/* tc-z8k.c -- Assemble code for the Zilog Z800n Copyright 1992, 1993, 1994, 1995, 1996, 1998, 2000, 2001, 2002 Free Software Foundation, Inc. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Written By Steve Chamberlain . */ #define DEFINE_TABLE #include #include "as.h" #include "bfd.h" #include "safe-ctype.h" #include "opcodes/z8k-opc.h" const char comment_chars[] = "!"; const char line_comment_chars[] = "#"; const char line_separator_chars[] = ";"; extern int machine; extern int coff_flags; int segmented_mode; const int md_reloc_size; void cons (); void s_segm () { segmented_mode = 1; machine = bfd_mach_z8001; coff_flags = F_Z8001; } void s_unseg () { segmented_mode = 0; machine = bfd_mach_z8002; coff_flags = F_Z8002; } static void even () { frag_align (1, 0, 0); record_alignment (now_seg, 1); } void obj_coff_section (); int tohex (c) int c; { if (ISDIGIT (c)) return c - '0'; if (ISLOWER (c)) return c - 'a' + 10; return c - 'A' + 10; } void sval () { SKIP_WHITESPACE (); if (*input_line_pointer == '\'') { int c; input_line_pointer++; c = *input_line_pointer++; while (c != '\'') { if (c == '%') { c = (tohex (input_line_pointer[0]) << 4) | tohex (input_line_pointer[1]); input_line_pointer += 2; } FRAG_APPEND_1_CHAR (c); c = *input_line_pointer++; } demand_empty_rest_of_line (); } } /* This table describes all the machine specific pseudo-ops the assembler has to support. The fields are: pseudo-op name without dot function to call to execute this pseudo-op Integer arg to pass to the function */ const pseudo_typeS md_pseudo_table[] = { {"int" , cons , 2}, {"data.b" , cons , 1}, {"data.w" , cons , 2}, {"data.l" , cons , 4}, {"form" , listing_psize , 0}, {"heading", listing_title , 0}, {"import" , s_ignore , 0}, {"page" , listing_eject , 0}, {"program", s_ignore , 0}, {"z8001" , s_segm , 0}, {"z8002" , s_unseg , 0}, {"segm" , s_segm , 0}, {"unsegm" , s_unseg , 0}, {"unseg" , s_unseg , 0}, {"name" , s_app_file , 0}, {"global" , s_globl , 0}, {"wval" , cons , 2}, {"lval" , cons , 4}, {"bval" , cons , 1}, {"sval" , sval , 0}, {"rsect" , obj_coff_section, 0}, {"sect" , obj_coff_section, 0}, {"block" , s_space , 0}, {"even" , even , 0}, {0 , 0 , 0} }; const char EXP_CHARS[] = "eE"; /* Chars that mean this number is a floating point constant. As in 0f12.456 or 0d1.2345e12 */ const char FLT_CHARS[] = "rRsSfFdDxXpP"; /* Opcode mnemonics. */ static struct hash_control *opcode_hash_control; void md_begin () { opcode_entry_type *opcode; char *prev_name = ""; int idx = 0; opcode_hash_control = hash_new (); for (opcode = z8k_table; opcode->name; opcode++) { /* Only enter unique codes into the table. */ if (strcmp (opcode->name, prev_name)) { hash_insert (opcode_hash_control, opcode->name, (char *) opcode); idx++; } opcode->idx = idx; prev_name = opcode->name; } /* Default to z8002. */ s_unseg (); /* Insert the pseudo ops, too. */ for (idx = 0; md_pseudo_table[idx].poc_name; idx++) { opcode_entry_type *fake_opcode; fake_opcode = (opcode_entry_type *) malloc (sizeof (opcode_entry_type)); fake_opcode->name = md_pseudo_table[idx].poc_name; fake_opcode->func = (void *) (md_pseudo_table + idx); fake_opcode->opcode = 250; hash_insert (opcode_hash_control, fake_opcode->name, fake_opcode); } linkrelax = 1; } struct z8k_exp { char *e_beg; char *e_end; expressionS e_exp; }; typedef struct z8k_op { /* 'b','w','r','q'. */ char regsize; /* 0 .. 