@c Copyright 2006, 2007, 2008, 2009, 2011 @c Free Software Foundation, Inc. @c This is part of the GAS manual. @c For copying conditions, see the file as.texinfo. @ifset GENERIC @page @node AVR-Dependent @chapter AVR Dependent Features @end ifset @ifclear GENERIC @node Machine Dependencies @chapter AVR Dependent Features @end ifclear @cindex AVR support @menu * AVR Options:: Options * AVR Syntax:: Syntax * AVR Opcodes:: Opcodes @end menu @node AVR Options @section Options @cindex AVR options (none) @cindex options for AVR (none) @table @code @cindex @code{-mmcu=} command line option, AVR @item -mmcu=@var{mcu} Specify ATMEL AVR instruction set or MCU type. Instruction set avr1 is for the minimal AVR core, not supported by the C compiler, only for assembler programs (MCU types: at90s1200, attiny11, attiny12, attiny15, attiny28). Instruction set avr2 (default) is for the classic AVR core with up to 8K program memory space (MCU types: at90s2313, at90s2323, at90s2333, at90s2343, attiny22, attiny26, at90s4414, at90s4433, at90s4434, at90s8515, at90c8534, at90s8535). Instruction set avr25 is for the classic AVR core with up to 8K program memory space plus the MOVW instruction (MCU types: attiny13, attiny13a, attiny2313, attiny2313a, attiny24, attiny24a, attiny4313, attiny44, attiny44a, attiny84, attiny84a, attiny25, attiny45, attiny85, attiny261, attiny261a, attiny461, attiny461a, attiny861, attiny861a, attiny87, attiny43u, attiny48, attiny88, at86rf401, ata6289). Instruction set avr3 is for the classic AVR core with up to 128K program memory space (MCU types: at43usb355, at76c711). Instruction set avr31 is for the classic AVR core with exactly 128K program memory space (MCU types: atmega103, at43usb320). Instruction set avr35 is for classic AVR core plus MOVW, CALL, and JMP instructions (MCU types: attiny167, at90usb82, at90usb162, atmega8u2, atmega16u2, atmega32u2). Instruction set avr4 is for the enhanced AVR core with up to 8K program memory space (MCU types: atmega48, atmega48a, atmega48p, atmega8, atmega88, atmega88a, atmega88p, atmega88pa, atmega8515, atmega8535, atmega8hva, at90pwm1, at90pwm2, at90pwm2b, at90pwm3, at90pwm3b, at90pwm81). Instruction set avr5 is for the enhanced AVR core with up to 128K program memory space (MCU types: atmega16, atmega16a, atmega161, atmega162, atmega163, atmega164a, atmega164p, atmega165, atmega165a, atmega165p, atmega168, atmega168a, atmega168p, atmega169, atmega169a, atmega169p, atmega169pa, atmega32, atmega323, atmega324a, atmega324p, atmega325, atmega325a, atmega325p, atmega3250, atmega3250a, atmega3250p, atmega328, atmega328p, atmega329, atmega329a, atmega329p, atmega329pa, atmega3290, atmega3290a, atmega3290p, atmega406, atmega64, atmega640, atmega644, atmega644a, atmega644p, atmega644pa, atmega645, atmega645a, atmega645p, atmega6450, atmega6450a, atmega6450p, atmega649, atmega649a, atmega649p, atmega6490, atmega6490a, atmega6490p, atmega16hva, atmega16hva2, atmega16hvb, atmega32hvb, atmega64hve, at90can32, at90can64, at90pwm216, at90pwm316, atmega32c1, atmega64c1, atmega16m1, atmega32m1, atmega64m1, atmega16u4, atmega32u4, atmega32u6, at90usb646, at90usb647, at94k, at90scr100). Instruction set avr51 is for the enhanced AVR core with exactly 128K program memory space (MCU types: atmega128, atmega1280, atmega1281, atmega1284p, atmega128rfa1, at90can128, at90usb1286, at90usb1287, m3000). Instruction set avr6 is for the enhanced AVR core with a 3-byte PC (MCU types: atmega2560, atmega2561). Instruction set avrxmega2 is for the XMEGA AVR core with 8K to 64K program memory space and less than 64K data space (MCU types: atxmega16a4, atxmega16d4, atxmega16x1, atxmega32a4, atxmega32d4, atxmega32x1). Instruction set avrxmega3 is for the XMEGA AVR core with 8K to 64K program memory space and greater than 64K data space (MCU types: none). Instruction set avrxmega4 is for the XMEGA AVR core with up to 64K program memory space and less than 64K data space (MCU types: atxmega64a3, atxmega64d3). Instruction set avrxmega5 is for the XMEGA AVR core with up to 64K program memory space and greater than 64K data space (MCU types: atxmega64a1, atxmega64a1u). Instruction