/* tc-v850.c -- Assembler code for the NEC V850 Copyright (C) 1996, 1997 Free Software Foundation. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include "as.h" #include "subsegs.h" #include "opcode/v850.h" /* sign-extend a 16-bit number */ #define SEXT16(x) ((((x) & 0xffff) ^ (~ 0x7fff)) + 0x8000) /* Temporarily holds the reloc in a cons expression. */ static bfd_reloc_code_real_type hold_cons_reloc; /* Structure to hold information about predefined registers. */ struct reg_name { const char *name; int value; }; /* Generic assembler global variables which must be defined by all targets. */ /* Characters which always start a comment. */ const char comment_chars[] = "#"; /* Characters which start a comment at the beginning of a line. */ const char line_comment_chars[] = ";#"; /* Characters which may be used to separate multiple commands on a single line. */ const char line_separator_chars[] = ";"; /* Characters which are used to indicate an exponent in a floating point number. */ const char EXP_CHARS[] = "eE"; /* Characters which mean that a number is a floating point constant, as in 0d1.0. */ const char FLT_CHARS[] = "dD"; const relax_typeS md_relax_table[] = { {0xff, -0x100, 2, 1}, {0x1fffff, -0x200000, 6, 0}, }; /* local functions */ static unsigned long v850_insert_operand PARAMS ((unsigned long insn, const struct v850_operand *operand, offsetT val, char *file, unsigned int line)); /* fixups */ #define MAX_INSN_FIXUPS (5) struct v850_fixup { expressionS exp; int opindex; bfd_reloc_code_real_type reloc; }; struct v850_fixup fixups[MAX_INSN_FIXUPS]; static int fc; static void v850_section (int arg) { char saved_c; char * ptr; for (ptr = input_line_pointer; * ptr != '\n' && * ptr != 0; ptr ++) if (* ptr == ',' && ptr[1] == '.') break; saved_c = * ptr; * ptr = ';'; obj_elf_section (arg); * ptr = saved_c; } void v850_bss (int ignore) { register int temp = get_absolute_expression (); subseg_set (bss_section, (subsegT) temp); demand_empty_rest_of_line (); } void v850_offset (int ignore) { register int temp = get_absolute_expression (); subseg_set (now_seg, (subsegT) temp); demand_empty_rest_of_line (); } /* The target specific pseudo-ops which we support. */ const pseudo_typeS md_pseudo_table[] = { {"bss", v850_bss, 0}, {"offset", v850_offset, 0}, {"section", v850_section, 0}, {"word", cons, 4}, { NULL, NULL, 0} }; /* Opcode hash table. */ static struct hash_control *v850_hash; /* This table is sorted. Suitable for searching by a binary search. */ static const struct reg_name pre_defined_registers[] = { { "ep", 30 }, /* ep - element ptr */ { "gp", 4 }, /* gp - global ptr */ { "lp", 31 }, /* lp - link ptr */ { "r0", 0 }, { "r1", 1 }, { "r10", 10 }, { "r11", 11 }, { "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 }, { "r16", 16 }, { "r17", 17 }, { "r18", 18 }, { "r19", 19 }, { "r2", 2 }, { "r20", 20 }, { "r21", 21 }, { "r22", 22 }, { "r23", 23 }, { "r24", 24 }, { "r25", 25 }, { "r26", 26 }, { "r27", 27 }, { "r28", 28 }, { "r29", 29 }, { "r3", 3 }, { "r30", 30 }, { "r31", 31 }, { "r4", 4 }, { "r5", 5 }, { "r6", 6 }, { "r7", 7 }, { "r8", 8 }, { "r9", 9 }, { "sp", 3 }, /* sp - stack ptr */ { "tp", 5 }, /* tp - text ptr */ { "zero", 0 }, }; #define REG_NAME_CNT (sizeof (pre_defined_registers) / sizeof (struct reg_name)) static const struct reg_name system_registers[] = { /* start-sanitize-v850e */ { "ctbp", 20 }, { "ctpc", 16 }, { "ctpsw", 17 }, { "dbpc", 18 }, { "dbpsw", 19 }, /* end-sanitize-v850e */ { "ecr", 4 }, { "eipc", 0 }, { "eipsw", 1 }, { "fepc", 2 }, { "fepsw", 3 }, { "psw", 5 }, }; #define SYSREG_NAME_CNT (sizeof (system_registers) / sizeof (struct reg_name)) static const struct reg_name cc_names[] = { { "c", 0x1 }, { "e", 0x2 }, { "ge", 0xe }, { "gt", 0xf }, { "h", 0xb }, { "l", 0x1 }, { "le", 0x7 }, { "lt", 0x6 }, { "n", 0x4 }, { "nc", 0x9 }, { "ne", 0xa }, { "nh", 0x3 }, { "nl", 0x9 }, { "ns", 0xc }, { "nv", 0x8 }, { "nz", 0xa }, { "p", 0xc }, { "s", 0x4 }, { "sa", 0xd }, { "t", 0x5 }, { "v", 0x0 }, { "z", 0x2 }, }; #define CC_NAME_CNT (sizeof(cc_names) / sizeof(struct reg_name)) /* reg_name_search does a binary search of the given register table to see if "name" is a valid regiter name. Returns the register number from the array on success, or -1 on failure. */ static int reg_name_search (regs, regcount, name) const struct reg_name *regs; int regcount; const char *name; { int middle, low, high; int cmp; low = 0; high = regcount - 1; do { middle = (low + high) / 2; cmp = strcasecmp (name, regs[middle].name); if (cmp < 0) high = middle - 1; else if (cmp > 0) low = middle + 1; else return regs[middle].value; } while (low <= high); return -1; } /* Summary of register_name(). * * in: Input_line_pointer points to 1st char of operand. * * out: A expressionS. * The operand may have been a register: in this case, X_op == O_register, * X_add_number is set to the register number, and truth is returned. * Input_line_pointer->(next non-blank) char after operand, or is in * its original state. */ static boolean register_name (expressionP) expressionS *expressionP; { int reg_number; char *name; char *start; char c; /* Find the spelling of the operand */ start = name = input_line_pointer; c = get_symbol_end (); reg_number = reg_name_search (pre_defined_registers, REG_NAME_CNT, name); * input_line_pointer = c; /* put back the delimiting char */ /* look to see if it's in the register table */ if (reg_number >= 0) { expressionP->X_op = O_register; expressionP->X_add_number = reg_number; /* make the rest nice */ expressionP->X_add_symbol = NULL; expressionP->X_op_symbol = NULL; return true; } else { /* reset the line as if we had not done anything */ input_line_pointer = start; return false; } } /* Summary of system_register_name(). * * in: Input_line_pointer points to 1st char of operand. * * out: A expressionS. * The operand may have been a register: in this case, X_op == O_register, * X_add_number is set to the register number, and truth is returned. * Input_line_pointer->(next non-blank) char after operand, or is in * its original state. */ static boolean system_register_name (expressionP, accept_numbers) expressionS * expressionP; boolean accept_numbers; { int reg_number; char *name; char *start; char c; /* Find the spelling of the operand */ start = name = input_line_pointer; c = get_symbol_end (); reg_number = reg_name_search (system_registers, SYSREG_NAME_CNT, name); * input_line_pointer = c; /* put back the delimiting char */ if (reg_number < 0 && accept_numbers) { input_line_pointer = start; /* reset input_line pointer */ if (isdigit (* input_line_pointer)) reg_number = strtol (input_line_pointer, & input_line_pointer, 10); /* Make sure that the register number is allowable. */ if ( reg_number < 0 || reg_number > 5 /* start-sanitize-v850e */ && reg_number < 16 || reg_number > 20 /* end-sanitize-v850e */ ) { reg_number = -1; } } /* look to see if it's in the register table */ if (reg_number >= 0) { expressionP->X_op = O_register; expressionP->X_add_number = reg_number; /* make the rest nice */ expressionP->X_add_symbol = NULL; expressionP->X_op_symbol = NULL; return true; } else { /* reset the line as if we had not done anything */ input_line_pointer = start; return false; } } /* Summary of cc_name(). * * in: Input_line_pointer points to 1st char of operand. * * out: A expressionS. * The operand may have been a register: in this case, X_op == O_register, * X_add_number is set to the register number, and truth is returned. * Input_line_pointer->(next non-blank) char after operand, or is in * its original state. */ static boolean cc_name (expressionP) expressionS *expressionP; { int reg_number; char *name; char *start; char c; /* Find the spelling of the operand */ start = name = input_line_pointer; c = get_symbol_end (); reg_number = reg_name_search (cc_names, CC_NAME_CNT, name); * input_line_pointer = c; /* put back the delimiting char */ /* look to see if it's in the register table */ if (reg_number >= 0) { expressionP->X_op = O_constant; expressionP->X_add_number = reg_number; /* make the rest nice */ expressionP->X_add_symbol = NULL; expressionP->X_op_symbol = NULL; return true; } else { /* reset the line as if we had not done anything */ input_line_pointer = start; return false; } } static void skip_white_space (void) { while ( * input_line_pointer == ' ' || * input_line_pointer == '\t') ++ input_line_pointer; } /* start-sanitize-v850e */ /* Summary of parse_register_list (). * * in: Input_line_pointer points to 1st char of a list of registers. * insn is the partially constructed instruction. * operand is the operand being inserted. * * out: True if the parse completed successfully, False otherwise. * If the parse completes the correct bit fields in the * instruction will be filled in. * * Parses register lists with the syntax: * * { rX } * { rX, rY } * { rX - rY } * { rX - rY, rZ } * etc * * and also parses constant epxressions whoes bits indicate the * registers in the lists. The LSB in the expression refers to * the lowest numbered permissable register in the register list, * and so on upwards. System registers are considered to be very * high numbers. * */ static char * parse_register_list ( unsigned long * insn, const struct v850_operand * operand ) { static int type1_regs[ 32 ] = { 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 29, 28, 23, 22, 21, 20, 27, 26, 25, 24 }; /* start-sanitize-v850eq */ static int type2_regs[ 32 ] = { 19, 18, 17, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 31, 29, 28, 23, 22, 21, 20, 27, 26, 25, 24 }; static int type3_regs[ 32 ] = { 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 15, 13, 12, 7, 6, 5, 4, 11, 10, 9, 8 }; /* end-sanitize-v850eq */ int * regs; expressionS exp; /* Select a register array to parse. */ switch (operand->shift) { case 0xffe00001: regs = type1_regs; break; /* start-sanitize-v850eq */ case 0xfff8000f: regs = type2_regs; break; case 0xfff8001f: regs = type3_regs; break; /* end-sanitize-v850eq */ default: as_bad ("unknown operand shift: %x\n", operand->shift ); return "internal failure in parse_register_list"; } skip_white_space(); /* If the expression starts with a curly brace it is a register list. Otherwise it is a constant expression ,whoes bits indicate which registers are to be included in the list. */ if (* input_line_pointer != '{') { int bits; int reg; int i; expression (& exp); if (exp.X_op != O_constant) return "constant expression or register list expected"; /* start-sanitize-v850eq */ if (regs == type1_regs) /* end-sanitize-v850eq */ { if (exp.X_add_number & 0xFFFFF000) return "high bits set in register list expression"; for (reg = 20; reg < 32; reg ++) if (exp.X_add_number & (1 << (reg - 20))) { for (i = 0; i < 32; i++) if (regs[i] == reg) * insn |= (1 << i); } } /* start-sanitize-v850eq */ else if (regs == type2_regs) { if (exp.X_add_number & 0xFFFE0000) return "high bits set in register list expression"; for (reg = 1; reg < 16; reg ++) if (exp.X_add_number & (1 << (reg - 1))) { for (i = 0; i < 32; i++) if (regs[i] == reg) * insn |= (1 << i); } if (exp.X_add_number & (1 << 15)) * insn |= (1 << 3); if (exp.X_add_number & (1 << 16)) * insn |= (1 << 19); } else /* regs == type3_regs */ { if (exp.X_add_number & 0xFFFE0000) return "high bits set in register list expression"; for (reg = 16; reg < 32; reg ++) if (exp.X_add_number & (1 << (reg - 16))) { for (i = 0; i < 32; i++) if (regs[i] == reg) * insn |= (1 << i); } if (exp.X_add_number & (1 << 16)) * insn |= (1 << 19); } /* end-sanitize-v850eq */ return NULL; } input_line_pointer ++; /* Parse the register list until a terminator (closing curly brace or new-line) is found. */ for (;;) { if (register_name (& exp)) { int i; /* Locate the given register in the list, and if it is there, insert the corresponding bit into the