15. */ unsigned int reg; int mode; /* Any other register associated with the mode. */ unsigned int x_reg; /* Any expression. */ expressionS exp; } op_type; static expressionS *da_operand; static expressionS *imm_operand; int reg[16]; int the_cc; int the_ctrl; int the_flags; int the_interrupt; char * whatreg (reg, src) int *reg; char *src; { if (ISDIGIT (src[1])) { *reg = (src[0] - '0') * 10 + src[1] - '0'; return src + 2; } else { *reg = (src[0] - '0'); return src + 1; } } /* Parse operands rh0-rh7, rl0-rl7 r0-r15 rr0-rr14 rq0--rq12 WREG r0,r1,r2,r3,r4,r5,r6,r7,fp,sp r0l,r0h,..r7l,r7h @WREG @WREG+ @-WREG #const */ /* Try to parse a reg name. Return a pointer to the first character in SRC after the reg name. */ char * parse_reg (src, mode, reg) char *src; int *mode; unsigned int *reg; { char *res = 0; char regno; if (src[0] == 's' && src[1] == 'p' && (src[2] == 0 || src[2] == ',')) { if (segmented_mode) { *mode = CLASS_REG_LONG; *reg = 14; } else { *mode = CLASS_REG_WORD; *reg = 15; } return src + 2; } if (src[0] == 'r') { if (src[1] == 'r') { if (src[2] < '0' || src[2] > '9') return res; /* Assume no register name but a label starting with 'rr'. */ *mode = CLASS_REG_LONG; res = whatreg (reg, src + 2); regno = *reg; if (regno > 14) as_warn (_("register rr%d, out of range."), regno); } else if (src[1] == 'h') { if (src[2] < '0' || src[2] > '9') return res; /* Assume no register name but a label starting with 'rh'. */ *mode = CLASS_REG_BYTE; res = whatreg (reg, src + 2); regno = *reg; if (regno > 7) as_warn (_("register rh%d, out of range."), regno); } else if (src[1] == 'l') { if (src[2] < '0' || src[2] > '9') return res; /* Assume no register name but a label starting with 'rl'. */ *mode = CLASS_REG_BYTE; res = whatreg (reg, src + 2); regno = *reg; if (regno > 7) as_warn (_("register rl%d, out of range."), regno); *reg += 8; } else if (src[1] == 'q') { if (src[2] < '0' || src[2] > '9') return res; /* Assume no register name but a label starting with 'rq'. */ *mode = CLASS_REG_QUAD; res = whatreg (reg, src + 2); regno = *reg; if (regno > 12) as_warn (_("register rq%d, out of range."), regno); } else { if (src[1] < '0' || src[1] > '9') return res; /* Assume no register name but a label starting with 'r'. */ *mode = CLASS_REG_WORD; res = whatreg (reg, src + 1); regno = *reg; if (regno > 15) as_warn (_("register r%d, out of range."), regno); } } return res; } char * parse_exp (s, op) char *s; expressionS *op; { char *save = input_line_pointer; char *new; input_line_pointer = s; expression (op); if (op->X_op == O_absent) as_bad (_("missing operand")); new = input_line_pointer; input_line_pointer = save; return new; } /* The many forms of operand: @r #exp exp exp(r) r(#exp) r(r) */ static char * checkfor (ptr, what) char *ptr; char what; { if (*ptr == what) ptr++; else as_bad (_("expected %c"), what); return ptr; } /* Make sure the mode supplied is the size of a word. */ static void regword (mode, string) int mode; char *string; { int ok; ok = CLASS_REG_WORD; if (ok != mode) { as_bad (_("register is wrong size for a word %s"), string); } } /* Make sure the mode supplied is the size of an address. */ static void regaddr (mode, string) int mode; char *string; { int ok; ok = segmented_mode ? CLASS_REG_LONG : CLASS_REG_WORD; if (ok != mode) { as_bad (_("register is wrong size for address %s"), string); } } struct ctrl_names { int value; char *name; }; struct ctrl_names ctrl_table[] = { { 0x2, "fcw" }, { 0x3, "refresh" }, { 0x4, "psapseg" }, { 0x5, "psapoff" }, { 0x5, "psap" }, { 0x6, "nspseg" }, { 0x7, "nspoff" }, { 0x7, "nsp" }, { 0 , 0 } }; static void get_ctrl_operand (ptr, mode, dst) char **ptr; struct z8k_op *mode; unsigned int dst ATTRIBUTE_UNUSED; { char *src = *ptr; int i; while (*src == ' ') src++; mode->mode = CLASS_CTRL; for (i = 0; ctrl_table[i].name; i++) { int j; for (j = 0; ctrl_table[i].name[j]; j++) { if (ctrl_table[i].name[j] != src[j]) goto fail; } the_ctrl = ctrl_table[i].value; *ptr = src + j; return; fail: ; } the_ctrl = 0; return; } struct flag_names { int value; char *name; }; struct flag_names flag_table[] = { { 0x1, "p" }, { 0x1, "v" }, { 0x2, "s" }, { 0x4, "z" }, { 0x8, "c" }, { 0x0, "+" }, { 0, 0 } }; static void get_flags_operand (ptr, mode, dst) char **ptr; struct z8k_op *mode; unsigned int dst ATTRIBUTE_UNUSED; { char *src = *ptr; int i; int j; while (*src == ' ') src++; mode->mode = CLASS_FLAGS; the_flags = 0; for (j = 0; j <= 9; j++) { if (!src[j]) goto done; for (i = 0; flag_table[i].name; i++) { if (flag_table[i].name[0] == src[j]) { the_flags = the_flags | flag_table[i].value; goto match; } } goto done; match: ; } done: *ptr = src + j; return; } struct interrupt_names { int value; char *name; }; struct interrupt_names intr_table[] = { { 0x1, "nvi" }, { 0x2, "vi" }, { 0x3, "both" }, { 0x3, "all" }, { 0, 0 } }; static void get_interrupt_operand (ptr, mode, dst) char **ptr; struct z8k_op *mode; unsigned int dst ATTRIBUTE_UNUSED; { char *src = *ptr; int i; while (*src == ' ') src++; mode->mode = CLASS_IMM; for (i = 0; intr_table[i].name; i++) { int j; for (j = 0; intr_table[i].name[j]; j++) { if (intr_table[i].name[j] != src[j]) goto fail; } the_interrupt = intr_table[i].value; *ptr = src + j; return; fail: ; } the_interrupt = 0x0; return; } struct cc_names { int value; char *name; }; struct cc_names table[] = { { 0x0, "f" }, { 0x1, "lt" }, { 0x2, "le" }, { 0x3, "ule" }, { 0x4, "ov" }, { 0x4, "pe" }, { 0x5, "mi" }, { 0x6, "eq" }, { 0x6, "z" }, { 0x7, "c" }, { 0x7, "ult" }, { 0x8, "t" }, { 0x9, "ge" }, { 0xa, "gt" }, { 0xb, "ugt" }, { 0xc, "nov" }, { 0xc, "po" }, { 0xd, "pl" }, { 0xe, "ne" }, { 0xe, "nz" }, { 0xf, "nc" }, { 0xf, "uge" }, { 0 , 0 } }; static void get_cc_operand (ptr, mode, dst) char **ptr; struct z8k_op *mode; unsigned int dst ATTRIBUTE_UNUSED; { char *src = *ptr; int i; while (*src == ' ') src++; mode->mode = CLASS_CC; for (i = 0; table[i].name; i++) { int j; for (j = 0; table[i].name[j]; j++) { if (table[i].name[j] != src[j]) goto fail; } the_cc = table[i].value; *ptr = src + j; return; fail: ; } the_cc = 0x8; } static void get_operand (ptr, mode, dst) char **ptr; struct z8k_op *mode; unsigned int dst ATTRIBUTE_UNUSED; { char *src = *ptr; char *end; mode->mode = 0; while (*src == ' ') src++; if (*src == '#') { mode->mode = CLASS_IMM; imm_operand = &(mode->exp); src = parse_exp (src + 1, &(mode->exp)); } else if (*src == '@') { int d; mode->mode = CLASS_IR; src = parse_reg (src + 1, &d, &mode->reg); } else { int regn; end = parse_reg (src, &mode->mode, ®n); if (end) { int nw, nr; src = end; if (*src == '(') { src++; end = parse_reg (src, &nw, &nr); if (end) { /* Got Ra(Rb). */ src = end; if (*src != ')') as_bad (_("Missing ) in ra(rb)")); else src++; regaddr (mode->mode, "ra(rb) ra"); #if 0 regword (mode->mode, "ra(rb) rb"); #endif mode->mode = CLASS_BX; mode->reg = regn; mode->x_reg = nr; reg[ARG_RX] = nr; } else { /* Got Ra(disp). */ if (*src == '#') src++; src = parse_exp (src, &(mode->exp)); src = checkfor (src, ')'); mode->mode = CLASS_BA; mode->reg = regn; mode->x_reg = 0; imm_operand = &(mode->exp); } } else { mode->reg = regn; mode->x_reg = 0; } } else { /* No initial reg. */ src = parse_exp (src, &(mode->exp)); if (*src == '(') { src++; end = parse_reg (src, &(mode->mode), ®n); regword (mode->mode, "addr(Ra) ra"); mode->mode = CLASS_X; mode->reg = regn; mode->x_reg = 0; da_operand = &(mode->exp); src = checkfor (end, ')'); } else { /* Just an address. */ mode->mode = CLASS_DA; mode->reg = 0; mode->x_reg = 0; da_operand = &(mode->exp); } } } *ptr = src; } static char * get_operands (opcode, op_end, operand) opcode_entry_type *opcode; char *op_end; op_type *operand; { char *ptr = op_end; char *savptr; switch (opcode->noperands) { case 0: operand[0].mode = 0; operand[1].mode = 0; break; case 1: ptr++; if (opcode->arg_info[0] == CLASS_CC) { get_cc_operand (&ptr, operand + 0, 0); } else if (opcode->arg_info[0] == CLASS_FLAGS) { get_flags_operand (&ptr, operand + 0, 0); } else if (opcode->arg_info[0] == (CLASS_IMM + (ARG_IMM2))) { get_interrupt_operand (&ptr, operand + 0, 0); } else { get_operand (&ptr, operand + 0, 0); } operand[1].mode = 0; break; case 2: ptr++; savptr = ptr; if (opcode->arg_info[0] == CLASS_CC) { get_cc_operand (&ptr, operand + 0, 0); } else if (opcode->arg_info[0] == CLASS_CTRL) { get_ctrl_operand (&ptr, operand + 0, 0); if (the_ctrl == 0) { ptr = savptr; get_operand (&ptr, operand + 0, 0); if (ptr == 0) return NULL; if (*ptr == ',') ptr++; get_ctrl_operand (&ptr, operand + 1, 1); return ptr; } } else { get_operand (&ptr, operand + 0, 0); } if (ptr == 0) return NULL; if (*ptr == ',') ptr++; get_operand (&ptr, operand + 1, 1); break; case 3: ptr++; get_operand (&ptr, operand + 0, 0); if (*ptr == ',') ptr++; get_operand (&ptr, operand + 1, 1); if (*ptr == ',') ptr++; get_operand (&ptr, operand + 2, 2); break; case 4: ptr++; get_operand (&ptr, operand + 0, 0); if (*ptr == ',') ptr++; get_operand (&ptr, operand + 1, 1); if (*ptr == ',') ptr++; get_operand (&ptr, operand + 2, 2); if (*ptr == ',') ptr++; get_cc_operand (&ptr, operand + 3, 3); break; default: abort (); } return ptr; } /* Passed a pointer to a list of opcodes which use different addressing modes. Return the opcode which matches the opcodes provided. */ static opcode_entry_type * get_specific (opcode, operands) opcode_entry_type *opcode; op_type *operands; { opcode_entry_type *this_try = opcode; int found = 0; unsigned int noperands = opcode->noperands; int this_index = opcode->idx; while (this_index == opcode->idx && !found) { unsigned int i; this_try = opcode++; for (i = 0; i < noperands; i++) { unsigned int mode = operands[i].mode; if ((mode & CLASS_MASK) != (this_try->arg_info[i] & CLASS_MASK)) { /* It could be an pc rel operand, if this is a da mode and we like disps, then insert it. */ if (mode == CLASS_DA && this_try->arg_info[i] == CLASS_DISP) { /* This is the case. */ operands[i].mode = CLASS_DISP; } else if (mode == CLASS_BA && this_try->arg_info[i]) { /* Can't think of a way to turn what we've been given into something that's OK. */ goto fail; } else if (this_try->arg_info[i] & CLASS_PR) { if (mode == CLASS_REG_LONG && segmented_mode) { /* OK. */ } else if (mode == CLASS_REG_WORD && !segmented_mode) { /* OK. */ } else goto fail; } else goto fail; } switch (mode & CLASS_MASK) { default: break; case CLASS_X: case CLASS_IR: case CLASS_BA: case CLASS_BX: case CLASS_DISP: case CLASS_REG: case CLASS_REG_WORD: case CLASS_REG_BYTE: case CLASS_REG_QUAD: case CLASS_REG_LONG: case CLASS_REGN0: reg[this_try->arg_info[i] & ARG_MASK] = operands[i].reg; break; } } found = 1; fail: ; } if (found) return this_try; else return 0; } #if 0 /* Not used. */ static void check_operand (operand, width, string) struct z8k_op *operand; unsigned int width; char *string; { if (operand->exp.X_add_symbol == 0 && operand->exp.X_op_symbol == 0) { /* No symbol involved, let's look at offset, it's dangerous if any of the high bits are not 0 or ff's, find out by oring or anding with the width and seeing if the answer is 0 or all fs. */ if ((operand->exp.X_add_number & ~width) != 0 && (operand->exp.X_add_number | width) != (~0)) { as_warn (_("operand %s0x%x out of range."), string, operand->exp.X_add_number); } } } #endif static char buffer[20]; static void newfix (ptr, type, operand) int ptr; int type; expressionS *operand; { if (operand->X_add_symbol || operand->X_op_symbol || operand->X_add_number) { fix_new_exp (frag_now, ptr, 1, operand, 0, type); } } static char * apply_fix (ptr, type, operand, size) char *ptr; int type; expressionS *operand; int size; { int n = operand->X_add_number; newfix ((ptr - buffer) / 2, type, operand); switch (size) { case 8: /* 8 nibbles == 32 bits. */ *ptr++ = n >> 28; *ptr++ = n >> 24; *ptr++ = n >> 20; *ptr++ = n >> 16; case 4: /* 4 nibbles == 16 bits. */ *ptr++ = n >> 12; *ptr++ = n >> 8; case 2: *ptr++ = n >> 4; case 1: *ptr++ = n >> 0; break; } return ptr; } /* Now we know what sort of opcodes it is. Let's build the bytes. */ #define INSERT(x,y) *x++ = y>>24; *x++ = y>> 16; *x++=y>>8; *x++ =y; static void build_bytes (this_try, operand) opcode_entry_type *this_try; struct z8k_op *operand ATTRIBUTE_UNUSED; { char *output_ptr = buffer; int c; int nib; int nibble; unsigned int *class_ptr; frag_wane (frag_now); frag_new (0); memset (buffer, 20, 0); class_ptr = this_try->byte_info; for (nibble = 0; (c = *class_ptr++); nibble++) { switch (c & CLASS_MASK) { default: abort (); case CLASS_ADDRESS: /* Direct address, we don't cope with the SS mode right now. */ if (segmented_mode) { /* da_operand->X_add_number |= 0x80000000; -- Now set at relocation time. */ output_ptr = apply_fix (output_ptr, R_IMM32, da_operand, 8); } else { output_ptr = apply_fix (output_ptr, R_IMM16, da_operand, 4); } da_operand = 0; break; case CLASS_DISP8: /* pc rel 8 bit */ output_ptr = apply_fix (output_ptr, R_JR, da_operand, 2); da_operand = 0; break; case CLASS_0DISP7: /* pc rel 7 bit */ *output_ptr = 0; output_ptr = apply_fix (output_ptr, R_DISP7, da_operand, 2); da_operand = 0; break; case CLASS_1DISP7: /* pc rel 7 bit */ *output_ptr = 0x80; output_ptr = apply_fix (output_ptr, R_DISP7, da_operand, 2); output_ptr[-2] = 0x8; da_operand = 0; break; case CLASS_BIT_1OR2: *output_ptr = c & 0xf; if (imm_operand) { if (imm_operand->X_add_number == 2) *output_ptr |= 2; else if (imm_operand->X_add_number != 1) as_bad (_("immediate must be 1 or 2")); } else as_bad (_("immediate 1 or 2 expected")); output_ptr++; break; case CLASS_CC: *output_ptr++ = the_cc; break; case CLASS_0CCC: *output_ptr++ = the_ctrl; break; case CLASS_1CCC: *output_ptr++ = the_ctrl | 0x8; break; case CLASS_00II: *output_ptr++ = (~the_interrupt & 0x3); break; case CLASS_01II: *output_ptr++ = (~the_interrupt & 0x3) | 0x4; break; case CLASS_FLAGS: *output_ptr++ = the_flags; break; case CLASS_IGNORE: case CLASS_BIT: *output_ptr++ = c & 0xf; break; case CLASS_REGN0: if (reg[c & 0xf] == 0) as_bad (_("can't use R0 here")); /* Fall through. */ case CLASS_REG: case CLASS_REG_BYTE: case CLASS_REG_WORD: case CLASS_REG_LONG: case CLASS_REG_QUAD: /* Insert bit mattern of right reg. */ *output_ptr++ = reg[c & 0xf]; break; case CLASS_DISP: switch (c & ARG_MASK) { case ARG_DISP12: output_ptr = apply_fix (output_ptr, R_CALLR, da_operand, 4); break; case ARG_DISP16: output_ptr = apply_fix (output_ptr, R_REL16, da_operand, 4); break; default: output_ptr = apply_fix (output_ptr, R_IMM16, da_operand, 4); } da_operand = 0; break; case CLASS_IMM: { nib = 0; switch (c & ARG_MASK) { case ARG_NIM4: imm_operand->X_add_number = -imm_operand->X_add_number; /* Drop through. */ case ARG_IMM4: output_ptr = apply_fix (output_ptr, R_IMM4L, imm_operand, 1); break; case ARG_IMM4M1: imm_operand->X_add_number--; output_ptr = apply_fix (output_ptr, R_IMM4L, imm_operand, 1); break; case ARG_IMMNMINUS1: imm_operand->X_add_number--; output_ptr = apply_fix (output_ptr, R_IMM4L, imm_operand, 1); break; case ARG_NIM8: imm_operand->X_add_number = -imm_operand->X_add_number; case ARG_IMM8: output_ptr = apply_fix (output_ptr, R_IMM8, imm_operand, 2); break; case ARG_IMM16: output_ptr = apply_fix (output_ptr, R_IMM16, imm_operand, 4); break; case ARG_IMM32: output_ptr = apply_fix (output_ptr, R_IMM32, imm_operand, 8); break; default: abort (); } } } } /* Copy from the nibble buffer into the frag. */ { int length = (output_ptr - buffer) / 2; char *src = buffer; char *fragp = frag_more (length); while (src < output_ptr) { *fragp = (src[0] << 4) | src[1]; src += 2; fragp++; } } } /* This is the guts of the machine-dependent assembler. STR points to a machine