/* tc-v850.c -- Assembler code for the NEC V850 Copyright (C) 1996 Free Software Foundation. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include "as.h" #include "subsegs.h" #include "opcode/v850.h" /* Structure to hold information about predefined registers. */ struct reg_name { const char *name; int value; }; /* Generic assembler global variables which must be defined by all targets. */ /* Characters which always start a comment. */ const char comment_chars[] = "#"; /* Characters which start a comment at the beginning of a line. */ const char line_comment_chars[] = ";#"; /* Characters which may be used to separate multiple commands on a single line. */ const char line_separator_chars[] = ";"; /* Characters which are used to indicate an exponent in a floating point number. */ const char EXP_CHARS[] = "eE"; /* Characters which mean that a number is a floating point constant, as in 0d1.0. */ const char FLT_CHARS[] = "dD"; /* local functions */ static unsigned long v850_insert_operand PARAMS ((unsigned long insn, const struct v850_operand *operand, offsetT val, char *file, unsigned int line)); static int reg_name_search PARAMS ((const struct reg_name *, int, const char *)); static boolean register_name PARAMS ((expressionS *expressionP)); static boolean system_register_name PARAMS ((expressionS *expressionP)); static boolean cc_name PARAMS ((expressionS *expressionP)); static int postfix PARAMS ((char *p)); static bfd_reloc_code_real_type get_reloc PARAMS ((struct v850_operand *op)); static unsigned long build_insn PARAMS ((struct v850_opcode *opcode, expressionS *opers)); /* fixups */ #define MAX_INSN_FIXUPS (5) struct v850_fixup { expressionS exp; int opindex; bfd_reloc_code_real_type reloc; }; struct v850_fixup fixups[MAX_INSN_FIXUPS]; static int fc; const char *md_shortopts = ""; struct option md_longopts[] = { {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof(md_longopts); /* The target specific pseudo-ops which we support. */ const pseudo_typeS md_pseudo_table[] = { /* { "byte", ppc_byte, 0 }, { "long", ppc_elf_cons, 4 }, { "word", ppc_elf_cons, 2 }, { "short", ppc_elf_cons, 2 }, { "rdata", ppc_elf_rdata, 0 }, { "rodata", ppc_elf_rdata, 0 }, { "lcomm", ppc_elf_lcomm, 0 }, */ { NULL, NULL, 0 } }; /* Opcode hash table. */ static struct hash_control *v850_hash; /* This table is sorted. Suitable for searching by a binary search. */ static const struct reg_name pre_defined_registers[] = { { "ep", 30 }, /* ep - element ptr */ { "gp", 4 }, /* gp - global ptr */ { "lp", 31 }, /* lp - link ptr */ { "r0", 0 }, { "r1", 1 }, { "r10", 10 }, { "r11", 11 }, { "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 }, { "r16", 16 }, { "r17", 17 }, { "r18", 18 }, { "r19", 19 }, { "r2", 2 }, { "r20", 20 }, { "r21", 21 }, { "r22", 22 }, { "r23", 23 }, { "r24", 24 }, { "r25", 25 }, { "r26", 26 }, { "r27", 27 }, { "r28", 28 }, { "r29", 29 }, { "r3", 3 }, { "r30", 30 }, { "r31", 31 }, { "r4", 4 }, { "r5", 5 }, { "r6", 6 }, { "r7", 7 }, { "r8", 8 }, { "r9", 9 }, { "sp", 3 }, /* sp - stack ptr */ { "tp", 5 }, /* tp - text ptr */ { "zero", 0 }, }; #define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct reg_name)) static const struct reg_name system_registers[] = { { "eipc", 0 }, { "eipsw", 1 }, { "fepc", 2 }, { "fepsw", 3 }, { "ecr", 4 }, { "psw", 5 }, }; #define SYSREG_NAME_CNT (sizeof(system_registers) / sizeof(struct reg_name)) static const struct reg_name cc_names[] = { { "c", 0x1 }, { "ge", 0xe }, { "gt", 0xf }, { "h", 0xb }, { "l", 0x1 }, { "le", 0x7 }, { "lt", 0x6 }, { "n", 0x4 }, { "nc", 0x9 }, { "nh", 0x3 }, { "nl", 0x9 }, { "ns", 0xc }, { "nv", 0x8 }, { "nz", 0xa }, { "p", 0xc }, { "s", 0x4 }, { "sa", 0xd }, { "t", 0x5 }, { "v", 0x0 }, { "z", 0x2 }, }; #define CC_NAME_CNT (sizeof(cc_names) / sizeof(struct reg_name)) /* reg_name_search does a binary search of the given register table to see if "name" is a valid regiter name. Returns the register number from the array on