\input texinfo @c @tex @c \special{twoside} @c @end tex @setfilename as @synindex ky cp @ifinfo This file documents the GNU Assembler "as". Copyright (C) 1991 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. @ignore Permission is granted to process this file through Tex and print the results, provided the printed document carries copying permission notice identical to this one except for the removal of this paragraph (this paragraph not being relevant to the printed manual). @end ignore Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that the section entitled ``GNU General Public License'' is included exactly as in the original, and provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that the section entitled ``GNU General Public License'' may be included in a translation approved by the author instead of in the original English. @end ifinfo @setchapternewpage odd @settitle as (680x0) @titlepage @title{as} @subtitle{The GNU Assembler} @c if m680x0 @subtitle{(Motorola 680x0 version)} @c fi m680x0 @sp 1 @subtitle January 1991 @sp 13 The Free Software Foundation Inc. thanks The Nice Computer Company of Australia for loaning Dean Elsner to write the first (Vax) version of @code{as} for Project GNU. The proprietors, management and staff of TNCCA thank FSF for distracting the boss while they got some work done. @sp 3 @author{Dean Elsner, Jay Fenlason & friends} @author{revised by Roland Pesch for Cygnus Support} @c pesch@cygnus.com @page @tex \def\$#1${{#1}} % Kluge: collect RCS revision info without $...$ \xdef\manvers{\$Revision$} % For use in headers, footers too {\parskip=0pt \hfill Cygnus Support\par \hfill \manvers\par \hfill \TeX{}info \texinfoversion\par } @end tex @vskip 0pt plus 1filll Copyright @copyright{} 1991 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that the section entitled ``GNU General Public License'' is included exactly as in the original, and provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that the section entitled ``GNU General Public License'' may be included in a translation approved by the author instead of in the original English. @end titlepage @page @node top, Syntax, top, top @chapter Overview @menu * Syntax:: The (machine independent) syntax that assembly language files must follow. The machine dependent syntax can be found in the machine dependent section of the manual for the machine that you are using. * Segments:: How to use segments and subsegments, and how the assembler and linker will relocate things. * Symbols:: How to set up and manipulate symbols. * Expressions:: And how the assembler deals with them. * Pseudo Ops:: The assorted machine directives that tell the assembler exactly what to do with its input. * Machine Dependent:: Information specific to each machine. @ignore @c pesch@cygnus.com---see comments at nodes ignored * Maintenance:: Keeping the assembler running. * Retargeting:: Teaching the assembler about new machines. @end ignore * License:: The GNU General Public License gives you permission to redistribute GNU "as" on certain terms; and also explains that there is no warranty. @end menu This manual is a user guide to the GNU assembler @code{as}. @c pesch@cygnus.com: @c The following should be conditional on machine config @c if 680x0 This version of the manual describes @code{as} configured to generate code for Motorola 680x0 architectures. @c fi 680x0 @section Command-line Synopsis @example as [ -f ] [ -k ] [ -L ] [ -o @var{objfile} ] [ -R ] [ -v ] [ -w ] @c if 680x0 [ -l ] [ -mc68000 | -mc68010 | -mc68020 ] @c fi 680x0 [ -- | @var{files} @dots{} ] @end example @table @code @item -f ``fast''---skip preprocessing (assume source is compiler output) @item -k Issue warnings when difference tables altered for long displacements @item -L Keep (in symbol table) local symbols, starting with @samp{L} @item -o @var{objfile} Name the object-file output from @code{as} @item -R Fold data segment into text segment @item -W Supress warning messages @c if 680x0 @item -l Shorten references to undefined symbols, to one word instead of two @item -mc68000 | -mc68010 | -mc68020 Specify what processor in the 68000 family is the target (default 68020) @c fi 680x0 @item -- | @var{files} @dots{} Source files to assemble, or standard input @end table @section Structure of this Manual This document is intended to describe what you need to know to use GNU @code{as}. We cover the syntax expected in source files, including notation for symbols, constants, and expressions; the directives that @code{as} understands; and of course how to invoke @code{as}. @c if 680x0 We also cover special features in the 68000 configuration of @code{as}, including pseudo-operations. @c fi 680x0 @ignore This document also describes some of the machine-dependent features of various flavors of the assembler. This document also describes how the assembler works internally, and provides some information that may be useful to people attempting to port the assembler to another machine. @end ignore On the other hand, this manual is @emph{not} intended as an introduction to assembly language programming---let alone programming in general! In a similar vein, we make no attempt to introduce the machine architecture; we do @emph{not} describe the instruction set, standard mnemonics, registers or addressing modes that are standard to a particular architecture. You may want to consult the manufacturer's machine-architecture manual for this information. @c I think this is premature---pesch@cygnus.com, 17jan1991 @ignore Throughout this document, we assume that you are running @dfn{GNU}, the portable operating system from the @dfn{Free Software Foundation, Inc.}. This restricts our attention to certain kinds of computer (in particular, the kinds of computers that GNU can run on); once this assumption is granted examples and definitions need less qualification. @code{as} is part of a team of programs that turn a high-level human-readable series of instructions into a low-level computer-readable series of instructions. Different versions of @code{as} are used for different kinds of computer. In particular, at the moment, @code{as} only works for the DEC Vax, the Motorola 680x0, the Intel 80386, the Sparc, and the National Semiconductor 32032/32532. @end ignore @section Terminology @ignore @c if all-architectures GNU and @code{as} assume the computer that will run the programs it assembles will obey these rules. A (memory) @dfn{address} is 32 bits. The lowest address is zero. @c fi all-architectures @end ignore Certain terms used in computing vary slightly in meaning according to context. This is how we use some of them in this manual: The @dfn{contents} of any memory address is one @dfn{byte} of exactly 8 bits. A @dfn{word} is 16 bits stored in two bytes of memory. The addresses of these bytes differ by exactly 1. @ignore @c if all-architectures Notice that the interpretation of the bits in a word and of how to address a word depends on which particular computer you are assembling for. @c fi all-architectures @end ignore A @dfn{long word}, or @dfn{long}, is 32 bits stored in four contiguous bytes of memory. @ignore @c if all-architectures Again the interpretation and addressing of those bits is machine dependent. For example, National Semiconductor 32x32 computers say @emph{double word} where we say @emph{long}. @c fi all-architectures @end ignore @ignore @c if all-architectures Numeric quantities are usually @emph{unsigned} or @emph{2's complement}. @c fi all-architectures @end ignore Bytes, words and longs may store numbers. @code{as} manipulates integer expressions as 32-bit numbers in 2's complement format. When asked to store an integer in a byte or word, the lowest order bits are stored. @ignore @c if all-architectures The order of bytes in a word or long in memory is determined by what kind of computer will run the assembled program. We won't mention this important caveat again. @c fi all-architectures @end ignore The meaning of these terms has changed over time. Although ``byte'' used to mean any length of contiguous bits, ``byte'' now pervasively means exactly 8 contiguous bits. A ``word'' of 16 bits made sense for 16-bit computers. Even on 32-bit computers, ``word'' still means 16 bits---to machine language programmers. To many other programmers ``word'' means 32 bits; if your habits differ from our convention, you may need to pay special attention to this usage. @ignore @c if 32x32 Similarly ``long'' means 32 bits: from ``long word''. National Semiconductor 32x32 machine language calls a 32-bit number a ``double word''. @c fi 32x32 @end ignore The following table shows the terms used with GNU @code{as} for units of memory, and contrasts them with normal usage in some other contexts. @iftex @sp 1 @end iftex @center @emph{Names for integers of different sizes: some conventions} @ifinfo @example length as GNU C 680x0 vax 32x32 (bits) 8 byte char byte byte byte 16 word short (int) word word word 32 long long (int) long(-word) long(-word) double-word 64 quad quad(-word) 128 octa octa-word @end example @end ifinfo @tex \halign{\tt\hfil #\quad&\rm #\hfil\quad&\rm #\hfil\quad&\rm #\hfil\quad&\rm #\hfil\quad&\rm #\hfil\quad\cr {\it length}\cr {\it (bits)}&{\bf as}&{\bf GNU C}&{\bf 680x0}&{\bf vax}&{\bf 32x32}\cr \noalign{\hrule} 8 &byte &char &byte &byte &byte \cr 16 &word &short (int)&word &word &word \cr 32 &long &long (int) &long(-word)&long(-word)&double-word\cr 64 &quad & & &quad(-word)\cr 128 &octa & & &octa-word\cr } @end tex @section as, the GNU Assembler @code{as} is primarily intended to assemble the output of the GNU C compiler @code{gcc} for use by the linker @code{ld}. Nevertheless, @code{as} tries to assemble correctly everything that the native assembler would; any exceptions are documented explicitly (@pxref{Machine Dependent}). This doesn't necessarily mean @code{as} will use the same syntax as another assembler for the same architecture; for example, we know of several incompatible versions of 680x0 assembly language syntax. GNU @code{as} is really a family of assemblers. If you use (or have used) GNU @code{as} on another architecture, you should find a fairly similar environment. Each version has much in common with the others, including object file formats, most assembler directives (often called @dfn{pseudo-ops)} and assembler syntax. Unlike older assemblers, @code{as} tries to assemble a source program in one pass of the source file. This has a subtle impact on the @kbd{.org} directive (@pxref{Org}). @section Command Line Options @example as [ options @dots{} ] [ file1 @dots{} ] @end example After the program name @code{as}, the command line may contain options and file names. Options may be in any order, and may be before, after, or between file names. The order of file names is significant. @subsection Options @file{--} (two hyphens) by itself names the standard input file explicitly, as one of the files for @code{as} tp assemble. Except for @samp{--} any command line argument that begins with a hyphen (@samp{-}) is an option. Each option changes the behavior of @code{as}. No option changes the way another option works. An option is a @samp{-} followed by one or more letters; the case of the letter is important. No option (letter) should be used twice on the same command line. (Nobody has decided what two copies of the same option should mean.) All options are optional. Some options expect exactly one file name to follow them. The file name may either immediately follow the option's letter (compatible with older assemblers) or it may be the next command argument (GNU standard). These two command lines are equivalent: @example as -o my-object-file.o mumble as -omy-object-file.o mumble @end example @section Input Files We use the phrase @dfn{source program}, abbreviated @dfn{source}, to describe the program input to one run of @code{as}. The program may be in one or more files; how the source is partitioned into files doesn't change the meaning of the source. The source program is a catenation of the text in all the files, in the order specified. Each time you run @code{as} it assembles exactly one source program. The source program is made up of one or more files. (The standard input is also a file.) You give @code{as} a command line that has zero or more input file names. The input files are read (from left file name to right). A command line argument (in any position) that has no special meaning is taken to be an input file name. If @code{as} is given no file names it attempts to read one input file from @code{as}'s standard input, which is normally your terminal. You may have to type @key{ctl-D} to tell @code{as} there is no more program to assemble. Use @samp{--} if you need to explicitly name the standard input file in your command line. If the source is empty, code{as} will produce a small, empty object file. @subsection Input Filenames and Line-numbers There are two ways of locating a line in the input file (or files) and both are used in reporting error messages. One way refers to a line number in a physical file; the other refers to a line number in a ``logical'' file. @dfn{Physical files} are those files named in the command line given to @code{as}. @dfn{Logical files} are simply names declared explicitly by assembler directives; they bear no relation to physical files. Logical file names help error messages reflect the original source file, when @code{as} source is itself synthesized from other files. @xref{File}. @section Output (Object) File Every time you run @code{as} it produces an output file, which is your assembly language program translated into numbers. This file is the object file, named @code{a.out} unless you tell @code{as} to give it another name by using the @code{-o} option. Conventionally, object file names end with @file{.o}. The default name of @file{a.out} is used for historical reasons: older assemblers were capable of assembling self-contained programs directly into a runnable program. @c This may still work, but hasn't been tested. The object file is meant for input to the linker @code{ld}. It contains assembled program code, information to help @code{ld} to integrate the assembled program into a runnable file and (optionally) symbolic information for the debugger. @comment link above to some info file(s) like the description of a.out. @comment don't forget to describe GNU info as well as Unix lossage. @section Error and Warning Messages @code{as} may write warnings and error messages to the standard error file (usually your terminal). This should not happen when @code{as} is run automatically by a compiler. Error messages are meant for those few people who still write in assembly language. Warnings report an assumption made so that @code{as} could keep assembling a flawed program. Errors report a grave problem that stops the assembly. Warning messages have the format @example file_name:line_number:Warning Message Text @end example If a logical file name has been given (@xref{File}.) it is used for the filename, otherwise the name of the current input file is used. If a logical line number was given (@xref{Line}.) then it is used to calculate the number printed, otherwise the actual line in the current source file is printed. The message text is intended to be self explanatory (In the grand Unix tradition). Error messages have the format @example file_name:line_number:FATAL:Error Message Text @end example The file name and line number are derived as for warning messages. The actual message text may be rather less explanatory because many of them aren't supposed to happen. @section Options @subsection Work Faster: -f @samp{-f} should only be used when assembling programs written by a (trusted) compiler. @samp{-f} stops the assembler from pre-processing the input file(s) before assembling them. @emph{Warning:} if the files actually need to be pre-processed (if the contain comments, for example), @code{as} will not work correctly if @samp{-f} is used. @subsection Warn if difference tables altered: -k @code{as} sometimes alters the code emitted for directives of the form @samp{.word @var{sym1}-@var{sym2}}; @pxref{Word}. You can use the @samp{-k} option if you want a warning issued when this is done. @subsection Include Local Labels: -L For historical reasons, labels beginning with @samp{L} (upper case only) are called @dfn{local labels}. Normally you don't see such labels when debugging, because they are intended for the use of programs (like compilers) that compose assembler programs, not for your notice. Normally both @code{as} and @code{ld} discard such labels, so you don't normally debug with them. This option tells @code{as} to retain those @samp{L@dots{}} symbols in the object file. Usually if you do this you also tell the linker @code{ld} to preserve symbols whose names begin with @samp{L}. @subsection Name the Object File: -o There is always one object file output when you run @code{as}. By default it has the name @file{a.out}. You use this option (which takes exactly one filename) to give the object file a different name. Whatever the object file is called, @code{as} will overwrite any existing file of the same name. @subsection Fold Data Segment into Text Segment: -R @code{-R} tells @code{as} to write the object file as if all data-segment data lives in the text segment. This is only done at the very last moment: your binary data are the same, but data segment parts are relocated differently. The data segment part of your object file is zero bytes long because all it bytes are appended to the text segment. (@xref{Segments}.) When you specify code{-R} it would