dependent instruction. This function is supposed to emit the frags/bytes it assembles to. */ void md_assemble (str) char *str; { char c; char *op_start; char *op_end; struct z8k_op operand[3]; opcode_entry_type *opcode; opcode_entry_type *prev_opcode; /* Drop leading whitespace. */ while (*str == ' ') str++; /* Find the op code end. */ for (op_start = op_end = str; *op_end != 0 && *op_end != ' '; op_end++) ; if (op_end == op_start) { as_bad (_("can't find opcode ")); } c = *op_end; *op_end = 0; opcode = (opcode_entry_type *) hash_find (opcode_hash_control, op_start); if (opcode == NULL) { as_bad (_("unknown opcode")); return; } if (opcode->opcode == 250) { pseudo_typeS *p; char oc; char *old = input_line_pointer; *op_end = c; /* Was really a pseudo op. */ input_line_pointer = op_end; oc = *old; *old = '\n'; while (*input_line_pointer == ' ') input_line_pointer++; p = (pseudo_typeS *) (opcode->func); (p->poc_handler) (p->poc_val); input_line_pointer = old; *old = oc; } else { char *new_input_line_pointer; new_input_line_pointer = get_operands (opcode, op_end, operand); if (new_input_line_pointer) input_line_pointer = new_input_line_pointer; prev_opcode = opcode; opcode = get_specific (opcode, operand); if (opcode == 0) { /* Couldn't find an opcode which matched the operands. */ char *where = frag_more (2); where[0] = 0x0; where[1] = 0x0; as_bad (_("Can't find opcode to match operands")); return; } build_bytes (opcode, operand); } } void tc_crawl_symbol_chain (headers) object_headers *headers ATTRIBUTE_UNUSED; { printf (_("call to tc_crawl_symbol_chain \n")); } symbolS * md_undefined_symbol (name) char *name ATTRIBUTE_UNUSED; { return 0; } void tc_headers_hook (headers) object_headers *headers ATTRIBUTE_UNUSED; { printf (_("call to tc_headers_hook \n")); } /* Various routines to kill one day. */ /* Equal to MAX_PRECISION in atof-ieee.c. */ #define MAX_LITTLENUMS 6 /* Turn a string in input_line_pointer into a floating point constant of type TYPE, and store the appropriate bytes in *LITP. The number of LITTLENUMS emitted is stored in *SIZEP. An error message is returned, or NULL on OK. */ char * md_atof (type, litP, sizeP) char type; char *litP; int *sizeP; { int prec; LITTLENUM_TYPE words[MAX_LITTLENUMS]; LITTLENUM_TYPE *wordP; char *t; char *atof_ieee (); switch (type) { case 'f': case 'F': case 's': case 'S': prec = 2; break; case 'd': case 'D': case 'r': case 'R': prec = 4; break; case 'x': case 'X': prec = 6; break; case 'p': case 'P': prec = 6; break; default: *sizeP = 0; return _("Bad call to MD_ATOF()"); } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizeP = prec * sizeof (LITTLENUM_TYPE); for (wordP = words; prec--;) { md_number_to_chars (litP, (long) (*wordP++), sizeof (LITTLENUM_TYPE)); litP += sizeof (LITTLENUM_TYPE); } return 0; } CONST char *md_shortopts = "z:"; struct option md_longopts[] = { {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof (md_longopts); int md_parse_option (c, arg) int c; char *arg; { switch (c) { case 'z': if (!strcmp (arg, "8001")) s_segm (); else if (!strcmp (arg, "8002")) s_unseg (); else { as_bad (_("invalid architecture -z%s"), arg); return 