio-isa-ext Enable/Disable AUDIO ISA extension @item -m[no-]fpu-sp-ext Enable/Disable FPU SP extension @item -m[no-]fpu-dp-ext Enable/Disable FPU DP extension @item -m[no-]fpu-fma Enable/Disable FPU fused-multiply-add instructions @item -mall-ext Turn on all extensions and instructions support @end table @c man end @node NDS32 Syntax @section Syntax @menu * NDS32-Chars:: Special Characters * NDS32-Regs:: Register Names * NDS32-Ops:: Pseudo Instructions @end menu @node NDS32-Chars @subsection Special Characters Use @samp{#} at column 1 and @samp{!} anywhere in the line except inside quotes. Multiple instructions in a line are allowed though not recommended and should be separated by @samp{;}. Assembler is not case-sensitive in general except user defined label. For example, @samp{jral F1} is different from @samp{jral f1} while it is the same as @samp{JRAL F1}. @node NDS32-Regs @subsection Register Names @table @code @item General purpose registers (GPR) There are 32 32-bit general purpose registers $r0 to $r31. @item Accumulators d0 and d1 64-bit accumulators: $d0.hi, $d0.lo, $d1.hi, and $d1.lo. @item Assembler reserved register $ta Register $ta ($r15) is reserved for assembler using. @item Operating system reserved registers $p0 and $p1 Registers $p0 ($r26) and $p1 ($r27) are used by operating system as scratch registers. @item Frame pointer $fp Register $r28 is regarded as the frame pointer. @item Global pointer Register $r29 is regarded as the global pointer. @item Link pointer Register $r30 is regarded as the link pointer. @item Stack pointer Register $r31 is regarded as the stack pointer. @end table @node NDS32-Ops @subsection Pseudo Instructions @table @code @item li rt5,imm32 load 32-bit integer into register rt5. @samp{sethi rt5,hi20(imm32)} and then @samp{ori rt5,reg,lo12(imm32)}. @item la rt5,var Load 32-bit address of var into register rt5. @samp{sethi rt5,hi20(var)} and then @samp{ori reg,rt5,lo12(var)} @item l.[bhw] rt5,var Load value of var into register rt5. @samp{sethi $ta,hi20(var)} and then @samp{l[bhw]i rt5,[$ta+lo12(var)]} @item l.[bh]s rt5,var Load value of var into register rt5. @samp{sethi $ta,hi20(var)} and then @samp{l[bh]si rt5,[$ta+lo12(var)]} @item l.[bhw]p rt5,var,inc Load value of var into register rt5 and increment $ta by amount inc. @samp{la $ta,var} and then @samp{l[bhw]i.bi rt5,[$ta],inc} @item l.[bhw]pc rt5,inc Continue loading value of var into register rt5 and increment $ta by amount inc. @samp{l[bhw]i.bi rt5,[$ta],inc.} @item l.[bh]sp rt5,var,inc Load value of var into register rt5 and increment $ta by amount inc. @samp{la $ta,var} and then @samp{l[bh]si.bi rt5,[$ta],inc} @item l.[bh]spc rt5,inc Continue loading value of var into register rt5 and increment $ta by amount inc. @samp{l[bh]si.bi rt5,[$ta],inc.} @item s.[bhw] rt5,var Store register rt5 to var. @samp{sethi $ta,hi20(var)} and then @samp{s[bhw]i rt5,[$ta+lo12(var)]} @item s.[bhw]p rt5,var,inc Store register rt5 to var and increment $ta by amount inc. @samp{la $ta,var} and then @samp{s[bhw]i.bi rt5,[$ta],inc} @item s.[bhw]pc rt5,inc Continue storing register rt5 to var and increment $ta by amount inc. @samp{s[bhw]i.bi rt5,[$ta],inc.} @item not rt5,ra5 Alias of @samp{nor rt5,ra5,ra5}. @item neg rt5,ra5 Alias of @samp{subri rt5,ra5,0}. @item br rb5 Depending on how it is assembled, it is translated into @samp{r5 rb5} or @samp{jr rb5}. @item b label Branch to label depending on how it is assembled, it is translated into @samp{j8 label}, @samp{j label}, or "@samp{la $ta,label} @samp{br $ta}". @item bral rb5 Alias of jral br5 depending on how it is assembled, it is translated into @samp{jral5 rb5} or @samp{jral rb5}. @item bal fname Alias of jal fname depending on how it is assembled, it is translated into @samp{jal fname} or "@samp{la $ta,fname} @samp{bral $ta}". @item call fname Call function fname same as @samp{jal fname}. @item move rt5,ra5 For 16-bit, this is @samp{mov55 rt5,ra5}. For no 16-bit, this is @samp{ori rt5,ra5,0}. @item move rt5,var This is the same as @samp{l.w rt5,var}. @item move rt5,imm32 This is the same as @samp{li rt5,imm32}. @item pushm ra5,rb5 Push contents of registers from ra5 to rb5 into stack. @item push ra5 Push content of register ra5 into stack. (same @samp{pushm ra5,ra5}). @item push.d var Push value of double-word variable var into stack. @item push.w var Push value of word variable var into stack. @item push.h var Push value of half-word variable var into stack. @item push.b var Push value of byte variable var into stack. @item pusha var Push 32-bit address of variable var into stack. @item pushi imm32 Push 32-bit immediate value into stack. @item popm ra5,rb5 Pop top of stack values into registers ra5 to rb5. @item pop rt5 Pop top of stack value into register. (same as @samp{popm rt5,rt5}.) @item pop.d var,ra5 Pop value of double-word variable var from stack using register ra5 as 2nd scratch register. (1st is $ta) @item pop.w var,ra5 Pop value of word variable var from stack using register ra5. @item pop.h var,ra5 Pop value of half-word variable var from stack using register ra5. @item pop.b var,ra5 Pop value of byte variable var from stack using register ra5. @end table