be possible to generate shorter address displacements (because we don't have to cross between text and data segment). We don't do this simply for compatibility with older versions of @code{as}. @code{-R} may work this way in future. @subsection Supress Warnings: -W @code{as} should never give a warning or error message when assembling compiler output. But programs written by people often cause @code{as} to give a warning that a particular assumption was made. All such warnings are directed to the standard error file. If you use this option, no warnings are issued. This option only affects the warning messages: it does not change any particular of how @code{as} assembles your file. Errors, which stop the assembly, are still reported. @node Syntax, Segments, top, top @chapter Syntax This chapter describes the machine-independent syntax allowed in a source file. @code{as} syntax is similar to what many other assemblers use; it is inspired in BSD 4.2 assembler, except that @code{as} does not assemble Vax bit-fields. @section The Pre-processor The pre-processor adjusts and removes extra whitespace. It leaves one space or tab before the keywords on a line, and turns any other whitespace on the line into a single space. The pre-processor removes all comments, replacing them with a single space (for /* @dots{} */ comments), or an appropriate number of newlines. The pre-processor converts character constants into the appropriate numeric values. This means that excess whitespace, comments, and character constants cannot be used in the portions of the input text that are not pre-processed. If the first line of an input file is @code{#NO_APP} or the @samp{-f} option is given, the input file will not be pre-processed. Within such an input file, parts of the file can be pre-processed by putting a line that says @code{#APP} before the text that should be pre-processed, and putting a line that says @code{#NO_APP} after them. This feature is mainly intend to support asm statements in compilers whose output normally does not need to be pre-processed. @section Whitespace @dfn{Whitespace} is one or more blanks or tabs, in any order. Whitespace is used to separate symbols, and to make programs neater for people to read. Unless within character constants (@xref{Characters}.), any whitespace means the same as exactly one space. @section Comments There are two ways of rendering comments to @code{as}. In both cases the comment is equivalent to one space. Anything from @samp{/*} through the next @samp{*/} is a comment. This means you may not nest these comments. @example /* The only way to include a newline ('\n') in a comment is to use this sort of comment. */ /* This sort of comment does not nest. */ @end example Anything from the @dfn{line comment} character to the next newline is considered a comment and is ignored. The line comment character is @c if vax @c @samp{#} on the Vax @c @fi vax @c if 680x0 @samp{|} on the 680x0. @xref{Machine Dependent}. @c fi 680x0 @ignore @if all-arch On some machines there are two different line comment characters. One will only begin a comment if it is the first non-whitespace character on a line, while the other will always begin a comment. @fi all-arch @end ignore To be compatible with past assemblers a special interpretation is given to lines that begin with @samp{#}. Following the @samp{#} an absolute expression (@pxref{Expressions}) is expected: this will be the logical line number of the @b{next} line. Then a string (@xref{Strings}.) is allowed: if present it is a new logical file name. The rest of the line, if any, should be whitespace. If the first non-whitespace characters on the line are not numeric, the line is ignored. (Just like a comment.) @example # This is an ordinary comment. # 42-6 "new_file_name" # New logical file name # This is logical line # 36. @end example This feature is deprecated, and may disappear from future versions of @code{as}. @section Symbols A @dfn{symbol} is one or more characters chosen from the set of all letters (both upper and lower case), digits and the three characters @samp{_.$}. No symbol may begin with a digit. Case is significant. There is no length limit: all characters are significant. Symbols are delimited by characters not in that set, or by begin/end-of-file. (@xref{Symbols}.) @section Statements A @dfn{statement} ends at a newline character (@samp{\n}) or at a semicolon (@samp{;}). The newline or semicolon is considered part of the preceding statement. Newlines and semicolons within character constants are an exception: they don't end statements. It is an error to end any statement with end-of-file: the last character of any input file should be a newline. You may write a statement on more than one line if you put a backslash (@kbd{\}) immediately in front of any newlines within the statement. When @code{as} reads a backslashed newline both characters are ignored. You can even put backslashed newlines in the middle of symbol names without changing the meaning of your source program. An empty statement is allowed, and may include whitespace. It is ignored. A statement begins with zero or more labels, optionally followed by a @dfn{key symbol} which determines what kind of statement it is. The key symbol determines the syntax of the rest of the statement. If the symbol begins with a dot (@t{.}) then the statement is an assembler directive: typically valid for any computer. If the symbol begins with a letter the statement is an assembly language @dfn{instruction}: it will assemble into a machine language instruction. Different versions of @code{as} for different computers will recognize different instructions. In fact, the same symbol may represent a different instruction in a different computer's assembly language. A label is a symbol immediately followed by a colon (@code{:}). Whitespace before a label or after a colon is permitted, but you may not have whitespace between a label's symbol and its colon. @xref{Labels}. @example label: .directive followed by something another$label: # This is an empty statement. instruction operand_1, operand_2, @dots{} @end example @section Constants A constant is a number, written so that its value is known by inspection, without knowing any context. Like this: @example .byte 74, 0112, 092, 0x4A, 0X4a, 'J, '\J # All the same value. .ascii "Ring the bell\7" # A string constant. .octa 0x123456789abcdef0123456789ABCDEF0 # A bignum. .float 0f-314159265358979323846264338327\ 95028841971.693993751E-40 # - pi, a flonum. @end example @node Characters, Strings, , Syntax @subsection Character Constants There are two kinds of character constants. A @dfn{character} stands for one character in one byte and its value may be used in numeric expressions. String constants (properly called string @emph{literals}) are potentially many bytes and their values may not be used in arithmetic expressions. @node Strings, , Characters, Syntax @subsubsection Strings A @dfn{string} is written between double-quotes. It may contain double-quotes or null characters. The way to get special characters into a string is to @dfn{escape} these characters: precede them with a backslash (@code{\}) character. For example @samp{\\} represents one backslash: the first @code{\} is an escape which tells @code{as} to interpret the second character literally as a backslash (which prevents @code{as} from recognizing the second @code{\} as an escape character). The complete list of escapes follows. @table @kbd @item \EOF A @kbd{\} followed by end-of-file: erroneous. It is treated just like an end-of-file without a preceding backslash. @c @item \a @c Mnemonic for ACKnowledge; for ASCII this is octal code 007. @item \b Mnemonic for backspace; for ASCII this is octal code 010. @c @item \e @c Mnemonic for EOText; for ASCII this is octal code 004. @item \f Mnemonic for FormFeed; for ASCII this is octal code 014. @item \n Mnemonic for newline; for ASCII this is octal code 012. @c @item \p @c Mnemonic for prefix; for ASCII this is octal code 033, usually known as @code{escape}. @item \r Mnemonic for carriage-Return; for ASCII this is octal code 015. @c @item \s @c Mnemonic for space; for ASCII this is octal code 040. Included for compliance with @c other assemblers. @item \t Mnemonic for horizontal Tab; for ASCII this is octal code 011. @c @item \v @c Mnemonic for Vertical tab; for ASCII this is octal code 013. @c @item \x @var{digit} @var{digit} @var{digit} @c A hexadecimal character code. The numeric code is 3 hexadecimal digits. @item \ @var{digit} @var{digit} @var{digit} An octal character code. The numeric code is 3 octal digits. For compatibility with other Unix systems, 8 and 9 are accepted as digits: for example, @code{\008} has the value 010, and @code{\009} the value 011. @item \\ Represents one @samp{\} character. @c @item \' @c Represents one @samp{'} (accent acute) character. @c This is needed in single character literals @c (@xref{Characters}.) to represent @c a @samp{'}. @item \" Represents one @samp{"} character. Needed in strings to represent this character, because an unescaped @samp{"} would end the string. @item \ @var{anything-else} Any other character when escaped by @kbd{\} will give a warning, but assemble as if the @samp{\} was not present. The idea is that if you used an escape sequence you clearly didn't want the literal interpretation of the following character. However @code{as} has no other interpretation, so @code{as} knows it is giving you the wrong code and warns you of the fact. @end table Which characters are escapable, and what those escapes represent, varies widely among assemblers. The current set is what we think BSD 4.2 @code{as} recognizes, and is a subset of what most C compilers recognize. If you are in doubt, don't use an escape sequence. @subsubsection Characters A single character may be written as a single quote immediately followed by that character. The same escapes apply to characters as to strings. So if you want to write the character backslash, you must write @kbd{'\\} where the first @code{\} escapes the second @code{\}. As you can see, the quote is an acute accent, not an grave accent. A newline (or semicolon @samp{;}) immediately following an accent acute is taken as a literal character and does not count as the end of a statement. The value of a character constant in a numeric expression is the machine's byte-wide code for that character. @code{as} assumes your character code is ASCII: @kbd{'A} means 65, @kbd{'B} means 66, and so on. @subsection Number Constants @code{as} distinguishes 3 flavors of numbers according to how they are stored in the target machine. @emph{Integers} are numbers that would fit into an @code{int} in the C language. @emph{Bignums} are integers, but they are stored in a more than 32 bits. @emph{Flonums} are floating point numbers, described below. @subsubsection Integers An octal integer is @samp{0} followed by zero or more of the octal digits (@samp{01234567}). A decimal integer starts with a non-zero digit followed by zero or more digits (@samp{0123456789}). A hexadecimal integer is @samp{0x} or @samp{0X} followed by one or more hexadecimal digits chosen from @samp{0123456789abcdefABCDEF}. Integers have the usual values. To denote a negative integer, use the unary operator @samp{-} discussed under expressions (@xref{Unops}.). @subsubsection Bignums A @dfn{bignum} has the same syntax and semantics as an integer except that the number (or its negative) takes more than 32 bits to represent in binary. The distinction is made because in some places integers are permitted while bignums are not. @subsubsection Flonums A @dfn{flonum} represents a floating point number. The translation is complex: a decimal floating point number from the text is converted by @code{as} to a generic binary floating point number of more than sufficient precision. This generic floating point number is converted to the particular computer's floating point format(s) by a portion of @code{as} specialized to that computer. A flonum is written by writing (in order) @itemize @bullet @item The digit @samp{0}. @item A letter, to tell @code{as} the rest of the number is a flonum. @kbd{e} is recommended. Case is not important. (Any otherwise illegal letter will work here, but that might be changed. Vax BSD 4.2 assembler seems to allow any of @samp{defghDEFGH}.) @item An optional sign: either @samp{+} or @samp{-}. @item An optional @dfn{integer part}: zero or more decimal digits. @item An optional @dfn{fraction part}: @samp{.} followed by zero or more decimal digits. @item An optional exponent, consisting of: @itemize @bullet @item A letter; the exact significance varies according to the computer that executes the program. @code{as} accepts any letter for now. Case is not important. @item Optional sign: either @samp{+} or @samp{-}. @item One or more decimal digits. @end itemize @end itemize At least one of @var{integer part} or @var{fraction part} must be present. The floating point number has the usual base-10 value. @code{as} does all processing using integers. Flonums are computed independently of any floating point hardware in the computer running @code{as}. @node Segments, Symbols, Syntax, top @chapter Segments and Relocation Roughly, a segment is a range of addresses, with no gaps; all data ``in'' those addresses is treated the same for some particular purpose. For example there may be a ``read only'' segment. The linker @code{ld} reads many object files (partial programs) and combines their contents to form a runnable program. When @code{as} emits an object file, the partial program is assumed to start at address 0. @code{ld} will assign the final addresses the partial program occupies, so that different partial programs don't overlap. This is actually an over-simplification, but it will suffice to explain how @code{as} uses segments. @code{ld} moves blocks of bytes of your program to their run-time addresses. These blocks slide to their run-time addresses as rigid units; their length does not change and neither does the order of bytes within them. Such a rigid unit is called a @emph{segment}. Assigning run-time addresses to segments is called @dfn{relocation}. It includes the task of adjusting mentions of object-file addresses so they refer to the proper run-time addresses. An object file written by @code{as} has three segments, any of which may be empty. These are named @emph{text}, @emph{data} and @emph{bss} segments. Within the object file, the text segment starts at address 0, the data segment follows, and the bss segment follows the data segment. To let @code{ld} know which data will change when the segments are relocated, and how to change that data, @code{as} also writes to the object file details of the relocation needed. To perform relocation @code{ld} must know, each time an address in the object file is mentioned: @itemize @bullet @item Where in the object file is the beginning of this reference to an address? @item How long (in bytes) is this reference? @item Which segment does the address refer to? What is the numeric value of (@var{address} @t{-} @var{start-address of segment})? @item Is the reference to an address ``Program-counter relative''? @end itemize In fact, every address @code{as} ever uses is expressed as (@var{segment} @t{+} @var{offset into segment}). Further, every expression @code{as} computes is of this segmented nature. @dfn{Absolute expression} means an expression with segment ``absolute'' (@pxref{ld Segments}). A @dfn{pass1 expression} means an expression with segment ``pass1'' (@pxref{as Segments}). In this manual we use the notation @{@var{segname} @var{N}@} to mean ``offset @var{N} into segment @var{segname}''. Apart from text, data and bss segments you need to know about the @dfn{absolute} segment. When @code{ld} mixes partial programs, addresses in the absolute segment remain unchanged. That is, address @{absolute 0@} is ``relocated'' to run-time address 0 by @code{ld}. Although two partial programs' data segments will not overlap addresses after linking, @b{by definition} their absolute segments will overlap. Address @{absolute 239@} in one partial program will always be the same address when the program is running as address @{absolute 239@} in any other partial program. The idea of segments is extended to the @dfn{undefined} segment. Any address whose segment is unknown at assembly time is by definition rendered @{undefined @var{U}@}---where @var{U} will be filled in later. Since numbers are always defined, the only way to generate an undefined address is to mention an undefined symbol. A reference to a named common block would be such a symbol: its value is unknown at assembly time so it has segment @emph{undefined}. By analogy the word @emph{segment} is to describe groups of segments in the linked program. @code{ld} puts all partial programs' text segments in contiguous addresses in the linked program. It is customary to refer to the @emph{text segment} of a program, meaning all the addresses of all partial program's text segments. Likewise for data and bss segments. @section Segments Some segments are manipulated by @code{ld}; others are invented for use of @code{as} and have no meaning except during assembly. @node ld Segments, , , @subsection ld Segments @code{ld} deals with just 5 kinds of segments, summarized below. @table @b @item text segment @itemx data segment These segments hold your program. @code{as} and @code{ld} treat them as separate but equal segments. Anything you can say of one segment is true of the other. When the program is running however it is customary for the text segment to be