0; } break; default: return 0; } return 1; } void md_show_usage (stream) FILE *stream; { fprintf (stream, _("\ Z8K options:\n\ -z8001 generate segmented code\n\ -z8002 generate unsegmented code\n")); } void tc_aout_fix_to_chars () { printf (_("call to tc_aout_fix_to_chars \n")); abort (); } void md_convert_frag (headers, seg, fragP) object_headers *headers ATTRIBUTE_UNUSED; segT seg ATTRIBUTE_UNUSED; fragS *fragP ATTRIBUTE_UNUSED; { printf (_("call to md_convert_frag \n")); abort (); } valueT md_section_align (seg, size) segT seg; valueT size; { return ((size + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg])); } void md_apply_fix3 (fixP, valP, segment) fixS *fixP; valueT * valP; segT segment ATTRIBUTE_UNUSED; { long val = * (long *) valP; char *buf = fixP->fx_where + fixP->fx_frag->fr_literal; switch (fixP->fx_r_type) { case R_IMM4L: buf[0] = (buf[0] & 0xf0) | ((buf[0] + val) & 0xf); break; case R_JR: *buf++ = val; #if 0 if (val != 0) abort (); #endif break; case R_DISP7: *buf++ += val; #if 0 if (val != 0) abort (); #endif break; case R_IMM8: buf[0] += val; break; case R_IMM16: *buf++ = (val >> 8); *buf++ = val; break; case R_IMM32: *buf++ = (val >> 24); *buf++ = (val >> 16); *buf++ = (val >> 8); *buf++ = val; break; #if 0 case R_DA | R_SEG: *buf++ = (val >> 16); *buf++ = 0x00; *buf++ = (val >> 8); *buf++ = val; break; #endif case 0: md_number_to_chars (buf, val, fixP->fx_size); break; default: abort (); } if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0) fixP->fx_done = 1; } int md_estimate_size_before_relax (fragP, segment_type) register fragS *fragP ATTRIBUTE_UNUSED; register segT segment_type ATTRIBUTE_UNUSED; { printf (_("call tomd_estimate_size_before_relax \n")); abort (); } /* Put number into target byte order. */ void md_number_to_chars (ptr, use, nbytes) char *ptr; valueT use; int nbytes; { number_to_chars_bigendian (ptr, use, nbytes); } long md_pcrel_from (fixP) fixS *fixP ATTRIBUTE_UNUSED; { abort (); } void tc_coff_symbol_emit_hook (s) symbolS *s ATTRIBUTE_UNUSED; { } void tc_reloc_mangle (fix_ptr, intr, base) fixS *fix_ptr; struct internal_reloc *intr; bfd_vma base; { symbolS *symbol_ptr; if (fix_ptr->fx_addsy && fix_ptr->fx_subsy) { symbolS *add = fix_ptr->fx_addsy; symbolS *sub = fix_ptr->fx_subsy; if (S_GET_SEGMENT (add) != S_GET_SEGMENT (sub)) as_bad (_("Can't subtract symbols in different sections %s %s"), S_GET_NAME (add), S_GET_NAME (sub)); else { int diff = S_GET_VALUE (add) - S_GET_VALUE (sub); fix_ptr->fx_addsy = 0; fix_ptr->fx_subsy = 0; fix_ptr->fx_offset += diff; } } symbol_ptr = fix_ptr->fx_addsy; /* If this relocation is attached to a symbol then it's ok to output it. */ if (fix_ptr->fx_r_type == 0) { /* cons likes to create reloc32's whatever the size of the reloc. */ switch (fix_ptr->fx_size) { case 2: intr->r_type = R_IMM16; break; case 1: intr->r_type = R_IMM8; break; case 4: intr->r_type = R_IMM32; break; default: abort (); } } else intr->r_type = fix_ptr->fx_r_type; intr->r_vaddr = fix_ptr->fx_frag->fr_address + fix_ptr->fx_where + base; intr->r_offset = fix_ptr->fx_offset; if (symbol_ptr) intr->r_symndx = symbol_ptr->sy_number; else intr->r_symndx = -1; }