success, or -1 on failure. */ static int reg_name_search (regs, regcount, name) const struct reg_name *regs; int regcount; const char *name; { int middle, low, high; int cmp; low = 0; high = regcount - 1; do { middle = (low + high) / 2; cmp = strcasecmp (name, regs[middle].name); if (cmp < 0) high = middle - 1; else if (cmp > 0) low = middle + 1; else return regs[middle].value; } while (low <= high); return -1; } /* Summary of register_name(). * * in: Input_line_pointer points to 1st char of operand. * * out: A expressionS. * The operand may have been a register: in this case, X_op == O_register, * X_add_number is set to the register number, and truth is returned. * Input_line_pointer->(next non-blank) char after operand, or is in * its original state. */ static boolean register_name (expressionP) expressionS *expressionP; { int reg_number; char *name; char *start; char c; /* Find the spelling of the operand */ start = name = input_line_pointer; c = get_symbol_end (); reg_number = reg_name_search (pre_defined_registers, REG_NAME_CNT, name); /* look to see if it's in the register table */ if (reg_number >= 0) { expressionP->X_op = O_register; expressionP->X_add_number = reg_number; /* make the rest nice */ expressionP->X_add_symbol = NULL; expressionP->X_op_symbol = NULL; *input_line_pointer = c; /* put back the delimiting char */ return true; } else { /* reset the line as if we had not done anything */ *input_line_pointer = c; /* put back the delimiting char */ input_line_pointer = start; /* reset input_line pointer */ return false; } } /* Summary of system_register_name(). * * in: Input_line_pointer points to 1st char of operand. * * out: A expressionS. * The operand may have been a register: in this case, X_op == O_register, * X_add_number is set to the register number, and truth is returned. * Input_line_pointer->(next non-blank) char after operand, or is in * its original state. */ static boolean system_register_name (expressionP) expressionS *expressionP; { int reg_number; char *name; char *start; char c; /* Find the spelling of the operand */ start = name = input_line_pointer; c = get_symbol_end (); reg_number = reg_name_search (system_registers, SYSREG_NAME_CNT, name); /* look to see if it's in the register table */ if (reg_number >= 0) { expressionP->X_op = O_register; expressionP->X_add_number = reg_number; /* make the rest nice */ expressionP->X_add_symbol = NULL; expressionP->X_op_symbol = NULL; *input_line_pointer = c; /* put back the delimiting char */ return true; } else { /* reset the line as if we had not done anything */ *input_line_pointer = c; /* put back the delimiting char */ input_line_pointer = start; /* reset input_line pointer */ return false; } } /* Summary of cc_name(). * * in: Input_line_pointer points to 1st char of operand. * * out: A expressionS. * The operand may have been a register: in this case, X_op == O_register, * X_add_number is set to the register number, and truth is returned. * Input_line_pointer->(next non-blank) char after operand, or is in * its original state. */ static boolean cc_name (expressionP) expressionS *expressionP; { int reg_number; char *name; char *start; char c; /* Find the spelling of the operand */ start = name = input_line_pointer; c = get_symbol_end (); reg_number = reg_name_search (cc_names, CC_NAME_CNT, name); /* look to see if it's in the register table */ if (reg_number >= 0) { expressionP->X_op = O_constant; expressionP->X_add_number = reg_number; /* make the rest nice */ expressionP->X_add_symbol = NULL; expressionP->X_op_symbol = NULL; *input_line_pointer = c; /* put back the delimiting char */ return true; } else { /* reset the line as if we had not done anything */ *input_line_pointer = c; /* put back the delimiting char */ input_line_pointer = start; /* reset input_line pointer */ return false; } } void md_show_usage (stream) FILE *stream; { fprintf(stream, "V850 options:\n\ none yet\n"); } int md_parse_option (c, arg) int c; char *arg; { return 0; } symbolS * md_undefined_symbol (name) char *name; { return 0; } char * md_atof (type, litp, sizep) int type; char *litp; int *sizep; { int prec; LITTLENUM_TYPE words[4]; char *t; int i; switch (type) { case 'f': prec = 2; break; case 'd': prec = 4; break; default: *sizep = 0; return "bad call to md_atof"; } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizep = prec * 2; for (i = prec - 1; i >= 0; i--) { md_number_to_chars (litp, (valueT) words[i], 2); litp += 2; } return NULL; } void md_convert_frag (abfd, sec, fragP) bfd *abfd; asection *sec; fragS *fragP; { /* printf ("call to md_convert_frag \n"); */ abort (); } valueT md_section_align (seg, addr) asection *seg; valueT addr; { int align = bfd_get_section_alignment (stdoutput, seg); return ((addr + (1 << align) - 1) & (-1 << align)); } void md_begin () { char *prev_name = ""; register const struct v850_opcode *op; const struct v850_opcode *op_end; v850_hash = hash_new(); /* Insert unique names into hash table. The V850 instruction set has many identical opcode names that have different opcodes based on the operands. This hash table then provides a quick index to the first opcode with a particular name in the opcode table. */ op = v850_opcodes; while (op->name) { if (strcmp (prev_name, op->name)) { prev_name = (char *) op->name; hash_insert (v850_hash, op->name, (char *) op); } op++; } } static bfd_reloc_code_real_type v850_reloc_prefix() { if (strncmp(input_line_pointer, "hi0(", 4) == 0) { input_line_pointer += 4; return BFD_RELOC_HI16; } if (strncmp(input_line_pointer, "hi(", 3) == 0) { input_line_pointer += 3; return BFD_RELOC_HI16_S; } if (strncmp (input_line_pointer, "lo(", 3) == 0) { input_line_pointer += 3; return BFD_RELOC_LO16; } /* FIXME: implement sda, tda, zda here */ return BFD_RELOC_UNUSED; } void md_assemble (str) char *str; { char *s; struct v850_opcode *opcode; struct v850_opcode *next_opcode; const unsigned char *opindex_ptr; int next_opindex; unsigned long insn; char *f; int i; int numops; int match; bfd_reloc_code_real_type reloc; int numopts; expressionS myops[5]; /* Get the opcode. */ for (s = str; *s != '\0' && ! isspace (*s); s++) ; if (*s != '\0') *s++ = '\0'; /* find the first opcode with the proper name */ opcode = (struct v850_opcode *)hash_find (v850_hash, str); if (opcode == NULL) { as_bad ("Unrecognized opcode: `%s'", str); return; } str = s; while (isspace (*str)) ++str; input_line_pointer = str; for(;;) { const char *errmsg = NULL; fc = 0; match = 0; next_opindex = 0; insn = opcode->opcode; for (opindex_ptr = opcode->operands; *opindex_ptr != 0; opindex_ptr++) { const struct v850_operand *operand; char *hold; expressionS ex; char endc; if (next_opindex == 0) { operand = &v850_operands[*opindex_ptr]; } else { operand = &v850_operands[next_opindex]; next_opindex = 0; } errmsg = NULL; while (*str == ' ' || *str == ',' || *str == '[' || *str == ']') ++str; /* Gather the operand. */ hold = input_line_pointer; input_line_pointer = str; /* lo(), hi(), hi0(), etc... */ if ((reloc = v850_reloc_prefix()) != BFD_RELOC_UNUSED) { expression(&ex); if (*input_line_pointer++ != ')') { errmsg = "syntax error: expected `)'"; goto error; } if (ex.X_op == O_constant) { switch (reloc) { case BFD_RELOC_LO16: ex.X_add_number &= 0xffff; break; case BFD_RELOC_HI16: ex.X_add_number = ((ex.X_add_number >> 16) & 0xffff); break; case BFD_RELOC_HI16_S: ex.X_add_number = ((ex.X_add_number >> 16) & 0xffff) + ((ex.X_add_number >> 15) & 1); break; } insn = v850_insert_operand (insn, operand, ex.X_add_number, (char *) NULL, 0); } else { if (fc > MAX_INSN_FIXUPS) as_fatal ("too many fixups"); fixups[fc].exp = ex; fixups[fc].opindex = *opindex_ptr; fixups[fc].reloc = reloc; fc++; } } else { if ((operand->flags & V850_OPERAND_REG) != 0) { if (!register_name(&ex)) { errmsg = "invalid register name"; goto error; } } else if ((operand->flags & V850_OPERAND_SRG) != 0) { if (!system_register_name(&ex)) { errmsg = "invalid system register name"; goto error; } } else if ((operand->flags & V850_OPERAND_EP) != 0) { char *start = input_line_pointer; char c = get_symbol_end (); if (strcmp (start, "ep") != 0 && strcmp (start, "r30") != 0) { /* Put things back the way we found them. */ *input_line_pointer = c; input_line_pointer = start; errmsg = "expected EP register"; goto error; } *input_line_pointer = c; str = input_line_pointer; input_line_pointer = hold; while (*str == ' ' || *str == ',' || *str == '[' || *str == ']') ++str; continue; } else if ((operand->flags & V850_OPERAND_CC) != 0) { if (!cc_name(&ex)) { errmsg = "invalid condition code name"; goto error; } } else if (register_name (&ex) && (operand->flags & V850_OPERAND_REG) == 0) { errmsg = "syntax error: register not expected"; goto error; } else if (system_register_name (&ex) && (operand->flags & V850_OPERAND_SRG) == 0) { errmsg = "syntax error: system register not expected"; goto error; } else if (cc_name (&ex) && (operand->flags & V850_OPERAND_CC) == 0) { errmsg = "syntax error: condition code not expected"; goto error; } else { expression(&ex); } switch (ex.X_op) { case O_illegal: errmsg = "illegal operand"; goto error; case O_absent: errmsg = "missing operand"; goto error; case O_register: if ((operand->flags & (V850_OPERAND_REG | V850_OPERAND_SRG)) == 0) { errmsg = "invalid operand"; goto error; } insn = v850_insert_operand (insn, operand, ex.X_add_number, (char *) NULL, 0); break; case O_constant: insn = v850_insert_operand (insn, operand, ex.X_add_number, (char *) NULL, 0); break; default: /* We need to generate a fixup for this expression. */ if (fc >= MAX_INSN_FIXUPS) as_fatal ("too many fixups"); fixups[fc].exp = ex; fixups[fc].opindex = *opindex_ptr; fixups[fc].reloc = BFD_RELOC_UNUSED; ++fc; break; } } str = input_line_pointer; input_line_pointer = hold; while (*str == ' ' || *str == ',' || *str == '[' || *str == ']') ++str; } match = 1; error: if (match == 0) { next_opcode = opcode + 1; if (next_opcode->opcode != 0 && !strcmp(next_opcode->name, opcode->name)) { opcode = next_opcode; continue; } as_bad ("%s", errmsg); return; } break; } while (isspace (*str)) ++str; if (*str != '\0') as_bad ("junk at end of line: `%s'", str); input_line_pointer = str; /* Write out the instruction FIXME: we can determine the size of the opcode by the instruction pattern, it does not have to be stored in the opcode table. */ f = frag_more (opcode->size); md_number_to_chars (f, insn, opcode->size); /* Create any fixups. At this point we do not use a bfd_reloc_code_real_type, but instead just use the BFD_RELOC_UNUSED plus the operand index. This lets us easily handle fixups for any operand type, although that is admittedly not a very exciting feature. We pick a BFD reloc type in md_apply_fix. */ for (i = 0; i < fc; i++) { const struct v850_operand *operand; operand = &v850_operands[fixups[i].opindex]; if (fixups[i].reloc != BFD_RELOC_UNUSED) { reloc_howto_type *reloc_howto = bfd_reloc_type_lookup (stdoutput, fixups[i].reloc); int size; int offset; fixS *fixP; if (!reloc_howto) abort(); size = bfd_get_reloc_size (reloc_howto); offset = 4 - size; if (size < 1 || size > 4) abort(); fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset, size, &fixups[i].exp, reloc_howto->pc_relative, fixups[i].reloc); } else { fix_new_exp (frag_now, f - frag_now->fr_literal, 4, &fixups[i].exp, 1 /* FIXME: V850_OPERAND_RELATIVE ??? */, ((bfd_reloc_code_real_type) (fixups[i].opindex + (int) BFD_RELOC_UNUSED))); } } } /* if while processing a fixup, a reloc really needs to be created */ /* then it is done here */ arelent * tc_gen_reloc (seg, fixp) asection *seg; fixS *fixp; { arelent *reloc; reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent)); reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym; reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); if (reloc->howto == (reloc_howto_type *) NULL) { as_bad_where (fixp->fx_file, fixp->fx_line, "reloc %d not supported by object file format", (int)fixp->fx_r_type); return NULL; } reloc->addend = fixp->fx_addnumber; /* printf("tc_gen_reloc: addr=%x addend=%x\n", reloc->address, reloc->addend); */ return reloc; } int md_estimate_size_before_relax (fragp, seg) fragS *fragp; asection *seg; { return 0; } long md_pcrel_from (fixp) fixS *fixp; { if (fixp->fx_addsy != (symbolS *) NULL && ! S_IS_DEFINED (fixp->fx_addsy)) { /* The symbol is undefined. Let the linker figure it out. */ return 0; } return fixp->fx_frag->fr_address + fixp->fx_where; } int md_apply_fix3 (fixp, valuep, seg) fixS *fixp; valueT *valuep; segT seg; { valueT value; char *where; unsigned long insn; int op_type; if (fixp->fx_addsy == (symbolS *) NULL) { value = *valuep; fixp->fx_done = 1; } else if (fixp->fx_pcrel) value = *valuep; else { value = fixp->fx_offset; if (fixp->fx_subsy != (symbolS *) NULL) { if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section) value -= S_GET_VALUE (fixp->fx_subsy); else { /* We don't actually support subtracting a symbol. */ as_bad_where (fixp->fx_file, fixp->fx_line, "expression too complex"); } } } /* printf("md_apply_fix: value=0x%x type=%d\n", value, fixp->fx_r_type); */ if ((int) fixp->fx_r_type >= (int) BFD_RELOC_UNUSED) { int opindex; const struct v850_operand *operand; char *where; unsigned long insn; opindex = (int) fixp->fx_r_type - (int) BFD_RELOC_UNUSED; operand = &v850_operands[opindex]; /* Fetch the instruction, insert the fully resolved operand value, and stuff the instruction back again. Note the instruction has been stored in little endian format! */ where = fixp->fx_frag->fr_literal + fixp->fx_where; insn = bfd_getl32((unsigned char *) where); insn = v850_insert_operand (insn, operand, (offsetT) value, fixp->fx_file, fixp->fx_line); bfd_putl32((bfd_vma) insn, (unsigned char *) where); if (fixp->fx_done) { /* Nothing else to do here. */ return 1; } /* Determine a BFD reloc value based on the operand information. We are only prepared to turn a few of the operands into relocs. */ if (operand->bits == 22) fixp->fx_r_type = BFD_RELOC_V850_22_PCREL; else if (operand->bits == 9) fixp->fx_r_type = BFD_RELOC_V850_9_PCREL; else { as_bad_where(fixp->fx_file, fixp->fx_line, "unresolved expression that must be resolved"); fixp->fx_done = 1; return 1; } } else if (fixp->fx_done) { /* We still have to insert the value into memory! */ where = fixp->fx_frag->fr_literal + fixp->fx_where; if (fixp->fx_size == 1) *where = value & 0xff; if (fixp->fx_size == 2) bfd_putl16(value & 0xffff, (unsigned char *) where); if (fixp->fx_size == 4) bfd_putl32(value, (unsigned char *) where); } fixp->fx_addnumber = value; return 1; } /* Insert an operand value into an instruction. */ static unsigned long v850_insert_operand (insn, operand, val, file, line) unsigned long insn; const struct v850_operand *operand; offsetT val; char *file; unsigned int line; { if (operand->bits != 16) { long min, max; offsetT test; if ((operand->flags & V850_OPERAND_SIGNED) != 0) { #if 0 if ((operand->flags & PPC_OPERAND_SIGNOPT) != 0 && ppc_size == PPC_OPCODE_32) max = (1 << operand->bits) - 1; else #endif max = (1 << (operand->bits - 1)) - 1; min = - (1 << (operand->bits - 1)); } else { max = (1 << operand->bits) - 1; min = 0; } #if 0 if ((operand->flags & PPC_OPERAND_NEGATIVE) != 0) test = - val; else #endif test = val; if (test < (offsetT) min || test > (offsetT) max) { const char *err = "operand out of range (%s not between %ld and %ld)"; char buf[100]; sprint_value (buf, test); if (file == (char *) NULL) as_warn (err, buf, min, max); else as_warn_where (file, line, err, buf, min, max); } } if (operand->insert) { const char *message = NULL; insn = (operand->insert) (insn, val, &message); if (message != NULL) { if (file == (char *) NULL) as_warn (message); else as_warn_where (file, line, message); } } else insn |= (((long) val & ((1 << operand->bits) - 1)) << operand->shift); return insn; }