unalterable, and often shared among processes: it will contain instructions, constants and the like. The data segment of a running program is usually alterable: for example, C variables would be stored in the data segment. @item bss segment This segment contains zeroed bytes when your program begins running. It is used to hold unitialized variables or common storage. The length of each partial program's bss segment is important, but because it starts out containing zeroed bytes there is no need to store explicit zero bytes in the object file. The Bss segment was invented to eliminate those explicit zeros from object files. @item absolute segment Address 0 of this segment is always ``relocated'' to runtime address 0. This is useful if you want to refer to an address that @code{ld} must not change when relocating. In this sense we speak of absolute addresses being ``unrelocatable'': they don't change during relocation. @item undefined segment This ``segment'' is a catch-all for address references to objects not in the preceding segments. @c FIXME: ref to some other doc on obj-file formats could go here. @end table An idealized example of the 3 relocatable segments follows. Memory addresses are on the horizontal axis. @example +-----+----+--+ partial program # 1: |ttttt|dddd|00| +-----+----+--+ text data bss seg. seg. seg. +---+---+---+ partial program # 2: |TTT|DDD|000| +---+---+---+ +--+---+-----+--+----+---+-----+~~ linked program: | |TTT|ttttt| |dddd|DDD|00000| +--+---+-----+--+----+---+-----+~~ addresses: 0 @dots{} @end example @node as Segments, , , @subsection as Internal Segments These segments are invented for the internal use of @code{as}. They have no meaning at run-time. You don't need to know about these segments except that they might be mentioned in @code{as}' warning messages. These segments are invented to permit the value of every expression in your assembly language program to be a segmented address. @table @b @item absent segment An expression was expected and none was found. @item goof segment An internal assembler logic error has been found. This means there is a bug in the assembler. @item grand segment A @dfn{grand number} is a bignum or a flonum, but not an integer. If a number can't be written as a C @code{int} constant, it is a grand number. @code{as} has to remember that a flonum or a bignum does not fit into 32 bits, and cannot be an argument (@pxref{Argument}) in an expression: this is done by making a flonum or bignum be in segment ``grand''. This is purely for internal @code{as} convenience; grand segment behaves similarly to absolute segment. @item pass1 segment The expression was impossible to evaluate in the first pass. The assembler will attempt a second pass (second reading of the source) to evaluate the expression. Your expression mentioned an undefined symbol in a way that defies the one-pass (segment + offset in segment) assembly process. No compiler need emit such an expression. The second pass is currently not implemented. @code{as} will abort with an error message if one is required. @item difference segment As an assist to the C compiler, expressions of the forms @example @var{(undefined symbol)} - @var{(expression)} @var{(something)} - @var{(undefined symbol)} @var{(undefined symbol)} - @var{(undefined symbol)} @end example are permitted, and belong to the ``difference'' segment. @code{as} re-evaluates such expressions after the source file has been read and the symbol table built. If by that time there are no undefined symbols in the expression then the expression assumes a new segment. The intention is to permit statements like @samp{.word label - base_of_table} to be assembled in one pass where both @code{label} and @code{base_of_table} are undefined. This is useful for compiling C and Algol switch statements, Pascal case statements, FORTRAN computed goto statements and the like. @end table @section Sub-Segments Assembled bytes fall into two segments: text and data. Because you may have groups of text or data that you want to end up near to each other in the object file, @code{as}, allows you to use @dfn{subsegments}. Within each segment, there can be numbered subsegments with values from 0 to 8192. Objects assembled into the same subsegment will be grouped with other objects in the same subsegment when they are all put into the object file. For example, a compiler might want to store constants in the text segment, but might not want to have them interspersed with the program being assembled. In this case, the compiler could issue a @code{text 0} before each section of code being output, and a @code{text 1} before each group of constants being output. Subsegments are optional. If you don't used subsegments, everything will be stored in subsegment number zero. Each subsegment is zero-padded up to a multiple of four bytes. (Subsegments may be padded a different amount on different flavors of @code{as}.) Subsegments appear in your object file in numeric order, lowest numbered to highest. (All this to be compatible with other people's assemblers.) The object file, @code{ld} @emph{etc.} have no concept of subsegments. They just see all your text subsegments as a text segment, and all your data subsegments as a data segment. To specify which subsegment you want subsequent statements assembled into, use a @samp{.text @var{expression}} or a @samp{.data @var{expression}} statement. @var{Expression} should be an absolute expression. (@xref{Expressions}.) If you just say @samp{.text} then @samp{.text 0} is assumed. Likewise @samp{.data} means @samp{.data 0}. Assembly begins in @code{text 0}. For instance: @example .text 0 # The default subsegment is text 0 anyway. .ascii "This lives in the first text subsegment. *" .text 1 .ascii "But this lives in the second text subsegment." .data 0 .ascii "This lives in the data segment," .ascii "in the first data subsegment." .text 0 .ascii "This lives in the first text segment," .ascii "immediately following the asterisk (*)." @end example Each segment has a @dfn{location counter} incremented by one for every byte assembled into that segment. Because subsegments are merely a convenience restricted to @code{as} there is no concept of a subsegment location counter. There is no way to directly manipulate a location counter. The location counter of the segment that statements are being assembled into is said to be the @dfn{active} location counter. @section Bss Segment The @code{bss} segment is used for local common variable storage. You may allocate address space in the @code{bss} segment, but you may not dictate data to load into it before your program executes. When your program starts running, all the contents of the @code{bss} segment are zeroed bytes. Addresses in the bss segment are allocated with special directives; you may not assemble anything directly into the bss segment. Hence there are no bss subsegments. @xref{Comm}; @pxref{Lcomm}. @node Symbols, Expressions, Segments, top @chapter Symbols Symbols are a central concept: the programmer uses symbols to name things, the linker uses symbols to link, and the debugger uses symbols to debug. @code{as} does not place symbols in the object file in the same order they were declared. This may break some debuggers. @node Labels, , , Symbols @section Labels A @dfn{label} is written as a symbol immediately followed by a colon (@samp{:}). The symbol then represents the current value of the active location counter, and is, for example, a suitable instruction operand. You are warned if you use the same symbol to represent two different locations: the first definition overrides any other definitions. @section Giving Symbols Other Values A symbol can be given an arbitrary value by writing a symbol followed by an equals sign (@samp{=}) followed by an expression (@pxref{Expressions}). This is equivalent to using the @code{.set} directive. (@xref{Set}.) @section Symbol Names Symbol names begin with a letter or with one of @samp{$._}. That character may be followed by any string of digits, letters, underscores and dollar signs. Case of letters is significant: @code{foo} is a different symbol name than @code{Foo}. Each symbol has exactly one name. Each name in an assembly language program refers to exactly one symbol. You may use that symbol name any number of times in a program. @subsection Local Symbol Names Local symbols help compilers and programmers use names temporarily. There are ten @dfn{local} symbol names, which are re-used throughout the program. Their names are @samp{0} @samp{1} @dots{} @samp{9}. To define a local symbol, write a label of the form @var{digit}@t{:}. To refer to the most recent previous definition of that symbol write @var{digit}@t{b}, using the same digit as when you defined the label. To refer to the next definition of a local label, write @var{digit}@t{f} where @var{digit} gives you a choice of 10 forward references. The @samp{b} stands for ``backwards'' and the @samp{f} stands for ``forwards''. Local symbols are not used by the current GNU C compiler. There is no restriction on how you can use these labels, but remember that at any point in the assembly you can refer to at most 10 prior local labels and to at most 10 forward local labels. Local symbol names are only a notation device. They are immediately transformed into more conventional symbol names before the assembler uses them. The symbol names stored in the symbol table, appearing in error messages and optionally emitted to the object file have these parts: @table @code @item L All local labels begin with @samp{L}. Normally both @code{as} and @code{ld} forget symbols that start with @samp{L}. These labels are used for symbols you are never intended to see. If you give the @samp{-L} option then @code{as} will retain these symbols in the object file. By instructing @code{ld} to also retain these symbols, you may use them in debugging. @item @var{digit} If the label is written @samp{0:} then the digit is @samp{0}. If the label is written @samp{1:} then the digit is @samp{1}. And so on up through @samp{9:}. @item @ctrl{A} This unusual character is included so you don't accidentally invent a symbol of the same name. The character has ASCII value @samp{\001}. @item @emph{ordinal number} This is a serial number to keep the labels distinct. The first @samp{0:} gets the number @samp{1}; The 15th @samp{0:} gets the number @samp{15}; @emph{etc.}. Likewise for the other labels @samp{1:} through @samp{9:}. @end table For instance, the first @code{1:} is named @code{L1@ctrl{A}1}, the 44th @code{3:} is named @code{L3@ctrl{A}44}. @section The Special Dot Symbol The special symbol @code{.} refers to the current address that @code{as} is assembling into. Thus, the expression @samp{melvin: .long .} will cause @var{melvin} to contain its own address. Assigning a value to @code{.} is treated the same as a @code{.org} directive. Thus, the expression @samp{.=.+4} is the same as saying @samp{.space 4}. @section Symbol Attributes Every symbol has these attributes: Value, Type, Descriptor, and ``Other''. @c if internals @c The detailed definitions are in . @c fi internals If you use a symbol without defining it, @code{as} assumes zero for all these attributes, and probably won't warn you. This makes the symbol an externally defined symbol, which is generally what you would want. @subsection Value The value of a symbol is (usually) 32 bits, the size of one GNU C @code{int}. For a symbol which labels a location in the @code{text}, @code{data}, @code{bss} or @code{Absolute} segments the value is the number of addresses from the start of that segment to the label. Naturally for @code{text} @code{data} and @code{bss} segments the value of a symbol changes as @code{ld} changes segment base addresses during linking. @code{absolute} symbols' values do not change during linking: that is why they are called absolute. The value of an undefined symbol is treated in a special way. If it is 0 then the symbol is not defined in this assembler source program, and @code{ld} will try to determine its value from other programs it is linked with. You make this kind of symbol simply by mentioning a symbol name without defining it. A non-zero value represents a @code{.comm} common declaration. The value is how much common storage to reserve, in bytes (@emph{i.e.} addresses). The symbol refers to the first address of the allocated storage. @subsection Type The type attribute of a symbol is 8 bits encoded in a devious way. We kept this coding standard for compatibility with older operating systems. @example 7 6 5 4 3 2 1 0 bit numbers +-----+-----+-----+-----+-----+-----+-----+-----+ | | | | | N_STAB bits | N_TYPE bits |N_EXT| | | | bit | +-----+-----+-----+-----+-----+-----+-----+-----+ n_type byte @end example @subsubsection N_EXT bit This bit is set if @code{ld} might need to use the symbol's type bits and value. If this bit is off, then @code{ld} can ignore the symbol while linking. It is set in two cases. If the symbol is undefined, then @code{ld} is expected to find the symbol's value elsewhere in another program module. Otherwise the symbol has the value given, but this symbol name and value are revealed to any other programs linked in the same executable program. This second use of the @code{N_EXT} bit is most often done by a @code{.globl} statement. @subsubsection N_TYPE bits These establish the symbol's ``type'', which is mainly a relocation concept. Common values are detailed in the manual describing the executable file format. @subsubsection N_STAB bits Common values for these bits are described in the manual on the executable file format. @subsection Descriptor This is an arbitrary 16-bit value. You may establish a symbol's descriptor value by using a @code{.desc} statement (@pxref{Desc}). A descriptor value means nothing to @code{as}. @subsection Other This is an arbitrary 8-bit value. It means nothing to @code{as}. @node Expressions, Pseudo Ops, Symbols, top @chapter Expressions An @dfn{expression} specifies an address or numeric value. Whitespace may precede and/or follow an expression. @section Empty Expressions An empty expression has no value: it is just whitespace or null. Wherever an absolute expression is required, you may omit the expression and @code{as} will assume a value of (absolute) 0. This is compatible with other assemblers. @section Integer Expressions An @dfn{integer expression} is one or more @emph{arguments} delimited by @emph{operators}. @node Argument, Unops, , Expressions @subsection Arguments @dfn{Arguments} are symbols, numbers or subexpressions. In other contexts arguments are sometimes called ``arithmetic operands''. In this manual, to avoid confusing them with the ``instruction operands'' of the machine language, we use the term ``argument'' to refer to parts of expressions only, and the word ``operand'' to refer only to machine instruction operands. Symbols are evaluated to yield @{@var{segment} @var{value}@} where @var{segment} is one of @b{text}, @b{data}, @b{bss}, @b{absolute}, or @b{undefined}. @var{value} is a signed, 2's complement 32 bit integer. Numbers are usually integers. A number can be a flonum or bignum. In this case, you are warned that only the low order 32 bits are used, and @code{as} pretends these 32 bits are an integer. You may write integer-manipulating instructions that act on exotic constants, compatible with other assemblers. Subexpressions are a left parenthesis (@t{(}) followed by an integer expression followed by a right parenthesis (@t{)}), or a unary operator followed by an argument. @subsection Operators @dfn{Operators} are arithmetic functions, like @t{+} or @t{%}. Unary operators are followed by an argument. Binary operators appear between their arguments. Operators may be preceded and/or followed by whitespace. @subsection Unary Operators @node Unops, , Argument, Expressions @code{as} has the following @dfn{unary operators}. They each take one argument, which must be absolute. @table @t @item - Hyphen. @dfn{Negation}. Two's complement negation. @item ~ Tilde. @dfn{Complementation}. Bitwise not. @end table @subsection Binary Operators @dfn{Binary operators} are infix. Operators have precedence, but operators with equal precedence are performed left to right. Apart from @code{+} or @code{-}, both arguments must be absolute, and the result is absolute. @enumerate @item Highest Precedence @table @code @item * @dfn{Multiplication}. @item / @dfn{Division}. Truncation is the same as the C operator @samp{/} @item % @dfn{Remainder}. @item < @itemx << @dfn{Shift Left}. Same as the C operator @samp{<<} @item > @itemx >> @dfn{Shift Right}. Same as the C operator @samp{>>} @end table @item Intermediate precedence @table @code @item | @dfn{Bitwise Inclusive Or}. @item & @dfn{Bitwise And}. @item ^ @dfn{Bitwise Exclusive Or}. @item ! @dfn{Bitwise Or Not}. @end table @item Lowest Precedence @table @code @item + @dfn{Addition}. If either argument is absolute, the result has the segment of the other argument. If either argument is pass1 or undefined, the result is pass1. Otherwise @code{+} is illegal. @item - @dfn{Subtraction}. If the right argument is absolute, the result has the segment of the left argument. If either argument is pass1 the result is pass1. If either argument is undefined the result is difference segment. If both arguments are in the same segment, the result is absolute---provided that segment is one of @b{text}, @b{data} or @b{bss}. Otherwise @code{-} is illegal. @end table @end enumerate The sense of the rule for @code{+} is that it's only meaningful to add the @emph{offsets} in an address; you can only have a defined segment in one of the two arguments. Similarly, you can't subtract quantities from two different segments. @node Pseudo Ops, Machine Dependent, Expressions, top @chapter Assembler Directives @menu * Abort:: The Abort directive causes as to abort * Align:: Pad the location counter to a power of 2 * Ascii:: Fill memory with bytes of ASCII characters * Asciz:: Fill memory with bytes of ASCII characters followed by a null. * Byte:: Fill memory with 8-bit integers * Comm:: Reserve public space in the BSS segment * Data:: Change to the data segment * Desc:: Set the n_desc of a symbol * Double:: Fill memory with double-precision floating-point numbers * File:: Set the logical file name * Fill:: Fill memory with repeated values * Float:: Fill memory with single-precision floating-point numbers * Global:: Make a symbol visible to the linker * Int:: Fill memory with 32-bit integers * Lcomm:: Reserve private space in the BSS segment * Line:: Set the logical line number * Long:: Fill memory with 32-bit integers * Lsym:: Create a local symbol * Octa:: Fill memory with 128-bit integers * Org:: Change the location counter * Quad:: Fill memory with 64-bit integers * Set:: Set the value of a symbol * Short:: Fill memory with 16-bit integers * Space:: Fill memory with a repeated value * Stab:: Store debugging information * Text:: Change to the text segment * Word:: Fill memory with 16-bit integers @end menu All assembler directives have names that begin with a period (@samp{.