instruction. */ for (i = 0; i < 32; i++) { if (regs[ i ] == exp.X_add_number) { * insn |= (1 << i); break; } } if (i == 32) { return "illegal register included in list"; } } else if (system_register_name (& exp, true)) { if (regs == type1_regs) { return "system registers cannot be included in list"; } else if (exp.X_add_number == 5) { if (regs == type2_regs) return "PSW cannot be included in list"; else * insn |= 0x8; } else * insn |= 0x80000; } else if (* input_line_pointer == '}') { input_line_pointer ++; break; } else if (* input_line_pointer == ',') { input_line_pointer ++; continue; } else if (* input_line_pointer == '-') { /* We have encountered a range of registers: rX - rY */ int j; expressionS exp2; /* Skip the dash. */ ++ input_line_pointer; /* Get the second register in the range. */ if (! register_name (& exp2)) { return "second register should follow dash in register list"; exp2.X_add_number = exp.X_add_number; } /* Add the rest of the registers in the range. */ for (j = exp.X_add_number + 1; j <= exp2.X_add_number; j++) { int i; /* Locate the given register in the list, and if it is there, insert the corresponding bit into the instruction. */ for (i = 0; i < 32; i++) { if (regs[ i ] == j) { * insn |= (1 << i); break; } } if (i == 32) { return "illegal register included in list"; } } } else { break; } skip_white_space(); } return NULL; } /* end-sanitize-v850e */ CONST char * md_shortopts = "m:"; struct option md_longopts[] = { {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof md_longopts; void md_show_usage (stream) FILE *stream; { fprintf (stream, "V850 options:\n"); fprintf (stream, "\tnone at present\n"); } int md_parse_option (c, arg) int c; char * arg; { return 0; } symbolS * md_undefined_symbol (name) char *name; { return 0; } char * md_atof (type, litp, sizep) int type; char *litp; int *sizep; { int prec; LITTLENUM_TYPE words[4]; char *t; int i; switch (type) { case 'f': prec = 2; break; case 'd': prec = 4; break; default: *sizep = 0; return "bad call to md_atof"; } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizep = prec * 2; for (i = prec - 1; i >= 0; i--) { md_number_to_chars (litp, (valueT) words[i], 2); litp += 2; } return NULL; } /* Very gross. */ void md_convert_frag (abfd, sec, fragP) bfd *abfd; asection *sec; fragS *fragP; { subseg_change (sec, 0); if (fragP->fr_subtype == 0) { fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol, fragP->fr_offset, 1, BFD_RELOC_UNUSED + (int)fragP->fr_opcode); fragP->fr_var = 0; fragP->fr_fix += 2; } else if (fragP->fr_subtype == 1) { /* Reverse the condition of the first branch. */ fragP->fr_literal[0] &= 0xf7; /* Mask off all the displacement bits. */ fragP->fr_literal[0] &= 0x8f; fragP->fr_literal[1] &= 0x07; /* Now set the displacement bits so that we branch around the unconditional branch. */ fragP->fr_literal[0] |= 0x30; /* Now create the unconditional branch + fixup to the final target. */ md_number_to_chars (&fragP->fr_literal[2], 0x00000780, 4); fix_new (fragP, fragP->fr_fix + 2, 4, fragP->fr_symbol, fragP->fr_offset, 1, BFD_RELOC_UNUSED + (int)fragP->fr_opcode + 1); fragP->fr_var = 0; fragP->fr_fix += 6; } else abort (); } valueT md_section_align (seg, addr) asection *seg; valueT addr; { int align = bfd_get_section_alignment (stdoutput, seg); return ((addr + (1 << align) - 1) & (-1 << align)); } void md_begin () { char *prev_name = ""; register const struct v850_opcode *op; v850_hash = hash_new(); /* Insert unique names into hash table. The V850 instruction set has many identical opcode names that have different opcodes based on the operands. This hash table then provides a quick index to the first opcode with a particular name in the opcode table. */ op = v850_opcodes; while (op->name) { if (strcmp (prev_name, op->name)) { prev_name = (char *) op->name; hash_insert (v850_hash, op->name, (char *) op); } op++; } } static bfd_reloc_code_real_type v850_reloc_prefix () { if (strncmp(input_line_pointer, "hi0(", 4) == 0) { input_line_pointer += 3; return BFD_RELOC_HI16; } if (strncmp(input_line_pointer, "hi(", 3) == 0) { input_line_pointer += 2; return BFD_RELOC_HI16_S; } if (strncmp (input_line_pointer, "lo(", 3) == 0) { input_line_pointer += 2; return BFD_RELOC_LO16; } if (strncmp (input_line_pointer, "sdaoff(", 7) == 0) { input_line_pointer += 6; return BFD_RELOC_V850_SDA_OFFSET; } if (strncmp (input_line_pointer, "zdaoff(", 7) == 0) { input_line_pointer += 6; return BFD_RELOC_V850_ZDA_OFFSET; } if (strncmp (input_line_pointer, "tdaoff(", 7) == 0) { input_line_pointer += 6; return BFD_RELOC_V850_TDA_OFFSET; } /* Disgusting */ if (strncmp(input_line_pointer, "(hi0(", 5) == 0) { input_line_pointer += 4; return BFD_RELOC_HI16; } if (strncmp(input_line_pointer, "(hi(", 4) == 0) { input_line_pointer += 3; return BFD_RELOC_HI16_S; } if (strncmp (input_line_pointer, "(lo(", 4) == 0) { input_line_pointer += 3; return BFD_RELOC_LO16; } if (strncmp (input_line_pointer, "(sdaoff(", 8) == 0) { input_line_pointer += 7; return BFD_RELOC_V850_SDA_OFFSET; } if (strncmp (input_line_pointer, "(zdaoff(", 8) == 0) { input_line_pointer += 7; return BFD_RELOC_V850_ZDA_OFFSET; } if (strncmp (input_line_pointer, "(tdaoff(", 8) == 0) { input_line_pointer += 7; return BFD_RELOC_V850_TDA_OFFSET; } return BFD_RELOC_UNUSED; } void md_assemble (str) char * str; { char * s; char * start_of_operands; struct v850_opcode * opcode; struct v850_opcode * next_opcode; const unsigned char * opindex_ptr; int next_opindex; int relaxable; unsigned long insn; unsigned long insn_size; char * f; int i; int match; bfd_reloc_code_real_type reloc; boolean extra_data_after_insn = false; unsigned extra_data_len; unsigned long extra_data; char * saved_input_line_pointer; /* Get the opcode. */ for (s = str; *s != '\0' && ! isspace (*s); s++) continue; if (*s != '\0') *s++ = '\0'; /* find the first opcode with the proper name */ opcode = (struct v850_opcode *)hash_find (v850_hash, str); if (opcode == NULL) { as_bad ("Unrecognized opcode: `%s'", str); ignore_rest_of_line (); return; } str = s; while (isspace (* str)) ++ str; start_of_operands = str; saved_input_line_pointer = input_line_pointer; for (;;) { const char * errmsg = NULL; relaxable = 0; fc = 0; match = 0; next_opindex = 0; insn = opcode->opcode; extra_data_after_insn = false; input_line_pointer = str = start_of_operands; for (opindex_ptr = opcode->operands; *opindex_ptr != 0; opindex_ptr++) { const struct v850_operand * operand; char * hold; expressionS ex; if (next_opindex == 0) { operand = & v850_operands[ * opindex_ptr ]; } else { operand = & v850_operands[ next_opindex ]; next_opindex = 0; } errmsg = NULL; while (*str == ' ' || *str == ',' || *str == '[' || *str == ']') ++str; if (operand->flags & V850_OPERAND_RELAX) relaxable = 1; /* Gather the operand. */ hold = input_line_pointer; input_line_pointer = str; /*fprintf (stderr, "operand: %s index = %d, opcode = %s\n", input_line_pointer, opindex_ptr - opcode->operands, opcode->name );*/ /* lo(), hi(), hi0(), etc... */ if ((reloc = v850_reloc_prefix()) != BFD_RELOC_UNUSED) { expression (& ex); if (ex.X_op == O_constant) { switch (reloc) { case BFD_RELOC_LO16: { /* Truncate, then sign extend the value. */ ex.X_add_number = SEXT16 (ex.X_add_number); break; } case BFD_RELOC_HI16: { /* Truncate, then sign extend the value. */ ex.X_add_number = SEXT16 (ex.X_add_number >> 16); break; } case BFD_RELOC_HI16_S: { /* Truncate, then sign extend the value. */ int temp = (ex.X_add_number >> 16) & 0xffff; temp += (ex.X_add_number >> 15) & 1; ex.X_add_number = SEXT16 (temp); break; } default: break; } insn = v850_insert_operand (insn, operand, ex.X_add_number, (char *) NULL, 0); } else { if (fc > MAX_INSN_FIXUPS) as_fatal ("too many fixups"); /* Adjust any offsets for sst.{h,w}/sld.