set avrxmega6 is for the XMEGA AVR core with up to 256K program memory space and less than 64K data space (MCU types: atxmega128a3, atxmega128d3, atxmega192a3, atxmega128b1, atxmega192d3, atxmega256a3, atxmega256a3b, atxmega256a3bu, atxmega192d3). Instruction set avrxmega7 is for the XMEGA AVR core with up to 256K program memory space and greater than 64K data space (MCU types: atxmega128a1, atxmega128a1u). @cindex @code{-mall-opcodes} command line option, AVR @item -mall-opcodes Accept all AVR opcodes, even if not supported by @code{-mmcu}. @cindex @code{-mno-skip-bug} command line option, AVR @item -mno-skip-bug This option disable warnings for skipping two-word instructions. @cindex @code{-mno-wrap} command line option, AVR @item -mno-wrap This option reject @code{rjmp/rcall} instructions with 8K wrap-around. @end table @node AVR Syntax @section Syntax @menu * AVR-Chars:: Special Characters * AVR-Regs:: Register Names * AVR-Modifiers:: Relocatable Expression Modifiers @end menu @node AVR-Chars @subsection Special Characters @cindex line comment character, AVR @cindex AVR line comment character The presence of a @samp{;} anywhere on a line indicates the start of a comment that extends to the end of that line. If a @samp{#} appears as the first character of a line, the whole line is treated as a comment, but in this case the line can also be a logical line number directive (@pxref{Comments}) or a preprocessor control command (@pxref{Preprocessing}). @cindex line separator, AVR @cindex statement separator, AVR @cindex AVR line separator The @samp{$} character can be used instead of a newline to separate statements. @node AVR-Regs @subsection Register Names @cindex AVR register names @cindex register names, AVR The AVR has 32 x 8-bit general purpose working registers @samp{r0}, @samp{r1}, ... @samp{r31}. Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing. One of the these address pointers can also be used as an address pointer for look up tables in Flash program memory. These added function registers are the 16-bit @samp{X}, @samp{Y} and @samp{Z} - registers. @smallexample X = @r{r26:r27} Y = @r{r28:r29} Z = @r{r30:r31} @end smallexample @node AVR-Modifiers @subsection Relocatable Expression Modifiers @cindex AVR modifiers @cindex syntax, AVR The assembler supports several modifiers when using relocatable addresses in AVR instruction operands. The general syntax is the following: @smallexample modifier(relocatable-expression) @end smallexample @table @code @cindex symbol modifiers @item lo8 This modifier allows you to use bits 0 through 7 of an address expression as 8 bit relocatable expression. @item hi8 This modifier allows you to use bits 7 through 15 of an address expression as 8 bit relocatable expression. This is useful with, for example, the AVR @samp{ldi} instruction and @samp{lo8} modifier. For example @smallexample ldi r26, lo8(sym+10) ldi r27, hi8(sym+10) @end smallexample @item hh8 This modifier allows you to use bits 16 through 23 of an address expression as 8 bit relocatable expression. Also, can be useful for loading 32 bit constants. @item hlo8 Synonym of @samp{hh8}. @item hhi8 This modifier allows you to use bits 24 through 31 of an expression as 8 bit expression. This is useful with, for example, the AVR @samp{ldi} instruction and @samp{lo8}, @samp{hi8}, @samp{hlo8}, @samp{hhi8}, modifier. For example @smallexample ldi r26, lo8(285774925) ldi r27, hi8(285774925) ldi r28, hlo8(285774925) ldi r29, hhi8(285774925) ; r29,r28,r27,r26 = 285774925 @end smallexample @item pm_lo8 This modifier allows you to use bits 0 through 7 of an address expression as 8 bit relocatable expression. This modifier useful for addressing data or code from Flash/Program memory. The using of @samp{pm_lo8} similar to @samp{lo8}. @item pm_hi8 This modifier allows you to use bits 8 through 15 of an address expression as 8 bit relocatable expression. This modifier useful for addressing data or code from Flash/Program memory. @item pm_hh8 This modifier allows you to use bits 15 through 23 of an address expression as 8 bit relocatable expression. This modifier useful