}). The rest of the name is letters: their case does not matter. @node Abort, Align, Pseudo Ops, Pseudo Ops @section .abort This directive stops the assembly immediately. It is for compatibility with other assemblers. The original idea was that the assembler program would be piped into the assembler. If the sender of a program quit, it could use this directive tells @code{as} to quit also. One day @code{.abort} will not be supported. @node Align, Ascii, Abort, Pseudo Ops @section .align @var{absolute-expression} , @var{absolute-expression} Pad the location counter (in the current subsegment) to a word, longword or whatever boundary. The first expression is the number of low-order zero bits the location counter will have after advancement. For example @samp{.align 3} will advance the location counter until it a multiple of 8. If the location counter is already a multiple of 8, no change is needed. The second expression gives the value to be stored in the padding bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are zero. @node Ascii, Asciz, Align, Pseudo Ops @section .ascii @var{strings} @code{.ascii} expects zero or more string literals (@pxref{Strings}) separated by commas. It assembles each string (with no automatic trailing zero byte) into consecutive addresses. @node Asciz, Byte, Ascii, Pseudo Ops @section .asciz @var{strings} @code{.asciz} is just like @code{.ascii}, but each string is followed by a zero byte. The ``z'' in @samp{.asciz} stands for ``zero''. @node Byte, Comm, Asciz, Pseudo Ops @section .byte @var{expressions} @code{.byte} expects zero or more expressions, separated by commas. Each expression is assembled into the next byte. @node Comm, Data, Byte, Pseudo Ops @section .comm @var{symbol} , @var{length} @code{.comm} declares a named common area in the bss segment. Normally @code{ld} reserves memory addresses for it during linking, so no partial program defines the location of the symbol. Use @code{.comm} to tell @code{ld} that it must be at least @var{length} bytes long. @code{ld} will allocate space for each @code{.comm} symbol that is at least as long as the longest @code{.comm} request in any of the partial programs linked. @var{length} is an absolute expression. @node Data, Desc, Comm, Pseudo Ops @section .data @var{subsegment} @code{.data} tells @code{as} to assemble the following statements onto the end of the data subsegment numbered @var{subsegment} (which is an absolute expression). If @var{subsegment} is omitted, it defaults to zero. @node Desc, Double, Data, Pseudo Ops @section .desc @var{symbol}, @var{absolute-expression} This directive sets @code{n_desc} of the symbol to the low 16 bits of @var{absolute-expression}. @node Double, File, Desc, Pseudo Ops @section .double @var{flonums} @code{.double} expects zero or more flonums, separated by commas. It assembles floating point numbers. The exact kind of floating point numbers emitted depends on how @code{as} is configured. @xref{Machine Dependent}. @node File, Fill, Double, Pseudo Ops @section .file @var{string} @code{.file} tells @code{as} that we are about to start a new logical file. @var{String} is the new file name. An empty file name is permitted, but you must still give the quotes: @code{""}. This statement may go away in future: it is only recognized to be compatible with old @code{as} programs. @node Fill, Float, File, Pseudo Ops @section .fill @var{repeat} , @var{size} , @var{value} @var{result}, @var{size} and @var{value} are absolute expressions. This emits @var{repeat} copies of @var{size} bytes. @var{Repeat} may be zero or more. @var{Size} may be zero or more, but if it is more than 8, then it is deemed to have the value 8, compatible with other people's assemblers. The contents of each @var{repeat} bytes is taken from an 8-byte number. The highest order 4 bytes are zero. The lowest order 4 bytes are @var{value} rendered in the byte-order of an integer on the computer @code{as} is assembling for. Each @var{size} bytes in a repetition is taken from the lowest order @var{size} bytes of this number. Again, this bizarre behavior is compatible with other people's assemblers. @var{Size} and @var{value} are optional. If the second comma and @var{value} are absent, @var{value} is assumed zero. If the first comma and following tokens are absent, @var{size} is assumed to be 1. @node Float, Global, Fill, Pseudo Ops @section .float @var{flonums} This directive assembles zero or more flonums, separated by commas. The exact kind of floating point numbers emitted depends on how @code{as} is configured. @xref{Machine Dependent}. @node Global, Int, Float, Pseudo Ops @section .global @var{symbol} @code{.global} makes the symbol visible to @code{ld}. If you define @var{symbol} in your partial program, its value is made available to other partial programs that are linked with it. Otherwise, @var{symbol} will take its attributes from a symbol of the same name from another partial program it is linked with. This is done by setting the @code{N_EXT} bit of that symbol's @code{n_type} to 1. @node Int, Lcomm, Global, Pseudo Ops @section .int @var{expressions} Expect zero or more @var{expressions}, of any segment, separated by commas. For each expression, emit a 32-bit number that will, at run time, be the value of that expression. The byte order of the expression depends on what kind of computer will run the program. @node Lcomm, Line, Int, Pseudo Ops @section .lcomm @var{symbol} , @var{length} Reserve @var{length} (an absolute expression) bytes for a local common denoted by @var{symbol}. The segment and value of @var{symbol} are those of the new local common. The addresses are allocated in the @code{bss} segment, so at run-time the bytes will start off zeroed. @var{Symbol} is not declared global (@pxref{Global}), so is normally not visible to @code{ld}. @node Line, Long, Lcomm, Pseudo Ops @section .line @var{logical line number} @code{.line} tells @code{as} to change the logical line number. @var{logical line number} is an absolute expression. The next line will have that logical line number. So any other statements on the current line (after a @code{;}) will be reported as on logical line number @var{logical line number} - 1. One day this directive will be unsupported: it is used only for compatibility with existing assembler programs. @node Long, Lsym, Line, Pseudo Ops @section .long @var{expressions} @code{.long} is the same as @samp{.int}, @pxref{Int}. @node Lsym, Octa, Long, Pseudo Ops @section .lsym @var{symbol}, @var{expression} @code{.lsym} creates a new symbol named @var{symbol}, but does not put it in the hash table, ensuring it cannot be referenced by name during the rest of the assembly. This sets the attributes of the symbol to be the same as the expression value: @table @code @item n_other = n_desc = 0 @itemx n_type = @r{(segment of @var{expression})} @itemx N_EXT = 0 @itemx n_value = @var{expression} @end table @node Octa, Org, Lsym, Pseudo Ops @section .octa @var{bignums} This directive expects zero or more bignums, separated by commas. For each bignum, it emits an 16-byte (@b{octa}-word) integer. @node Org, Quad, Octa, Pseudo Ops @section .org @var{new-lc} , @var{fill} @code{.org} will advance the location counter of the current segment to @var{new-lc}. @var{new-lc} is either an absolute expression or an expression with the same segment as the current subsegment. That is, you can't use @code{.org} to cross segments: if @var{new-lc} has the wrong segment, the @code{.org} directive is ignored. To be compatible with former assemblers, if the segment of @var{new-lc} is absolute, @code{as} will issue a warning, then pretend the segment of @var{new-lc} is the same as the current subsegment. @code{.org} may only increase the location counter, or leave it unchanged; you cannot use @code{.org} to move the location counter backwards. Because @code{as} tries to assemble programs in one pass @var{new-lc} must be defined. If you really detest this restriction we eagerly await a chance to share your improved assembler. Beware that the origin is relative to the start of the segment, not to the start of the subsegment. This is compatible with other people's assemblers. When the location counter (of the current subsegment) is advanced, the intervening bytes are filled with @var{fill} which should be an absolute expression. If the comma and @var{fill} are omitted, @var{fill} defaults to zero. @node Quad, Set, Org, Pseudo Ops @section .quad @var{bignums} @code{.quad} expects zero or more bignums, separated by commas. For each bignum, it emits an 8-byte (@b{quad}-word) integer. If the bignum won't fit in a quad-word, it prints a warning message; and just takes the lowest order 8 bytes of the bignum. @node Set, Short, Quad, Pseudo Ops @section .set @var{symbol}, @var{expression} This directive sets the value of @var{symbol} to @var{expression}. This will change @code{n_value} and @code{n_type} to conform to @var{expression}. If @code{n_ext} is set, it remains set. You may @code{.set} a symbol many times in the same assembly. If the expression's segment is unknowable during pass 1, a second pass over the source program will be forced. The second pass is currently not implemented. @code{as} will abort with an error message if one is required. If you @code{.set} a global symbol, the value stored in the object file is the last value stored into it. @node Short, Space, Set, Pseudo Ops @section .short @var{expressions} @c if not sparc @code{.short} is the same as @samp{.word}. @xref{Word}. @c fi not sparc @c if sparc @c On the sparc, this expects zero or more @var{expressions}, and emits @c a 16 bit number for each. @c fi sparc @node Space, Stab, Short, Pseudo Ops @section .space @var{size} , @var{fill} This directive emits @var{size} bytes, each of value @var{fill}. Both @var{size} and @var{fill} are absolute expressions. If the comma and @var{fill} are omitted, @var{fill} is assumed to be zero. @node Stab, Text, Space, Pseudo Ops @section .stabd, .stabn, .stabs There are three directives that begin @samp{.stab}. All emit symbols, for use by symbolic debuggers. The symbols are not entered in @code{as}' hash table: they cannot be referenced elsewhere in the source file. Up to five fields are required: @table @var @item string This is the symbol's name. It may contain any character except @samp{\000}, so is more general than ordinary symbol names. Some debuggers used to code arbitrarily complex structures into symbol names using this field. @item type An absolute expression. The symbol's @code{n_type} is set to the low 8 bits of this expression. Any bit pattern is permitted, but @code{ld} and debuggers will choke on silly bit patterns. @item other An absolute expression. The symbol's @code{n_other} is set to the low 8 bits of this expression. @item desc An absolute expression. The symbol's @code{n_desc} is set to the low 16 bits of this expression. @item value An absolute expression which becomes the symbol's @code{n_value}. @end table If a warning is detected while reading a @code{.stab@var{X}} statement, the symbol has probably already been created and you will get a half-formed symbol in your object file. This is compatible with earlier assemblers! @table @code @item .stabd @var{type} , @var{other} , @var{desc} The ``name'' of the symbol generated is not even an empty string. It is a null pointer, for compatibility. Older assemblers used a null pointer so they didn't waste space in object files with empty strings. The symbol's @code{n_value} is set to the location counter, relocatably. When your program is linked, the value of this symbol will be where the location counter was when the @code{.stabd} was assembled. @item .stabn @var{type} , @var{other} , @var{desc} , @var{value} The name of the symbol is set to the empty string @code{""}. @item .stabs @var{string} , @var{type} , @var{other} , @var{desc} , @var{value} All five fields are specified. @end table @node Text, Word, Stab, Pseudo Ops @section .text @var{subsegment} Tells @code{as} to assemble the following statements onto the end of the text subsegment numbered @var{subsegment}, which is an absolute expression. If @var{subsegment} is omitted, subsegment number zero is used. @node Word, , Text, Pseudo Ops @section .word @var{expressions} @c if sparc @c On the Sparc, this produces 32-bit numbers instead of 16-bit ones. @c fi sparc This directive expects zero or more @var{expressions}, of any segment, separated by commas. For each expression, @code{as} emits a 16-bit number. @ignore @c if all-arch The byte order of the expression depends on what kind of computer will run the program. @c fi all-arch @end ignore @subsection Special Treatment to support Compilers In order to assemble compiler output into something that will work, @code{as} will occasionlly do strange things to @samp{.word} directives. Directives of the form @samp{.word sym1-sym2} are often emitted by compilers as part of jump tables. Therefore, when @code{as} assembles a directive of the form @samp{.word sym1-sym2}, and the difference between @code{sym1} and @code{sym2} does not fit in 16 bits, @code{as} will create a @dfn{secondary jump table}, immediately before the next label. This @var{secondary jump table} will be preceded by a short-jump to the first byte after the secondary table. This short-jump prevents the flow of control from accidentally falling into the new table. Inside the table will be a long-jump to @code{sym2}. The original @samp{.word} will contain @code{sym1} minus the address of the long-jump to @code{sym2}. If there were several occurrences of @samp{.word sym1-sym2} before the secondary jump table, all of them will be adjusted. If there was a @samp{.word sym3-sym4}, that also did not fit in sixteen bits, a long-jump to @code{sym4} will be included in the secondary jump table, and the @code{.word} directives will be adjusted to contain @code{sym3} minus the address of the long-jump to @code{sym4}; and so on, for as many entries in the original jump table as necessary. @ignore @c if internals @emph{This feature may be disabled by compiling @code{as} with the @samp{-DWORKING_DOT_WORD} option.} This feature is likely to confuse assembly language programmers. @c fi internals @end ignore @section Deprecated Directives One day these directives won't work. They are included for compatibility with older assemblers. @table @t @item .abort @item .file @item .line @end table @node Machine Dependent, License, Pseudo Ops, top @chapter Machine Dependent Features: @c if 680x0 Motorola 680x0 @refill @c fi 680x0 @c pesch@cygnus.com: This version of the manual is specifically hacked @c for 68K gas. We should have a config method of @c automating this; in the meantime, use ignore @c for the other architectures (or for their stubs) @ignore @section Vax @subsection Options The Vax version of @code{as} accepts any of the following options, gives a warning message that the option was ignored and proceeds. These options are for compatibility with scripts designed for other people's assemblers. @table @asis @item @kbd{-D} (Debug) @itemx @kbd{-S} (Symbol Table) @itemx @kbd{-T} (Token Trace) These are obsolete options used to debug old assemblers. @item @kbd{-d} (Displacement size for JUMPs) This option expects a number following the @kbd{-d}. Like options that expect filenames, the number may immediately follow the @kbd{-d} (old standard) or constitute the whole of the command line argument that follows @kbd{-d} (GNU standard). @item @kbd{-V} (Virtualize Interpass Temporary File) Some other assemblers use a temporary file. This option commanded them to keep the information in active memory rather than in a disk file. @code{as} always does this, so this option is redundant. @item @kbd{-J} (JUMPify Longer Branches) Many 32-bit computers permit a variety of branch instructions to do the same job. Some of these instructions are short (and fast) but have a limited range; others are long (and slow) but can branch anywhere in virtual memory. Often there are 3 flavors of branch: short, medium and long. Some other assemblers would emit short and medium branches, unless told by this option to emit short and long branches. @item @kbd{-t} (Temporary File Directory) Some other assemblers may use a temporary file, and this option takes a filename being the directory to site the temporary file. @code{as} does not use a temporary disk file, so this option makes no difference. @kbd{-t} needs exactly one filename. @end table The Vax version of the assembler accepts two options when compiled for VMS. They are @kbd{-h}, and @kbd{-+}. The @kbd{-h} option prevents @code{as} from modifying the symbol-table entries for symbols that contain lowercase characters (I think). The @kbd{-+} option causes @code{as} to print warning messages if the FILENAME part of the object file, or any symbol name is larger than 31 characters. The @kbd{-+} option also insertes some code following the @samp{_main} symbol so that the object file will be compatible with Vax-11 "C". @subsection Floating Point Conversion of flonums to floating point is correct, and compatible with previous assemblers. Rounding is towards zero if the remainder is exactly half the least significant bit. @code{D}, @code{F}, @code{G} and @code{H} floating point formats are understood. Immediate floating literals (@emph{e.g.