{h,w} instructions */ if (operand->flags & V850_OPERAND_ADJUST_SHORT_MEMORY) ex.X_add_number >>= 1; fixups[fc].exp = ex; fixups[fc].opindex = *opindex_ptr; fixups[fc].reloc = reloc; fc++; } } else { errmsg = NULL; if ((operand->flags & V850_OPERAND_REG) != 0) { if (!register_name (& ex)) { errmsg = "invalid register name"; } if ((operand->flags & V850_NOT_R0) && ex.X_add_number == 0) { errmsg = "register r0 cannot be used here"; } } else if ((operand->flags & V850_OPERAND_SRG) != 0) { if (!system_register_name (& ex, true)) { errmsg = "UGG invalid system register name"; } } else if ((operand->flags & V850_OPERAND_EP) != 0) { char * start = input_line_pointer; char c = get_symbol_end (); if (strcmp (start, "ep") != 0 && strcmp (start, "r30") != 0) { /* Put things back the way we found them. */ *input_line_pointer = c; input_line_pointer = start; errmsg = "expected EP register"; goto error; } *input_line_pointer = c; str = input_line_pointer; input_line_pointer = hold; while (*str == ' ' || *str == ',' || *str == '[' || *str == ']') ++str; continue; } else if ((operand->flags & V850_OPERAND_CC) != 0) { if (!cc_name (& ex)) { errmsg = "invalid condition code name"; } } else if (operand->flags & V850E_PUSH_POP) { errmsg = parse_register_list (& insn, operand); /* The parse_register_list() function has already done everything, so fake a dummy expression. */ ex.X_op = O_constant; ex.X_add_number = 0; } else if (operand->flags & V850E_IMMEDIATE16) { expression (& ex); if (ex.X_op != O_constant) errmsg = "constant expression expected"; else if (ex.X_add_number & 0xffff0000) { if (ex.X_add_number & 0xffff) errmsg = "constant too big to fit into instruction"; else if ((insn & 0x001fffc0) == 0x00130780) ex.X_add_number >>= 16; else errmsg = "constant too big to fit into instruction"; } extra_data_after_insn = true; extra_data_len = 2; extra_data = ex.X_add_number; ex.X_add_number = 0; } else if (operand->flags & V850E_IMMEDIATE32) { expression (& ex); if (ex.X_op != O_constant) errmsg = "constant expression expected"; extra_data_after_insn = true; extra_data_len = 4; extra_data = ex.X_add_number; ex.X_add_number = 0; } else if (register_name (&ex) && (operand->flags & V850_OPERAND_REG) == 0) { errmsg = "syntax error: register not expected"; } else if (system_register_name (& ex, false) && (operand->flags & V850_OPERAND_SRG) == 0) { errmsg = "syntax error: system register not expected"; } else if (cc_name (&ex) && (operand->flags & V850_OPERAND_CC) == 0) { errmsg = "syntax error: condition code not expected"; } else { expression (& ex); /* start-sanitize-v850e */ /* Special case: If we are assembling a MOV instruction (or a CALLT.... :-) and the immediate value does not fit into the bits available then create a fake error so that the next MOV instruction will be selected. This one has a 32 bit immediate field. */ if (((insn & 0x07e0) == 0x0200) && ex.X_op == O_constant && (ex.X_add_number < (- (1 << (operand->bits - 1))) || ex.X_add_number > ((1 << operand->bits) - 1))) errmsg = "use bigger instruction"; /* end-sanitize-v850e */ } if (errmsg) goto error; /*fprintf (stderr, "insn: %x, operand %d, op: %d, add_number: %d\n", insn, opindex_ptr - opcode->operands, ex.X_op, ex.X_add_number );*/ switch (ex.X_op) { case O_illegal: errmsg = "illegal operand"; goto error; case O_absent: errmsg = "missing operand"; goto error; case O_register: if ((operand->flags & (V850_OPERAND_REG | V850_OPERAND_SRG)) == 0) { errmsg = "invalid operand"; goto error; } insn = v850_insert_operand (insn, operand, ex.X_add_number, (char *) NULL, 0); break; case O_constant: insn = v850_insert_operand (insn, operand, ex.X_add_number, (char *) NULL, 0); break; default: /* We need to generate a fixup for this expression. */ if (fc >= MAX_INSN_FIXUPS) as_fatal ("too many fixups"); fixups[fc].exp = ex; fixups[fc].opindex = *opindex_ptr; fixups[fc].reloc = BFD_RELOC_UNUSED; ++fc; break; } } str = input_line_pointer; input_line_pointer = hold; while (*str == ' ' || *str == ',' || *str == '[' || *str == ']' || *str == ')') ++str; } match = 1; error: if (match == 0) { next_opcode = opcode + 1; if (next_opcode->opcode != 0 && !strcmp (next_opcode->name, opcode->name)) { opcode = next_opcode; continue; } as_bad ("%s", errmsg); ignore_rest_of_line (); input_line_pointer = saved_input_line_pointer; return; } break; } while (isspace (*str)) ++str; if (*str != '\0') as_bad ("junk at end of line: `%s'", str); input_line_pointer = str; /* Write out the instruction. Four byte insns have an opcode with the two high bits on. */ if (relaxable && fc > 0) { f = frag_var (rs_machine_dependent, 6, 4, 0, fixups[0].exp.X_add_symbol, fixups[0].exp.X_add_number, (char *)fixups[0].opindex); insn_size = 2; md_number_to_chars (f, insn, insn_size); md_number_to_chars (f + 2, 0, 4); fc = 0; } else { if ((insn & 0x0600) == 0x0600) insn_size = 4; else insn_size = 2; /* start-sanitize-v850e */ /* Special case: 32 bit MOV */ if ((insn & 0xffe0) == 0x0620) insn_size = 2; /* end_sanitize-v850e */ f = frag_more (insn_size); md_number_to_chars (f, insn, insn_size); if (extra_data_after_insn) { f = frag_more (extra_data_len); md_number_to_chars (f, extra_data, extra_data_len); extra_data_after_insn = false; } } /* Create any fixups. At this point we do not use a bfd_reloc_code_real_type, but instead just use the BFD_RELOC_UNUSED plus the operand index. This lets us easily handle fixups for any operand type, although that is admittedly not a very exciting feature. We pick a BFD reloc type in md_apply_fix. */ for (i = 0; i < fc; i++) { const struct v850_operand *operand; operand = &v850_operands[fixups[i].opindex]; if (fixups[i].reloc != BFD_RELOC_UNUSED) { reloc_howto_type *reloc_howto = bfd_reloc_type_lookup (stdoutput, fixups[i].reloc); int size; int offset; fixS *fixP; if (!reloc_howto) abort(); size = bfd_get_reloc_size (reloc_howto); /* The "size" of a TDA_OFFSET reloc varies depending on what kind of instruction it's used in! */ if (reloc_howto->type == 11 && insn_size > 2) size = 2; if (size < 1 || size > 4) abort(); offset = 4 - size; fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset, size, &fixups[i].exp, reloc_howto->pc_relative, fixups[i].reloc); switch (fixups[i].reloc) { case BFD_RELOC_LO16: case BFD_RELOC_HI16: case BFD_RELOC_HI16_S: fixP->fx_no_overflow = 1; break; } } else { fix_new_exp (frag_now, f - frag_now->fr_literal, 4, &fixups[i].exp, 1 /* FIXME: V850_OPERAND_RELATIVE ??? */, ((bfd_reloc_code_real_type) (fixups[i].opindex + (int) BFD_RELOC_UNUSED))); } } input_line_pointer = saved_input_line_pointer; } /* if while processing a fixup, a reloc really needs to be created */ /* then it is done here */ arelent * tc_gen_reloc (seg, fixp) asection *seg; fixS *fixp; { arelent *reloc; reloc = (arelent *) xmalloc (sizeof (arelent)); reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym; reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); if (reloc->howto == (reloc_howto_type *) NULL) { as_bad_where (fixp->fx_file, fixp->fx_line, "reloc %d not supported by object file format", (int)fixp->fx_r_type); return NULL; } reloc->addend = fixp->fx_addnumber; /* printf("tc_gen_reloc: addr=%x addend=%x\n", reloc->address, reloc->addend); */ return reloc; } /* Assume everything will fit in two bytes, then expand as necessary. */ int md_estimate_size_before_relax (fragp, seg) fragS *fragp; asection *seg; { fragp->fr_var = 4; return 2; } long md_pcrel_from (fixp) fixS *fixp; { /* If the symbol is undefined, or in a section other than our own, then let the linker figure it out. */ if (fixp->fx_addsy != (symbolS *) NULL && ! S_IS_DEFINED (fixp->fx_addsy)) { /* The symbol is undefined. Let the linker figure it out. */ return 0; } return fixp->fx_frag->fr_address + fixp->fx_where; } int md_apply_fix3 (fixp, valuep, seg) fixS *fixp; valueT *valuep; segT seg; { valueT value; char *where; if (fixp->fx_addsy == (symbolS *) NULL) { value = *valuep; fixp->fx_done = 1; } else if (fixp->fx_pcrel) value = *valuep; else { value = fixp->fx_offset; if (fixp->fx_subsy != (symbolS *) NULL) { if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section) value -= S_GET_VALUE (fixp->fx_subsy); else { /* We don't actually support subtracting a symbol. */ as_bad_where (fixp->fx_file, fixp->fx_line, "expression too complex"); } } } /* printf("md_apply_fix: value=0x%x type=%d\n", value, fixp->fx_r_type); */ if ((int) fixp->fx_r_type >= (int) BFD_RELOC_UNUSED) { int opindex; const struct v850_operand *operand; char *where; unsigned long insn; opindex = (int) fixp->fx_r_type - (int) BFD_RELOC_UNUSED; operand = &v850_operands[opindex]; /* Fetch the instruction, insert the fully resolved operand value, and stuff the instruction back again. Note the instruction has been stored in little endian format! */ where = fixp->fx_frag->fr_literal + fixp->fx_where; insn = bfd_getl32((unsigned char *) where); insn = v850_insert_operand (insn, operand, (offsetT) value, fixp->fx_file, fixp->fx_line); bfd_putl32((bfd_vma) insn, (unsigned char *) where); if (fixp->fx_done) { /* Nothing else to do here. */ return 1; } /* Determine a BFD reloc value based on the operand information. We are only prepared to turn a few of the operands into relocs. */ if (operand->bits == 22) fixp->fx_r_type = BFD_RELOC_V850_22_PCREL; else if (operand->bits == 9) fixp->fx_r_type = BFD_RELOC_V850_9_PCREL; else if (operand->bits == 16) fixp->fx_r_type = BFD_RELOC_V850_16_PCREL; else { as_bad_where(fixp->fx_file, fixp->fx_line, "unresolved expression that must be resolved"); fixp->fx_done = 1; return 1; } } else if (fixp->fx_done) { /* We still have to insert the value into memory! */ where = fixp->fx_frag->fr_literal + fixp->fx_where; if (fixp->fx_size == 1) *where = value & 0xff; if (fixp->fx_size == 2) bfd_putl16(value & 0xffff, (unsigned char *) where); if (fixp->fx_size == 4) bfd_putl32(value, (unsigned char *) where); } fixp->fx_addnumber = value; return 1; } /* Insert an operand value into an instruction. */ static unsigned long v850_insert_operand (insn, operand, val, file, line) unsigned long insn; const struct v850_operand * operand; offsetT val; char *file; unsigned int line; { if (operand->bits != 32) { long min, max; offsetT test; if ((operand->flags & V850_OPERAND_SIGNED) != 0) { max = (1 << (operand->bits - 1)) - 1; min = - (1 << (operand->bits - 1)); } else { max = (1 << operand->bits) - 1; min = 0; } test = val; if (test < (offsetT) min || test > (offsetT) max) { const char * err = "operand out of range (%s not between %ld and %ld)"; char buf[100]; sprint_value (buf, test); if (file == (char *) NULL) as_warn (err, buf, min, max); else as_warn_where (file, line, err, buf, min, max); } } if (operand->insert) { const char * message = NULL; insn = (*operand->insert) (insn, val, & message); if (message != NULL) { if (file == (char *) NULL) as_warn (message); else as_warn_where (file, line, message); } } else insn |= (((long) val & ((1 << operand->bits) - 1)) << operand->shift); return insn; } /* Parse a cons expression. We have to handle hi(), lo(), etc on the v850. */ void parse_cons_expression_v850 (exp) expressionS *exp; { /* See if there's a reloc prefix like hi() we have to handle. */ hold_cons_reloc = v850_reloc_prefix (); /* Do normal expression parsing. */ expression (exp); } /* Create a fixup for a cons expression. If parse_cons_expression_v850 found a reloc prefix, then we use that reloc, else we choose an appropriate one based on the size of the expression. */ void cons_fix_new_v850 (frag, where, size, exp) fragS *frag; int where; int size; expressionS *exp; { if (hold_cons_reloc == BFD_RELOC_UNUSED) { if (size == 4) hold_cons_reloc = BFD_RELOC_32; if (size == 2) hold_cons_reloc = BFD_RELOC_16; if (size == 1) hold_cons_reloc = BFD_RELOC_8; } if (exp != NULL) fix_new_exp (frag, where, size, exp, 0, hold_cons_reloc); else fix_new (frag, where, size, NULL, 0, 0, hold_cons_reloc); }