for addressing data or code from Flash/Program memory. @end table @node AVR Opcodes @section Opcodes @cindex AVR opcode summary @cindex opcode summary, AVR @cindex mnemonics, AVR @cindex instruction summary, AVR For detailed information on the AVR machine instruction set, see @url{www.atmel.com/products/AVR}. @code{@value{AS}} implements all the standard AVR opcodes. The following table summarizes the AVR opcodes, and their arguments. @smallexample @i{Legend:} r @r{any register} d @r{`ldi' register (r16-r31)} v @r{`movw' even register (r0, r2, ..., r28, r30)} a @r{`fmul' register (r16-r23)} w @r{`adiw' register (r24,r26,r28,r30)} e @r{pointer registers (X,Y,Z)} b @r{base pointer register and displacement ([YZ]+disp)} z @r{Z pointer register (for [e]lpm Rd,Z[+])} M @r{immediate value from 0 to 255} n @r{immediate value from 0 to 255 ( n = ~M ). Relocation impossible} s @r{immediate value from 0 to 7} P @r{Port address value from 0 to 63. (in, out)} p @r{Port address value from 0 to 31. (cbi, sbi, sbic, sbis)} K @r{immediate value from 0 to 63 (used in `adiw', `sbiw')} i @r{immediate value} l @r{signed pc relative offset from -64 to 63} L @r{signed pc relative offset from -2048 to 2047} h @r{absolute code address (call, jmp)} S @r{immediate value from 0 to 7 (S = s << 4)} ? @r{use this opcode entry if no parameters, else use next opcode entry} 1001010010001000 clc 1001010011011000 clh 1001010011111000 cli 1001010010101000 cln 1001010011001000 cls 1001010011101000 clt 1001010010111000 clv 1001010010011000 clz 1001010000001000 sec 1001010001011000 seh 1001010001111000 sei 1001010000101000 sen 1001010001001000 ses 1001010001101000 set 1001010000111000 sev 1001010000011000 sez 100101001SSS1000 bclr S 100101000SSS1000 bset S 1001010100001001 icall 1001010000001001 ijmp 1001010111001000 lpm ? 1001000ddddd010+ lpm r,z 1001010111011000 elpm ? 1001000ddddd011+ elpm r,z 0000000000000000 nop 1001010100001000 ret 1001010100011000 reti 1001010110001000 sleep 1001010110011000 break 1001010110101000 wdr 1001010111101000 spm 000111rdddddrrrr adc r,r 000011rdddddrrrr add r,r 001000rdddddrrrr and r,r 000101rdddddrrrr cp r,r 000001rdddddrrrr cpc r,r 000100rdddddrrrr cpse r,r 001001rdddddrrrr eor r,r 001011rdddddrrrr mov r,r 100111rdddddrrrr mul r,r 001010rdddddrrrr or r,r 000010rdddddrrrr sbc r,r 000110rdddddrrrr sub r,r 001001rdddddrrrr clr r 000011rdddddrrrr lsl r 000111rdddddrrrr rol r 001000rdddddrrrr tst r 0111KKKKddddKKKK andi d,M 0111KKKKddddKKKK cbr d,n 1110KKKKddddKKKK ldi d,M 11101111dddd1111 ser d 0110KKKKddddKKKK ori d,M 0110KKKKddddKKKK sbr d,M 0011KKKKddddKKKK cpi d,M 0100KKKKddddKKKK sbci d,M 0101KKKKddddKKKK subi d,M 1111110rrrrr0sss sbrc r,s 1111111rrrrr0sss sbrs r,s 1111100ddddd0sss bld r,s 1111101ddddd0sss bst r,s 10110PPdddddPPPP in r,P 10111PPrrrrrPPPP out P,r 10010110KKddKKKK adiw w,K 10010111KKddKKKK sbiw w,K 10011000pppppsss cbi p,s 10011010pppppsss sbi p,s 10011001pppppsss sbic p,s 10011011pppppsss sbis p,s 111101lllllll000 brcc l 111100lllllll000 brcs l 111100lllllll001 breq l 111101lllllll100 brge l 111101lllllll101 brhc l 111100lllllll101 brhs l 111101lllllll111 brid l 111100lllllll111 brie l 111100lllllll000 brlo l 111100lllllll100 brlt l 111100lllllll010 brmi l 111101lllllll001 brne l 111101lllllll010 brpl l 111101lllllll000 brsh l 111101lllllll110 brtc l 111100lllllll110 brts l 111101lllllll011 brvc l 111100lllllll011 brvs l 111101lllllllsss brbc s,l 111100lllllllsss brbs s,l 1101LLLLLLLLLLLL rcall L 1100LLLLLLLLLLLL rjmp L 1001010hhhhh111h call h 1001010hhhhh110h jmp h 1001010rrrrr0101 asr r 1001010rrrrr0000 com r 1001010rrrrr1010 dec r 1001010rrrrr0011 inc r 1001010rrrrr0110 lsr r 1001010rrrrr0001 neg r 1001000rrrrr1111 pop r 1001001rrrrr1111 push r 1001010rrrrr0111 ror r 1001010rrrrr0010 swap r 00000001ddddrrrr movw v,v 00000010ddddrrrr muls d,d 000000110ddd0rrr mulsu a,a 000000110ddd1rrr fmul a,a 000000111ddd0rrr fmuls a,a 000000111ddd1rrr fmulsu a,a 1001001ddddd0000 sts i,r 1001000ddddd0000 lds r,i 10o0oo0dddddbooo ldd r,b 100!000dddddee-+ ld r,e 10o0oo1rrrrrbooo std b,r 100!001rrrrree-+ st e,r 1001010100011001 eicall 1001010000011001 eijmp @end smallexample