} @samp{S`$6.9}) are rendered correctly. Again, rounding is towards zero in the boundary case. The @code{.float} directive produces @code{f} format numbers. The @code{.double} directive produces @code{d} format numbers. @subsection Machine Directives The Vax version of the assembler supports four directives for generating Vax floating point constants. They are described in the table below. @table @code @item .dfloat This expects zero or more flonums, separated by commas, and assembles Vax @code{d} format 64-bit floating point constants. @item .ffloat This expects zero or more flonums, separated by commas, and assembles Vax @code{f} format 32-bit floating point constants. @item .gfloat This expects zero or more flonums, separated by commas, and assembles Vax @code{g} format 64-bit floating point constants. @item .hfloat This expects zero or more flonums, separated by commas, and assembles Vax @code{h} format 128-bit floating point constants. @end table @subsection Opcodes All DEC mnemonics are supported. Beware that @code{case@dots{}} instructions have exactly 3 operands. The dispatch table that follows the @code{case@dots{}} instruction should be made with @code{.word} statements. This is compatible with all unix assemblers we know of. @subsection Branch Improvement Certain pseudo opcodes are permitted. They are for branch instructions. They expand to the shortest branch instruction that will reach the target. Generally these mnemonics are made by substituting @samp{j} for @samp{b} at the start of a DEC mnemonic. This feature is included both for compatibility and to help compilers. If you don't need this feature, don't use these opcodes. Here are the mnemonics, and the code they can expand into. @table @code @item jbsb @samp{Jsb} is already an instruction mnemonic, so we chose @samp{jbsb}. @table @asis @item (byte displacement) @kbd{bsbb @dots{}} @item (word displacement) @kbd{bsbw @dots{}} @item (long displacement) @kbd{jsb @dots{}} @end table @item jbr @itemx jr Unconditional branch. @table @asis @item (byte displacement) @kbd{brb @dots{}} @item (word displacement) @kbd{brw @dots{}} @item (long displacement) @kbd{jmp @dots{}} @end table @item j@var{COND} @var{COND} may be any one of the conditional branches @code{neq nequ eql eqlu gtr geq lss gtru lequ vc vs gequ cc lssu cs}. @var{COND} may also be one of the bit tests @code{bs bc bss bcs bsc bcc bssi bcci lbs lbc}. @var{NOTCOND} is the opposite condition to @var{COND}. @table @asis @item (byte displacement) @kbd{b@var{COND} @dots{}} @item (word displacement) @kbd{b@var{UNCOND} foo ; brw @dots{} ; foo:} @item (long displacement) @kbd{b@var{UNCOND} foo ; jmp @dots{} ; foo:} @end table @item jacb@var{X} @var{X} may be one of @code{b d f g h l w}. @table @asis @item (word displacement) @kbd{@var{OPCODE} @dots{}} @item (long displacement) @kbd{@var{OPCODE} @dots{}, foo ; brb bar ; foo: jmp @dots{} ; bar:} @end table @item jaob@var{YYY} @var{YYY} may be one of @code{lss leq}. @item jsob@var{ZZZ} @var{ZZZ} may be one of @code{geq gtr}. @table @asis @item (byte displacement) @kbd{@var{OPCODE} @dots{}} @item (word displacement) @kbd{@var{OPCODE} @dots{}, foo ; brb bar ; foo: brw @var{destination} ; bar:} @item (long displacement) @kbd{@var{OPCODE} @dots{}, foo ; brb bar ; foo: jmp @var{destination} ; bar: } @end table @item aobleq @itemx aoblss @itemx sobgeq @itemx sobgtr @table @asis @item (byte displacement) @kbd{@var{OPCODE} @dots{}} @item (word displacement) @kbd{@var{OPCODE} @dots{}, foo ; brb bar ; foo: brw @var{destination} ; bar:} @item (long displacement) @kbd{@var{OPCODE} @dots{}, foo ; brb bar ; foo: jmp @var{destination} ; bar:} @end table @end table @subsection operands The immediate character is @samp{$} for Unix compatibility, not @samp{#} as DEC writes it. The indirect character is @samp{*} for Unix compatibility, not @samp{@@} as DEC writes it. The displacement sizing character is @samp{`} (an accent grave) for Unix compatibility, not @samp{^} as DEC writes it. The letter preceding @samp{`} may have either case. @samp{G} is not understood, but all other letters (@code{b i l s w}) are understood. Register names understood are @code{r0 r1 r2 @dots{} r15 ap fp sp pc}. Any case of letters will do. For instance @example tstb *w`$4(r5) @end example Any expression is permitted in an operand. Operands are comma separated. @c There is some bug to do with recognizing expressions @c in operands, but I forget what it is. It is @c a syntax clash because () is used as an address mode @c and to encapsulate sub-expressions. @subsection Not Supported Vax bit fields can not be assembled with @code{as}. Someone can add the required code if they really need it. @end ignore @c if 680x0 @section Options The 680x0 version of @code{as} has two machine dependent options. One shortens undefined references from 32 to 16 bits, while the other is used to tell @code{as} what kind of machine it is assembling for. You can use the @kbd{-l} option to shorten the size of references to undefined symbols. If the @kbd{-l} option is not given, references to undefined symbols will be a full long (32 bits) wide. (Since @code{as} cannot know where these symbols will end up, @code{as} can only allocate space for the linker to fill in later. Since @code{as} doesn't know how far away these symbols will be, it allocates as much space as it can.) If this option is given, the references will only be one word wide (16 bits). This may be useful if you want the object file to be as small as possible, and you know that the relevant symbols will be less than 17 bits away. The 680x0 version of @code{as} is most frequently used to assemble programs for the Motorola MC68020 microprocessor. Occasionally it is used to assemble programs for the mostly similar, but slightly different MC68000 or MC68010 microprocessors. You can give @code{as} the options @samp{-m68000}, @samp{-mc68000}, @samp{-m68010}, @samp{-mc68010}, @samp{-m68020}, and @samp{-mc68020} to tell it what processor is the target. @section Syntax The 680x0 version of @code{as} uses syntax similar to the Sun assembler. Size modifiers are appended directly to the end of the opcode without an intervening period. For example, write @samp{movl} rather than @samp{move.l}. @c pesch@cygnus.com: Vintage Release c1.37 isn't compiled with @c SUN_ASM_SYNTAX. @ignore If @code{as} is compiled with SUN_ASM_SYNTAX defined, it will also allow Sun-style local labels of the form @samp{1$} through @samp{$9}. @end ignore In the following table @dfn{apc} stands for any of the address registers (@samp{a0} through @samp{a7}), nothing, (@samp{}), the Program Counter (@samp{pc}), or the zero-address relative to the program counter (@samp{zpc}). The following addressing modes are understood: @table @dfn @item Immediate @samp{#@var{digits}} @item Data Register @samp{d0} through @samp{d7} @item Address Register @samp{a0} through @samp{a7} @item Address Register Indirect @samp{a0@@} through @samp{a7@@} @item Address Register Postincrement @samp{a0@@+} through @samp{a7@@+} @item Address Register Predecrement @samp{a0@@-} through @samp{a7@@-} @item Indirect Plus Offset @samp{@var{apc}@@(@var{digits})} @item Index @samp{@var{apc}@@(@var{digits},@var{register}:@var{size}:@var{scale})} or @samp{@var{apc}@@(@var{register}:@var{size}:@var{scale})} @item Postindex @samp{@var{apc}@@(@var{digits})@@(@var{digits},@var{register}:@var{size}:@var{scale})} or @samp{@var{apc}@@(@var{digits})@@(@var{register}:@var{size}:@var{scale})} @item Preindex @samp{@var{apc}@@(@var{digits},@var{register}:@var{size}:@var{scale})@@(@var{digits})} or @samp{@var{apc}@@(@var{register}:@var{size}:@var{scale})@@(@var{digits})} @item Memory Indirect @samp{@var{apc}@@(@var{digits})@@(@var{digits})} @item Absolute @samp{@var{symbol}}, or @samp{@var{digits}} @ignore @c pesch@cygnus.com: gnu, rich concur the following needs careful @c research before documenting. , or either of the above followed by @samp{:b}, @samp{:w}, or @samp{:l}. @end ignore @end table @section Floating Point The floating point code is not too well tested, and may have subtle bugs in it. Packed decimal (P) format floating literals are not supported. Feel free to add the code! The floating point formats generated by directives are these. @table @code @item .float @code{Single} precision floating point constants. @item .double @code{Double} precision floating point constants. @end table There is no directive to produce regions of memory holding extended precision numbers, however they can be used as immediate operands to floating-point instructions. Adding a directive to create extended precision numbers would not be hard, but it has not yet seemed necessary. @section Machine Directives In order to be compatible with the Sun assembler the 680x0 assembler understands the following directives. @table @code @item .data1 This directive is identical to a @code{.data 1} directive. @item .data2 This directive is identical to a @code{.data 2} directive. @item .even This directive is identical to a @code{.align 1} directive. @c Is this true? does it work??? @item .skip This directive is identical to a @code{.space} directive. @end table @section Opcodes @c pesch@cygnus.com: I don't see any point in the following @c paragraph. Bugs are bugs; how does saying this @c help anyone? @ignore Danger: Several bugs have been found in the opcode table (and fixed). More bugs may exist. Be careful when using obscure instructions. @end ignore @subsection Branch Improvement Certain pseudo opcodes are permitted for branch instructions. They expand to the shortest branch instruction that will reach the target. Generally these mnemonics are made by substituting @samp{j} for @samp{b} at the start of a Motorola mnemonic. The following table summarizes the pseudo-operations. A @code{*} flags cases that are more fully described after the table: @example Displacement +--------------------------------------------------------- | 68020 68000/10 Pseudo-Op |BYTE WORD LONG LONG non-PC relative +--------------------------------------------------------- jbsr |bsrs bsr bsrl jsr jsr jra |bras bra bral jmp jmp * jXX |bXXs bXX bXXl bNXs;jmpl bNXs;jmp * dbXX |dbXX dbXX dbXX; bra; jmpl * fjXX |fbXXw fbXXw fbXXl fbNXw;jmp XX: condition NX: negative of condition XX @end example @center{@code{*}---see full description below} @table @code @item jbsr @itemx jra These are the simplest jump pseudo-operations; they always map to one particular machine instruction, depending on the displacement to the branch target. @item j@var{XX} Here, @samp{j@var{XX}} stands for an entire family of pseudo-operations, where @var{XX} is a conditional branch or condition-code test. The full list of pseudo-ops in this family is: @example jhi jls jcc jcs jne jeq jvc jvs jpl jmi jge jlt jgt jle @end example For the cases of non-PC relative displacements and long displacements on the 68000 or 68010, @code{as} will issue a longer code fragment in terms of @var{NX}, the opposite condition to @var{XX}: @example j@var{XX} foo @end example gives @example b@var{NX}s oof jmp foo oof: @end example @item db@var{XX} The full family of pseudo-operations covered here is @example dbhi dbls dbcc dbcs dbne dbeq dbvc dbvs dbpl dbmi dbge dblt dbgt dble dbf dbra dbt @end example Other than for word and byte displacements, when the source reads @samp{db@var{XX} foo}, @code{as} will emit @example db@var{XX} oo1 bra oo2 oo1:jmpl foo oo2: @end example @item fj@var{XX} This family includes @example fjne fjeq fjge fjlt fjgt fjle fjf fjt fjgl fjgle fjnge fjngl fjngle fjngt fjnle fjnlt fjoge fjogl fjogt fjole fjolt fjor fjseq fjsf fjsne fjst fjueq fjuge fjugt fjule fjult fjun @end example For branch targets that are not PC relative, @code{as} emits @example fb@var{NX} oof jmp foo oof: @end example when it encounters @samp{fj@var{XX} foo}. @end table @subsection Special Characters The immediate character is @samp{#} for Sun compatibility. The line-comment character is @samp{|}. If a @samp{#} appears at the beginning of a line, it is treated as a comment unless it looks like @samp{# line file}, in which case it is treated normally. @c fi 680x0 @c pesch@cygnus.com: see remarks at ignore for vax. @ignore @section 32x32 @section Options The 32x32 version of @code{as} accepts a @kbd{-m32032} option to specify thiat it is compiling for a 32032 processor, or a @kbd{-m32532} to specify that it is compiling for a 32532 option. The default (if neither is specified) is chosen when the assembler is compiled. @subsection Syntax I don't know anything about the 32x32 syntax assembled by @code{as}. Someone who undersands the processor (I've never seen one) and the possible syntaxes should write this section. @subsection Floating Point The 32x32 uses IEEE floating point numbers, but @code{as} will only create single or double precision values. I don't know if the 32x32 understands extended precision numbers. @subsection Machine Directives The 32x32 has no machine dependent directives. @section Sparc @subsection Options The sparc has no machine dependent options. @subsection syntax I don't know anything about Sparc syntax. Someone who does will have to write this section. @subsection Floating Point The Sparc uses ieee floating-point numbers. @subsection Machine Directives The Sparc version of @code{as} supports the following additional machine directives: @table @code @item .common This must be followed by a symbol name, a positive number, and @code{"bss"}. This behaves somewhat like @code{.comm}, but the syntax is different. @item .global This is functionally identical to @code{.globl}. @item .half This is functionally identical to @code{.short}. @item .proc This directive is ignored. Any text following it on the same line is also ignored. @item .reserve This must be followed by a symbol name, a positive number, and @code{"bss"}. This behaves somewhat like @code{.lcomm}, but the syntax is different. @item .seg This must be followed by @code{"text"}, @code{"data"}, or @code{"data1"}. It behaves like @code{.text}, @code{.data}, or @code{.data 1}. @item .skip This is functionally identical to the .space directive. @item .word On the Sparc, the .word directive produces 32 bit values, instead of the 16 bit values it produces on every other machine. @end table @section Intel 80386 @subsection Options The 80386 has no machine dependent options. @subsection AT&T Syntax versus Intel Syntax In order to maintain compatibility with the output of @code{GCC}, @code{as} supports AT&T System V/386 assembler syntax. This is quite different from Intel syntax. We mention these differences because almost all 80386 documents used only Intel syntax. Notable differences between the two syntaxes are: @itemize @bullet @item AT&T immediate operands are preceded by @samp{$}; Intel immediate operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}). AT&T register operands are preceded by @samp{%}; Intel register operands are undelimited. AT&T absolute (as opposed to PC relative) jump/call operands are prefixed by @samp{*}; they are undelimited in Intel syntax. @item AT&T and Intel syntax use the opposite order for source and destination operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The @samp{source, dest} convention is maintained for compatibility with previous Unix assemblers. @item In AT&T syntax the size of memory operands is determined from the last character of the opcode name. Opcode suffixes of @samp{b}, @samp{w}, and @samp{l} specify byte (8-bit), word (16-bit), and long (32-bit) memory references. Intel syntax accomplishes this by prefixes memory operands (@emph{not} the opcodes themselves) with @samp{byte ptr}, @samp{word ptr}, and @samp{dword ptr}. Thus, Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T syntax. @item Immediate form long jumps and calls are @samp{lcall/ljmp $@var{segment}, $@var{offset}} in AT&T syntax; the Intel syntax is @samp{call/jmp far @var{segment}:@var{offset}}. Also, the far return instruction is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is @samp{ret far @var{stack-adjust}}. @item The AT&T assembler does not provide support for multiple segment programs. Unix style systems expect all programs to be single segments. @end itemize @subsection Opcode Naming Opcode names are suffixed with one character modifiers which specify the size of operands. The letters @samp{b}, @samp{w}, and @samp{l} specify byte, word, and long operands. If no suffix is specified by an instruction and it contains no memory operands then @code{as} tries to fill in the missing suffix based on the destination register operand (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to @samp{movw $1, %bx}. Note that this is incompatible with the AT&T Unix assembler which assumes that a missing opcode suffix implies long operand size. (This incompatibility does not affect compiler output since compilers always explicitly specify the opcode suffix.) Almost all opcodes have the same names in AT&T and Intel format. There are a few exceptions. The sign extend and zero extend instructions need two sizes to specify them. They need a size to sign/zero extend @emph{from} and a size to zero extend @emph{to}. This is accomplished by using two opcode suffixes in AT&T syntax. Base names for sign extend and zero extend are @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx} and @samp{movzx} in Intel syntax). The opcode suffixes are tacked on to this base name, the @emph{from} suffix before the @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes, thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word), and @samp{wl} (from word to long). The Intel syntax conversion instructions @itemize @bullet @item @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax}, @item @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax}, @item @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax}, @item @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax}, @end itemize are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, and @samp{cltd} in AT&T naming. @code{as} accepts either naming for these instructions. Far call/jump instructions are @samp{lcall} and @samp{ljmp} in AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel convention. @subsection Register Naming Register operands are always prefixes with @samp{%}. The 80386 registers consist of @itemize @bullet @item the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx}, @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the frame pointer), and @samp{%esp} (the stack pointer). @item the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx}, @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}. @item the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh}, @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx}, @samp{%cx}, and @samp{%dx}) @item the 6 segment registers @samp{%cs} (code segment), @samp{%ds} (data segment), @samp{%ss} (stack segment), @samp{%es}, @samp{%fs}, and @samp{%gs}. @item the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and @samp{%cr3}. @item the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2}, @samp{%db3}, @samp{%db6}, and @samp{%db7}. @item the 2 test registers @samp{%tr6} and @samp{%tr7}. @item the 8 floating point register stack @samp{%st} or equivalently @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)}, @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}. @end itemize @subsection Opcode Prefixes Opcode prefixes are used to modify the following opcode. They are used to repeat string instructions, to provide segment overrides, to perform bus lock operations, and to give operand and address size (16-bit operands are specified in an instruction by prefixing what would normally be 32-bit operands with a ``operand size'' opcode prefix). Opcode prefixes are usually given as single-line instructions with no operands, and must directly precede the instruction they act upon. For example, the @samp{scas} (scan string) instruction is repeated with: @example repne scas @end example Here is a list of opcode prefixes: @itemize @bullet @item Segment override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es}, @samp{fs}, @samp{gs}. These are automatically added by specifying using the @var{segment}:@var{memory-operand} form for memory references. @item Operand/Address size prefixes @samp{data16} and @samp{addr16} change 32-bit operands/addresses into 16-bit operands/addresses. Note that 16-bit addressing modes (i.e. 8086 and 80286 addressing modes) are not supported (yet). @item The bus lock prefix @samp{lock} inhibits interrupts during execution of the instruction it precedes. (This is only valid with certain instructions; see a 80386 manual for details). @item The wait for coprocessor prefix @samp{wait} waits for the coprocessor to complete the current instruction. This should never be needed for the 80386/80387 combination. @item The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added to string instructions to make them repeat @samp{%ecx} times. @end itemize @subsection Memory References An Intel syntax indirect memory reference of the form @example @var{segment}:[@var{base} + @var{index}*@var{scale} + @var{disp}] @end example is translated into the AT&T syntax @example @var{segment}:@var{disp}(@var{base}, @var{index}, @var{scale}) @end example where @var{base} and @var{index} are the optional 32-bit base and index registers, @var{disp} is the optional displacement, and @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index} to calculate the address of the operand. If no @var{scale} is specified, @var{scale} is taken to be 1. @var{segment} specifies the optional segment register for the memory operand, and may override the default segment register (see a 80386 manual for segment register defaults). Note that segment overrides in AT&T syntax @emph{must} have be preceded by a @samp{%}. If you specify a segment override which coincides with the default segment register, @code{as} will @emph{not} output any segment register override prefixes to assemble the given instruction. Thus, segment overrides can be specified to emphasize which segment register is used for a given memory operand. Here are some examples of Intel and AT&T style memory references: @table @asis @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]} @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{segment} is missing, and the default segment is used (@samp{%ss} for addressing with @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing. @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]} @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is @samp{foo}. All other fields are missing. The segment register here defaults to @samp{%ds}. @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]} This uses the value pointed to by @samp{foo} as a memory operand. Note that @var{base} and @var{index} are both missing, but there is only @emph{one} @samp{,}. This is a syntactic exception. @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo} This selects the contents of the variable @samp{foo} with segment register @var{segment} being @samp{%gs}. @end table Absolute (as opposed to PC relative) call and jump operands must be prefixed with @samp{*}. If no @samp{*} is specified, @code{as} will always choose PC relative addressing for jump/call labels. Any instruction that has a memory operand @emph{must} specify its size (byte, word, or long) with an opcode suffix (@samp{b}, @samp{w}, or @samp{l}, respectively). @subsection Handling of Jump Instructions Jump instructions are always optimized to use the smallest possible displacements. This is accomplished by using byte (8-bit) displacement jumps whenever the target is sufficiently close. If a byte displacement is insufficient a long (32-bit) displacement is used. We do not support word (16-bit) displacement jumps (i.e. prefixing the jump instruction with the @samp{addr16} opcode prefix), since the 80386 insists upon masking @samp{%eip} to 16 bits after the word displacement is added. Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz}, @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte displacements, so that it is possible that use of these instructions (@code{GCC} does not use them) will cause the assembler to print an error message (and generate incorrect code). The AT&T 80386 assembler tries to get around this problem by expanding @samp{jcxz foo} to @example jcxz cx_zero jmp cx_nonzero cx_zero: jmp foo cx_nonzero: @end example @subsection Floating Point All 80387 floating point types except packed BCD are supported. (BCD support may be added without much difficulty). These data types are 16-, 32-, and 64- bit integers, and single (32-bit), double (64-bit), and extended (80-bit) precision floating point. Each supported type has an opcode suffix and a constructor associated with it. Opcode suffixes specify operand's data types. Constructors build these data types into memory. @itemize @bullet @item Floating point constructors are @samp{.float} or @samp{.single}, @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats. These correspond to opcode suffixes @samp{s}, @samp{l}, and @samp{t}. @samp{t} stands for temporary real, and that the 80387 only supports this format via the @samp{fldt} (load temporary real to stack top) and @samp{fstpt} (store temporary real and pop stack) instructions. @item Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The corresponding opcode suffixes are @samp{s} (single), @samp{l} (long), and @samp{q} (quad). As with the temporary real format the 64-bit @samp{q} format is only present in the @samp{fildq} (load quad integer to stack top) and @samp{fistpq} (store quad integer and pop stack) instructions. @end itemize Register to register operations do not require opcode suffixes, so that @samp{fst %st, %st(1)} is equivalent to @samp{fstl %st, %st(1)}. Since the 80387 automatically synchronizes with the 80386 @samp{fwait} instructions are almost never needed (this is not the case for the 80286/80287 and 8086/8087 combinations). Therefore, @code{as} supresses the @samp{fwait} instruction whenever it is implicitly selected by one of the @samp{fn@dots{}} instructions. For example, @samp{fsave} and @samp{fnsave} are treated identically. In general, all the @samp{fn@dots{}} instructions are made equivalent to @samp{f@dots{}} instructions. If @samp{fwait} is desired it must be explicitly coded. @subsection Notes There is some trickery concerning the @samp{mul} and @samp{imul} instructions that deserves mention. The 16-, 32-, and 64-bit expanding multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5 for @samp{imul}) can be output only in the one operand form. Thus, @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply; the expanding multiply would clobber the @samp{%edx} register, and this would confuse @code{GCC} output. Use @samp{imul %ebx} to get the 64-bit product in @samp{%edx:%eax}. We have added a two operand form of @samp{imul} when the first operand is an immediate mode expression and the second operand is a register. This is just a shorthand, so that, multiplying @samp{%eax} by 69, for example, can be done with @samp{imul $69, %eax} rather than @samp{imul $69, %eax, %eax}. @end ignore @c pesch@cygnus.com: we also ignore the following chapters, but for @c a different reason---internals are changing @c rapidly. These may need to be moved to another @c book anyhow, if we adopt the model of user/modifier @c books. @ignore @node Maintenance, Retargeting, Machine Dependent, top @chapter Maintaining the Assembler [[this chapter is still being built]] @section Design We had these goals, in descending priority: @table @b @item Accuracy. For every program composed by a compiler, @code{as} should emit ``correct'' code. This leaves some latitude in choosing addressing modes, order of @code{relocation_info} structures in the object file, @emph{etc}. @item Speed, for usual case. By far the most common use of @code{as} will be assembling compiler emissions. @item Upward compatibility for existing assembler code. Well @dots{} we don't support Vax bit fields but everything else seems to be upward compatible. @item Readability. The code should be maintainable with few surprises. (JF: ha!) @end table We assumed that disk I/O was slow and expensive while memory was fast and access to memory was cheap. We expect the in-memory data structures to be less than 10 times the size of the emitted object file. (Contrast this with the C compiler where in-memory structures might be 100 times object file size!) This suggests: @itemize @bullet @item Try to read the source file from disk only one time. For other reasons, we keep large chunks of the source file in memory during assembly so this is not a problem. Also the assembly algorithm should only scan the source text once if the compiler composed the text according to a few simple rules. @item Emit the object code bytes only once. Don't store values and then backpatch later. @item Build the object file in memory and do direct writes to disk of large buffers. @end itemize RMS suggested a one-pass algorithm which seems to work well. By not parsing text during a second pass considerable time is saved on large programs (@emph{e.g.} the sort of C program @code{yacc} would emit). It happened that the data structures needed to emit relocation information to the object file were neatly subsumed into the data structures that do backpatching of addresses after pass 1. Many of the functions began life as re-usable modules, loosely connected. RMS changed this to gain speed. For example, input parsing routines which used to work on pre-sanitized strings now must parse raw data. Hence they have to import knowledge of the assemblers' comment conventions @emph{etc}. @section Deprecated Feature(?)s We have stopped supporting some features: @itemize @bullet @item @code{.org} statements must have @b{defined} expressions. @item Vax Bit fields (@kbd{:} operator) are entirely unsupported. @end itemize It might be a good idea to not support these features in a future release: @itemize @bullet @item @kbd{#} should begin a comment, even in column 1. @item Why support the logical line & file concept any more? @item Subsegments are a good candidate for flushing. Depends on which compilers need them I guess. @end itemize @section Bugs, Ideas, Further Work Clearly the major improvement is DON'T USE A TEXT-READING ASSEMBLER for the back end of a compiler. It is much faster to interpret binary gobbledygook from a compiler's tables than to ask the compiler to write out human-readable code just so the assembler can parse it back to binary. Assuming you use @code{as} for human written programs: here are some ideas: @itemize @bullet @item Document (here) @code{APP}. @item Take advantage of knowing no spaces except after opcode to speed up @code{as}. (Modify @code{app.c} to flush useless spaces: only keep space/tabs at begin of line or between 2 symbols.) @item Put pointers in this documentation to @file{a.out} documentation. @item Split the assembler into parts so it can gobble direct binary from @emph{e.g.} @code{cc}. It is silly for@code{cc} to compose text just so @code{as} can parse it back to binary. @item Rewrite hash functions: I want a more modular, faster library. @item Clean up LOTS of code. @item Include all the non-@file{.c} files in the maintenance chapter. @item Document flonums. @item Implement flonum short literals. @item Change all talk of expression operands to expression quantities, or perhaps to expression arguments. @item Implement pass 2. @item Whenever a @code{.text} or @code{.data} statement is seen, we close of the current frag with an imaginary @code{.fill 0}. This is because we only have one obstack for frags, and we can't grow new frags for a new subsegment, then go back to the old subsegment and append bytes to the old frag. All this nonsense goes away if we give each subsegment its own obstack. It makes code simpler in about 10 places, but nobody has bothered to do it because C compiler output rarely changes subsegments (compared to ending frags with relaxable addresses, which is common). @end itemize @section Sources @c The following files in the @file{as} directory @c are symbolic links to other files, of @c the same name, in a different directory. @c @itemize @bullet @c @item @c @file{atof_generic.c} @c @item @c @file{atof_vax.c} @c @item @c @file{flonum_const.c} @c @item @c @file{flonum_copy.c} @c @item @c @file{flonum_get.c} @c @item @c @file{flonum_multip.c} @c @item @c @file{flonum_normal.c} @c @item @c @file{flonum_print.c} @c @end itemize Here is a list of the source files in the @file{as} directory. @table @file @item app.c This contains the pre-processing phase, which deletes comments, handles whitespace, etc. This was recently re-written, since app used to be a separate program, but RMS wanted it to be inline. @item append.c This is a subroutine to append a string to another string returning a pointer just after the last @code{char} appended. (JF: All these little routines should probably all be put in one file.) @item as.c Here you will find the main program of the assembler @code{as}. @item expr.c This is a branch office of @file{read.c}. This understands expressions, arguments. Inside @code{as}, arguments are called (expression) @emph{operands}. This is confusing, because we also talk (elsewhere) about instruction @emph{operands}. Also, expression operands are called @emph{quantities} explicitly to avoid confusion with instruction operands. What a mess. @item frags.c This implements the @b{frag} concept. Without frags, finding the right size for branch instructions would be a lot harder. @item hash.c This contains the symbol table, opcode table @emph{etc.} hashing functions. @item hex_value.c This is a table of values of digits, for use in atoi() type functions. Could probably be flushed by using calls to strtol(), or something similar. @item input-file.c This contains Operating system dependent source file reading routines. Since error messages often say where we are in reading the source file, they live here too. Since @code{as} is intended to run under GNU and Unix only, this might be worth flushing. Anyway, almost all C compilers support stdio. @item input-scrub.c This deals with calling the pre-processor (if needed) and feeding the chunks back to the rest of the assembler the right way. @item messages.c This contains operating system independent parts of fatal and warning message reporting. See @file{append.c} above. @item output-file.c This contains operating system dependent functions that write an object file for @code{as}. See @file{input-file.c} above. @item read.c This implements all the directives of @code{as}. This also deals with passing input lines to the machine dependent part of the assembler. @item strstr.c This is a C library function that isn't in most C libraries yet. See @file{append.c} above. @item subsegs.c This implements subsegments. @item symbols.c This implements symbols. @item write.c This contains the code to perform relaxation, and to write out the object file. It is mostly operating system independent, but different OSes have different object file formats in any case. @item xmalloc.c This implements @code{malloc()} or bust. See @file{append.c} above. @item xrealloc.c This implements @code{realloc()} or bust. See @file{append.c} above. @item atof-generic.c The following files were taken from a machine-independent subroutine library for manipulating floating point numbers and very large integers. @file{atof-generic.c} turns a string into a flonum internal format floating-point number. @item flonum-const.c This contains some potentially useful floating point numbers in flonum format. @item flonum-copy.c This copies a flonum. @item flonum-multip.c This multiplies two flonums together. @item bignum-copy.c This copies a bignum. @end table Here is a table of all the machine-specific files (this includes both source and header files). Typically, there is a @var{machine}.c file, a @var{machine}-opcode.h file, and an atof-@var{machine}.c file. The @var{machine}-opcode.h file should be identical to the one used by GDB (which uses it for disassembly.) @table @file @item atof-ieee.c This contains code to turn a flonum into a ieee literal constant. This is used by tye 680x0, 32x32, sparc, and i386 versions of @code{as}. @item i386-opcode.h This is the opcode-table for the i386 version of the assembler. @item i386.c This contains all the code for the i386 version of the assembler. @item i386.h This defines constants and macros used by the i386 version of the assembler. @item m-generic.h generic 68020 header file. To be linked to m68k.h on a non-sun3, non-hpux system. @item m-sun2.h 68010 header file for Sun2 workstations. Not well tested. To be linked to m68k.h on a sun2. (See also @samp{-DSUN_ASM_SYNTAX} in the @file{Makefile}.) @item m-sun3.h 68020 header file for Sun3 workstations. To be linked to m68k.h before compiling on a Sun3 system. (See also @samp{-DSUN_ASM_SYNTAX} in the @file{Makefile}.) @item m-hpux.h 68020 header file for a HPUX (system 5?) box. Which box, which version of HPUX, etc? I don't know. @item m68k.h A hard- or symbolic- link to one of @file{m-generic.h}, @file{m-hpux.h} or @file{m-sun3.h} depending on which kind of 680x0 you are assembling for. (See also @samp{-DSUN_ASM_SYNTAX} in the @file{Makefile}.) @item m68k-opcode.h Opcode table for 68020. This is now a link to the opcode table in the @code{GDB} source directory. @item m68k.c All the mc680x0 code, in one huge, slow-to-compile file. @item ns32k.c This contains the code for the ns32032/ns32532 version of the assembler. @item ns32k-opcode.h This contains the opcode table for the ns32032/ns32532 version of the assembler. @item vax-inst.h Vax specific file for describing Vax operands and other Vax-ish things. @item vax-opcode.h Vax opcode table. @item vax.c Vax specific parts of @code{as}. Also includes the former files @file{vax-ins-parse.c}, @file{vax-reg-parse.c} and @file{vip-op.c}. @item atof-vax.c Turns a flonum into a Vax constant. @item vms.c This file contains the special code needed to put out a VMS style object file for the Vax. @end table Here is a list of the header files in the source directory. (Warning: This section may not be very accurate. I didn't write the header files; I just report them.) Also note that I think many of these header files could be cleaned up or eliminated. @table @file @item a.out.h This describes the structures used to create the binary header data inside the object file. Perhaps we should use the one in @file{/usr/include}? @item as.h This defines all the globally useful things, and pulls in and . @item bignum.h This defines macros useful for dealing with bignums. @item expr.h Structure and macros for dealing with expression() @item flonum.h This defines the structure for dealing with floating point numbers. It #includes @file{bignum.h}. @item frags.h This contains macro for appending a byte to the current frag. @item hash.h Structures and function definitions for the hashing functions. @item input-file.h Function headers for the input-file.c functions. @item md.h structures and function headers for things defined in the machine dependent part of the assembler. @item obstack.h This is the GNU systemwide include file for manipulating obstacks. Since nobody is running under real GNU yet, we include this file. @item read.h Macros and function headers for reading in source files. @item struct-symbol.h Structure definition and macros for dealing with the gas internal form of a symbol. @item subsegs.h structure definition for dealing with the numbered subsegments of the text and data segments. @item symbols.h Macros and function headers for dealing with symbols. @item write.h Structure for doing segment fixups. @end table @comment ~subsection Test Directory @comment (Note: The test directory seems to have disappeared somewhere @comment along the line. If you want it, you'll probably have to find a @comment REALLY OLD dump tape~dots{}) @comment @comment The ~file{test/} directory is used for regression testing. @comment After you modify ~code{as}, you can get a quick go/nogo @comment confidence test by running the new ~code{as} over the source @comment files in this directory. You use a shell script ~file{test/do}. @comment @comment The tests in this suite are evolving. They are not comprehensive. @comment They have, however, caught hundreds of bugs early in the debugging @comment cycle of ~code{as}. Most test statements in this suite were naturally @comment selected: they were used to demonstrate actual ~code{as} bugs rather @comment than being written ~i{a prioi}. @comment @comment Another testing suggestion: over 30 bugs have been found simply by @comment running examples from this manual through ~code{as}. @comment Some examples in this manual are selected @comment to distinguish boundary conditions; they are good for testing ~code{as}. @comment @comment ~subsubsection Regression Testing @comment Each regression test involves assembling a file and comparing the @comment actual output of ~code{as} to ``known good'' output files. Both @comment the object file and the error/warning message file (stderr) are @comment inspected. Optionally ~code{as}' exit status may be checked. @comment Discrepencies are reported. Each discrepency means either that @comment you broke some part of ~code{as} or that the ``known good'' files @comment are now out of date and should be changed to reflect the new @comment definition of ``good''. @comment @comment Each regression test lives in its own directory, in a tree @comment rooted in the directory ~file{test/}. Each such directory @comment has a name ending in ~file{.ret}, where `ret' stands for @comment REgression Test. The ~file{.ret} ending allows ~code{find @comment (1)} to find all regression tests in the tree, without @comment needing to list them explicitly. @comment @comment Any ~file{.ret} directory must contain a file called @comment ~file{input} which is the source file to assemble. During @comment testing an object file ~file{output} is created, as well as @comment a file ~file{stdouterr} which contains the output to both @comment stderr and stderr. If there is a file ~file{output.good} in @comment the directory, and if ~file{output} contains exactly the @comment same data as ~file{output.good}, the file ~file{output} is @comment deleted. Likewise ~file{stdouterr} is removed if it exactly @comment matches a file ~file{stdouterr.good}. If file @comment ~file{status.good} is present, containing a decimal number @comment before a newline, the exit status of ~code{as} is compared @comment to this number. If the status numbers are not equal, a file @comment ~file{status} is written to the directory, containing the @comment actual status as a decimal number followed by newline. @comment @comment Should any of the ~file{*.good} files fail to match their corresponding @comment actual files, this is noted by a 1-line message on the screen during @comment the regression test, and you can use ~code{find (1)} to find any @comment files named ~file{status}, ~file {output} or ~file{stdouterr}. @comment @node Retargeting, License, Maintenance, top @chapter Teaching the Assembler about a New Machine This chapter describes the steps required in order to make the assembler work with another machine's assembly language. This chapter is not complete, and only describes the steps in the broadest terms. You should look at the source for the currently supported machine in order to discover some of the details that aren't mentioned here. You should create a new file called @file{@var{machine}.c}, and add the appropriate lines to the file @file{Makefile} so that you can compile your new version of the assembler. This should be straighforward; simply add lines similar to the ones there for the four current versions of the assembler. If you want to be compatible with GDB, (and the current machine-dependent versions of the assembler), you should create a file called @file{@var{machine}-opcode.h} which should contain all the information about the names of the machine instructions, their opcodes, and what addressing modes they support. If you do this right, the assembler and GDB can share this file, and you'll only have to write it once. Note that while you're writing @code{as}, you may want to use an independent program (if you have access to one), to make sure that @code{as} is emitting the correct bytes. Since @code{as} and @code{GDB} share the opcode table, an incorrect opcode table entry may make invalid bytes look OK when you disassemble them with @code{GDB}. @section Functions You will Have to Write Your file @file{@var{machine}.c} should contain definitions for the following functions and variables. It will need to include some header files in order to use some of the structures defined in the machine-independent part of the assembler. The needed header files are mentioned in the descriptions of the functions that will need them. @table @code @item long omagic; This long integer holds the value to place at the beginning of the @file{a.out} file. It is usually @samp{OMAGIC}, except on machines that store additional information in the magic-number. @item char comment_chars[]; This character array holds the values of the characters that start a comment anywhere in a line. Comments are stripped off automatically by the machine independent part of the assembler. Note that the @samp{/*} will always start a comment, and that only @samp{*/} will end a comment started by @samp{*/}. @item char line_comment_chars[]; This character array holds the values of the chars that start a comment only if they are the first (non-whitespace) character on a line. If the character @samp{#} does not appear in this list, you may get unexpected results. (Various machine-independent parts of the assembler treat the comments @samp{#APP} and @samp{#NO_APP} specially, and assume that lines that start with @samp{#} are comments.) @item char EXP_CHARS[]; This character array holds the letters that can separate the mantissa and the exponent of a floating point number. Typical values are @samp{e} and @samp{E}. @item char FLT_CHARS[]; This character array holds the letters that--when they appear immediately after a leading zero--indicate that a number is a floating-point number. (Sort of how 0x indicates that a hexadecimal number follows.) @item pseudo_typeS md_pseudo_table[]; (@var{pseudo_typeS} is defined in @file{md.h}) This array contains a list of the machine_dependent directives the assembler must support. It contains the name of each pseudo op (Without the leading @samp{.}), a pointer to a function to be called when that directive is encountered, and an integer argument to be passed to that function. @item void md_begin(void) This function is called as part of the assembler's initialization. It should do any initialization required by any of your other routines. @item int md_parse_option(char **optionPTR, int *argcPTR, char ***argvPTR) This routine is called once for each option on the command line that the machine-independent part of @code{as} does not understand. This function should return non-zero if the option pointed to by @var{optionPTR} is a valid option. If it is not a valid option, this routine should return zero. The variables @var{argcPTR} and @var{argvPTR} are provided in case the option requires a filename or something similar as an argument. If the option is multi-character, @var{optionPTR} should be advanced past the end of the option, otherwise every letter in the option will be treated as a separate single-character option. @item void md_assemble(char *string) This routine is called for every machine-dependent non-directive line in the source file. It does all the real work involved in reading the opcode, parsing the operands, etc. @var{string} is a pointer to a null-terminated string, that comprises the input line, with all excess whitespace and comments removed. @item void md_number_to_chars(char *outputPTR,long value,int nbytes) This routine is called to turn a C long int, short int, or char into the series of bytes that represents that number on the target machine. @var{outputPTR} points to an array where the result should be stored; @var{value} is the value to store; and @var{nbytes} is the number of bytes in 'value' that should be stored. @item void md_number_to_imm(char *outputPTR,long value,int nbytes) This routine is called to turn a C long int, short int, or char into the series of bytes that represent an immediate value on the target machine. It is identical to the function @code{md_number_to_chars}, except on NS32K machines.@refill @item void md_number_to_disp(char *outputPTR,long value,int nbytes) This routine is called to turn a C long int, short int, or char into the series of bytes that represent an displacement value on the target machine. It is identical to the function @code{md_number_to_chars}, except on NS32K machines.@refill @item void md_number_to_field(char *outputPTR,long value,int nbytes) This routine is identical to @code{md_number_to_chars}, except on NS32K machines. @item void md_ri_to_chars(struct relocation_info *riPTR,ri) (@code{struct relocation_info} is defined in @file{a.out.h}) This routine emits the relocation info in @var{ri} in the appropriate bit-pattern for the target machine. The result should be stored in the location pointed to by @var{riPTR}. This routine may be a no-op unless you are attempting to do cross-assembly. @item char *md_atof(char type,char *outputPTR,int *sizePTR) This routine turns a series of digits into the appropriate internal representation for a floating-point number. @var{type} is a character from @var{FLT_CHARS[]} that describes what kind of floating point number is wanted; @var{outputPTR} is a pointer to an array that the result should be stored in; and @var{sizePTR} is a pointer to an integer where the size (in bytes) of the result should be stored. This routine should return an error message, or an empty string (not (char *)0) for success. @item int md_short_jump_size; This variable holds the (maximum) size in bytes of a short (16 bit or so) jump created by @code{md_create_short_jump()}. This variable is used as part of the broken-word feature, and isn't needed if the assembler is compiled with @samp{-DWORKING_DOT_WORD}. @item int md_long_jump_size; This variable holds the (maximum) size in bytes of a long (32 bit or so) jump created by @code{md_create_long_jump()}. This variable is used as part of the broken-word feature, and isn't needed if the assembler is compiled with @samp{-DWORKING_DOT_WORD}. @item void md_create_short_jump(char *resultPTR,long from_addr, @code{long to_addr,fragS *frag,symbolS *to_symbol)} This function emits a jump from @var{from_addr} to @var{to_addr} in the array of bytes pointed to by @var{resultPTR}. If this creates a type of jump that must be relocated, this function should call @code{fix_new()} with @var{frag} and @var{to_symbol}. The jump emitted by this function may be smaller than @var{md_short_jump_size}, but it must never create a larger one. (If it creates a smaller jump, the extra bytes of memory will not be used.) This function is used as part of the broken-word feature, and isn't needed if the assembler is compiled with @samp{-DWORKING_DOT_WORD}.@refill @item void md_create_long_jump(char *ptr,long from_addr, @code{long to_addr,fragS *frag,symbolS *to_symbol)} This function is similar to the previous function, @code{md_create_short_jump()}, except that it creates a long jump instead of a short one. This function is used as part of the broken-word feature, and isn't needed if the assembler is compiled with @samp{-DWORKING_DOT_WORD}. @item int md_estimate_size_before_relax(fragS *fragPTR,int segment_type) This function does the initial setting up for relaxation. This includes forcing references to still-undefined symbols to the appropriate addressing modes. @item relax_typeS md_relax_table[]; (relax_typeS is defined in md.h) This array describes the various machine dependent states a frag may be in before relaxation. You will need one group of entries for each type of addressing mode you intend to relax. @item void md_convert_frag(fragS *fragPTR) (@var{fragS} is defined in @file{as.h}) This routine does the required cleanup after relaxation. Relaxation has changed the type of the frag to a type that can reach its destination. This function should adjust the opcode of the frag to use the appropriate addressing mode. @var{fragPTR} points to the frag to clean up. @item void md_end(void) This function is called just before the assembler exits. It need not free up memory unless the operating system doesn't do it automatically on exit. (In which case you'll also have to track down all the other places where the assembler allocates space but never frees it.) @end table @section External Variables You will Need to Use You will need to refer to or change the following external variables from within the machine-dependent part of the assembler. @table @code @item extern char flagseen[]; This array holds non-zero values in locations corresponding to the options that were on the command line. Thus, if the assembler was called with @samp{-W}, @var{flagseen['W']} would be non-zero. @item extern fragS *frag_now; This pointer points to the current frag--the frag that bytes are currently being added to. If nothing else, you will need to pass it as an argument to various machine-independent functions. It is maintained automatically by the frag-manipulating functions; you should never have to change it yourself. @item extern LITTLENUM_TYPE generic_bignum[]; (@var{LITTLENUM_TYPE} is defined in @file{bignum.h}. This is where @dfn{bignums}--numbers larger than 32 bits--are returned when they are encountered in an expression. You will need to use this if you need to implement directives (or anything else) that must deal with these large numbers. @code{Bignums} are of @code{segT} @code{SEG_BIG} (defined in @file{as.h}, and have a positive @code{X_add_number}. The @code{X_add_number} of a @code{bignum} is the number of @code{LITTLENUMS} in @var{generic_bignum} that the number takes up. @item extern FLONUM_TYPE generic_floating_point_number; (@var{FLONUM_TYPE} is defined in @file{flonum.h}. The is where @dfn{flonums}--floating-point numbers within expressions--are returned. @code{Flonums} are of @code{segT} @code{SEG_BIG}, and have a negative @code{X_add_number}. @code{Flonums} are returned in a generic format. You will have to write a routine to turn this generic format into the appropriate floating-point format for your machine. @item extern int need_pass_2; If this variable is non-zero, the assembler has encountered an expression that cannot be assembled in a single pass. Since the second pass isn't implemented, this flag means that the assembler is punting, and is only looking for additional syntax errors. (Or something like that.) @item extern segT now_seg; This variable holds the value of the segment the assembler is currently assembling into. @end table @section External functions will you need You will find the following external functions useful (or indispensable) when you're writing the machine-dependent part of the assembler. @table @code @item char *frag_more(int bytes) This function allocates @var{bytes} more bytes in the current frag (or starts a new frag, if it can't expand the current frag any more.) for you to store some object-file bytes in. It returns a pointer to the bytes, ready for you to store data in. @item void fix_new(fragS *frag, int where, short size, symbolS *add_symbol, symbolS *sub_symbol, long offset, int pcrel) This function stores a relocation fixup to be acted on later. @var{frag} points to the frag the relocation belongs in; @var{where} is the location within the frag where the relocation begins; @var{size} is the size of the relocation, and is usually 1 (a single byte), 2 (sixteen bits), or 4 (a longword). The value @var{add_symbol} @minus{} @var{sub_symbol} + @var{offset}, is added to the byte(s) at @var{frag->literal[where]}. If @var{pcrel} is non-zero, the address of the location is subtracted from the result. A relocation entry is also added to the @file{a.out} file. @var{add_symbol}, @var{sub_symbol}, and/or @var{offset} may be NULL.@refill @item char *frag_var(relax_stateT type, int max_chars, int var, @code{relax_substateT subtype, symbolS *symbol, char *opcode)} This function creates a machine-dependent frag of type @var{type} (usually @code{rs_machine_dependent}). @var{max_chars} is the maximum size in bytes that the frag may grow by; @var{var} is the current size of the variable end of the frag; @var{subtype} is the sub-type of the frag. The sub-type is used to index into @var{md_relax_table[]} during @code{relaxation}. @var{symbol} is the symbol whose value should be used to when relax-ing this frag. @var{opcode} points into a byte whose value may have to be modified if the addressing mode used by this frag changes. It typically points into the @var{fr_literal[]} of the previous frag, and is used to point to a location that @code{md_convert_frag()}, may have to change.@refill @item void frag_wane(fragS *fragPTR) This function is useful from within @code{md_convert_frag}. It changes a frag to type rs_fill, and sets the variable-sized piece of the frag to zero. The frag will never change in size again. @item segT expression(expressionS *retval) (@var{segT} is defined in @file{as.h}; @var{expressionS} is defined in @file{expr.h}) This function parses the string pointed to by the external char pointer @var{input_line_pointer}, and returns the segment-type of the expression. It also stores the results in the @var{expressionS} pointed to by @var{retval}. @var{input_line_pointer} is advanced to point past the end of the expression. (@var{input_line_pointer} is used by other parts of the assembler. If you modify it, be sure to restore it to its original value.) @item as_warn(char *message,@dots{}) If warning messages are disabled, this function does nothing. Otherwise, it prints out the current file name, and the current line number, then uses @code{fprintf} to print the @var{message} and any arguments it was passed. @item as_bad(char *message,@dots{}) This function should be called when @code{as} encounters conditions that are bad enough that @code{as} should not produce an object file, but should continue reading input and printing warning and bad error messages. @item as_fatal(char *message,@dots{}) This function prints out the current file name and line number, prints the word @samp{FATAL:}, then uses @code{fprintf} to print the @var{message} and any arguments it was passed. Then the assembler exits. This function should only be used for serious, unrecoverable errors. @item void float_const(int float_type) This function reads floating-point constants from the current input line, and calls @code{md_atof} to assemble them. It is useful as the function to call for the directives @samp{.single}, @samp{.double}, @samp{.float}, etc. @var{float_type} must be a character from @var{FLT_CHARS}. @item void demand_empty_rest_of_line(void); This function can be used by machine-dependent directives to make sure the rest of the input line is empty. It prints a warning message if there are additional characters on the line. @item long int get_absolute_expression(void) This function can be used by machine-dependent directives to read an absolute number from the current input line. It returns the result. If it isn't given an absolute expression, it prints a warning message and returns zero. @end table @section The concept of Frags This assembler works to optimize the size of certain addressing modes. (e.g. branch instructions) This means the size of many pieces of object code cannot be determined until after assembly is finished. (This means that the addresses of symbols cannot be determined until assembly is finished.) In order to do this, @code{as} stores the output bytes as @dfn{frags}. Here is the definition of a frag (from @file{as.h}) @example struct frag @{ long int fr_fix; long int fr_var; relax_stateT fr_type; relax_substateT fr_substate; unsigned long fr_address; long int fr_offset; struct symbol *fr_symbol; char *fr_opcode; struct frag *fr_next; char fr_literal[]; @} @end example @table @var @item fr_fix is the size of the fixed-size piece of the frag. @item fr_var is the maximum (?) size of the variable-sized piece of the frag. @item fr_type is the type of the frag. Current types are: rs_fill rs_align rs_org rs_machine_dependent @item fr_substate This stores the type of machine-dependent frag this is. (what kind of addressing mode is being used, and what size is being tried/will fit/etc. @item fr_address @var{fr_address} is only valid after relaxation is finished. Before relaxation, the only way to store an address is (pointer to frag containing the address) plus (offset into the frag). @item fr_offset This contains a number, whose meaning depends on the type of the frag. for machine_dependent frags, this contains the offset from fr_symbol that the frag wants to go to. Thus, for branch instructions it is usually zero. (unless the instruction was @samp{jba foo+12} or something like that.) @item fr_symbol for machine_dependent frags, this points to the symbol the frag needs to reach. @item fr_opcode This points to the location in the frag (or in a previous frag) of the opcode for the instruction that caused this to be a frag. @var{fr_opcode} is needed if the actual opcode must be changed in order to use a different form of the addressing mode. (For example, if a conditional branch only comes in size tiny, a large-size branch could be implemented by reversing the sense of the test, and turning it into a tiny branch over a large jump. This would require changing the opcode.) @var{fr_literal} is a variable-size array that contains the actual object bytes. A frag consists of a fixed size piece of object data, (which may be zero bytes long), followed by a piece of object data whose size may not have been determined yet. Other information includes the type of the frag (which controls how it is relaxed), @item fr_next This is the next frag in the singly-linked list. This is usually only needed by the machine-independent part of @code{as}. @end table @end ignore @node License, , Machine Dependent, Top @unnumbered GNU GENERAL PUBLIC LICENSE @center Version 1, February 1989 @display Copyright @copyright{} 1989 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA 02139, USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. @end display @unnumberedsec Preamble The license agreements of most software companies try to keep users at the mercy of those companies. By contrast, our General Public License is intended to guarantee your freedom to share and change free software---to make sure the software is free for all its users. The General Public License applies to the Free Software Foundation's software and to any other program whose authors commit to using it. You can use it for your programs, too. When we speak of free software, we are referring to freedom, not price. Specifically, the General Public License is designed to make sure that you have the freedom to give away or sell copies of free software, that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of a such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must tell them their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. The precise terms and conditions for copying, distribution and modification follow. @iftex @unnumberedsec TERMS AND CONDITIONS @end iftex @ifinfo @center TERMS AND CONDITIONS @end ifinfo @enumerate @item This License Agreement applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The ``Program'', below, refers to any such program or work, and a ``work based on the Program'' means either the Program or any work containing the Program or a portion of it, either verbatim or with modifications. Each licensee is addressed as ``you''. @item You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this General Public License and to the absence of any warranty; and give any other recipients of the Program a copy of this General Public License along with the Program. You may charge a fee for the physical act of transferring a copy. @item You may modify your copy or copies of the Program or any portion of it, and copy and distribute such modifications under the terms of Paragraph 1 above, provided that you also do the following: @itemize @bullet @item cause the modified files to carry prominent notices stating that you changed the files and the date of any change; and @item cause the whole of any work that you distribute or publish, that in whole or in part contains the Program or any part thereof, either with or without modifications, to be licensed at no charge to all third parties under the terms of this General Public License (except that you may choose to grant warranty protection to some or all third parties, at your option). @item If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the simplest and most usual way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this General Public License. @item You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. @end itemize Mere aggregation of another independent work with the Program (or its derivative) on a volume of a storage or distribution medium does not bring the other work under the scope of these terms. @item You may copy and distribute the Program (or a portion or derivative of it, under Paragraph 2) in object code or executable form under the terms of Paragraphs 1 and 2 above provided that you also do one of the following: @itemize @bullet @item accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Paragraphs 1 and 2 above; or, @item accompany it with a written offer, valid for at least three years, to give any third party free (except for a nominal charge for the cost of distribution) a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Paragraphs 1 and 2 above; or, @item accompany it with the information you received as to where the corresponding source code may be obtained. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form alone.) @end itemize Source code for a work means the preferred form of the work for making modifications to it. For an executable file, complete source code means all the source code for all modules it contains; but, as a special exception, it need not include source code for modules which are standard libraries that accompany the operating system on which the executable file runs, or for standard header files or definitions files that accompany that operating system. @item You may not copy, modify, sublicense, distribute or transfer the Program except as expressly provided under this General Public License. Any attempt otherwise to copy, modify, sublicense, distribute or transfer the Program is void, and will automatically terminate your rights to use the Program under this License. However, parties who have received copies, or rights to use copies, from you under this General Public License will not have their licenses terminated so long as such parties remain in full compliance. @item By copying, distributing or modifying the Program (or any work based on the Program) you indicate your acceptance of this license to do so, and all its terms and conditions. @item Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. @item The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of the license which applies to it and ``any later version'', you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the license, you may choose any version ever published by the Free Software Foundation. @item If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. @iftex @heading NO WARRANTY @end iftex @ifinfo @center NO WARRANTY @end ifinfo @item BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM ``AS IS'' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. @item IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. @end enumerate @iftex @heading END OF TERMS AND CONDITIONS @end iftex @ifinfo @center END OF TERMS AND CONDITIONS @end ifinfo @page @unnumberedsec Appendix: How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to humanity, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the ``copyright'' line and a pointer to where the full notice is found. @smallexample @var{one line to give the program's name and a brief idea of what it does.} Copyright (C) 19@var{yy} @var{name of author} This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 1, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. @end smallexample Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: @smallexample Gnomovision version 69, Copyright (C) 19@var{yy} @var{name of author} Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. @end smallexample The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items---whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a ``copyright disclaimer'' for the program, if necessary. Here a sample; alter the names: @example Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (a program to direct compilers to make passes at assemblers) written by James Hacker. @var{signature of Ty Coon}, 1 April 1989 Ty Coon, President of Vice @end example That's all there is to it! @summarycontents @contents @bye