/* tc-txvu.c -- Assembler for the TX VU. Copyright (C) 1997, 1998 Free Software Foundation. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include "as.h" #include "subsegs.h" /* Needed by opcode/txvu.h. */ #include "dis-asm.h" #include "opcode/txvu.h" #include "elf/txvu.h" static TXVU_INSN txvu_insert_operand PARAMS ((TXVU_INSN, const struct txvu_operand *, int, offsetT, char *, unsigned int)); const char comment_chars[] = ";"; const char line_comment_chars[] = "#"; const char line_separator_chars[] = "!"; const char EXP_CHARS[] = "eE"; const char FLT_CHARS[] = "dD"; /* Non-zero if in vu-mode. */ static int vu_mode_p; /* Non-zero if packing pke instructions in dma tags. */ static int dma_pack_pke_p; const char *md_shortopts = ""; struct option md_longopts[] = { /* insert options here */ {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof(md_longopts); int md_parse_option (c, arg) int c; char *arg; { return 0; } void md_show_usage (stream) FILE *stream; { #if 0 fprintf (stream, "TX VU options:\n"); #endif } /* Set by md_assemble for use by txvu_fill_insn. */ static subsegT prev_subseg; static segT prev_seg; static void s_dmadata PARAMS ((int)); static void s_dmapackpke PARAMS ((int)); static void s_enddirect PARAMS ((int)); static void s_endgpuif PARAMS ((int)); static void s_endmpg PARAMS ((int)); static void s_endunpack PARAMS ((int)); static void s_vu PARAMS ((int)); /* The target specific pseudo-ops which we support. */ const pseudo_typeS md_pseudo_table[] = { { "dmadata", s_dmadata, 1 }, { "dmapackpke", s_dmapackpke, 0 }, { "enddirect", s_enddirect, 0 }, { "enddmadata", s_dmadata, 0 }, { "endgpuif", s_endgpuif, 0 }, { "endmpg", s_endmpg, 0 }, { "endunpack", s_endunpack, 0 }, /* .vu,.endvu added to simplify debugging */ { "vu", s_vu, 1 }, { "endvu", s_vu, 0 }, { NULL, NULL, 0 } }; void md_begin () { flagword applicable; segT seg; subsegT subseg; /* Save the current subseg so we can restore it [it's the default one and we don't want the initial section to be .sbss. */ seg = now_seg; subseg = now_subseg; subseg_set (seg, subseg); /* Initialize the opcode tables. This involves computing the hash chains. */ txvu_opcode_init_tables (0); vu_mode_p = 0; dma_pack_pke_p = 0; } enum cputype { CPU_VUUP, CPU_VULO, CPU_DMA, CPU_PKE, CPU_GPUIF }; /* We need to keep a list of fixups. We can't simply generate them as we go, because that would require us to first create the frag, and that would screw up references to ``.''. */ struct txvu_fixup { /* index into `txvu_operands' */ int opindex; expressionS exp; }; #define MAX_FIXUPS 5 static int fixup_count; static struct txvu_fixup fixups[MAX_FIXUPS]; static void assemble_dma PARAMS ((char *)); static void assemble_gpuif PARAMS ((char *)); static void assemble_pke PARAMS ((char *)); static void assemble_vu PARAMS ((char *)); static char * assemble_vu_insn PARAMS ((enum cputype, const struct txvu_opcode *, const struct txvu_operand *, char *, char *)); static char * assemble_one_insn PARAMS ((enum cputype, const struct txvu_opcode *, const struct txvu_operand *, char *, TXVU_INSN *)); void md_assemble (str) char *str; { /* Skip leading white space. */ while (isspace (*str)) str++; if (! vu_mode_p) { if (strncasecmp (str, "dma", 3) == 0) assemble_dma (str); else if (strncasecmp (str, "gpuif", 5) == 0) assemble_gpuif (str); else assemble_pke (str); } else assemble_vu (str); } /* Subroutine of md_assemble to assemble DMA instructions. */ static void assemble_dma (str) char *str; { TXVU_INSN buf[4]; assemble_one_insn (CPU_DMA, dma_opcode_lookup_asm (str), dma_operands, str, buf); } /* Subroutine of md_assemble to assemble PKE instructions. */ static void assemble_pke (str) char *str; { TXVU_INSN buf[4]; assemble_one_insn (CPU_PKE, pke_opcode_lookup_asm (str), pke_operands, str, buf); } /* Subroutine of md_assemble to assemble GPUIF instructions. */ static void assemble_gpuif (str) char *str; { TXVU_INSN buf[4]; assemble_one_insn (CPU_GPUIF, gpuif_opcode_lookup_asm (str), gpuif_operands, str, buf); } /* Subroutine of md_assemble to assemble VU instructions. */ static void assemble_vu (str) char *str; { /* The lower instruction has the lower address. Handle this by grabbing 8 bytes now, and then filling each word as appropriate. */ char *f = frag_more (8); #ifdef VERTICAL_BAR_SEPARATOR char *p = strchr (str, '|'); if (p == NULL) { as_bad ("lower slot missing in `%s'", str); return; } *p = 0; assemble_vu_insn (CPU_VUUP, txvu_upper_opcode_lookup_asm (str), txvu_operands, str, f + 4); *p = '|'; assemble_vu_insn (CPU_VULO, txvu_lower_opcode_lookup_asm (str), txvu_operands, p + 1, f); #else str = assemble_vu_insn (CPU_VUUP, txvu_upper_opcode_lookup_asm (str), txvu_operands, str, f + 4); /* Don't assemble next one if we couldn't assemble the first. */ if (str) assemble_vu_insn (CPU_VULO, txvu_lower_opcode_lookup_asm (str), txvu_operands, str, f); #endif } static char * assemble_vu_insn (cpu, opcode, operand_table, str, buf) enum cputype cpu; const struct txvu_opcode *opcode; const struct txvu_operand *operand_table; char *str; char *buf; { int i; TXVU_INSN insn; str = assemble_one_insn (cpu, opcode, operand_table, str, &insn); if (str == NULL) return NULL; /* Write out the instruction. Reminder: it is important to fetch enough space in one call to `frag_more'. We use (f - frag_now->fr_literal) to compute where we are and we don't want frag_now to change between calls. */ md_number_to_chars (buf, insn, 4); /* Create any fixups. */ for (i = 0; i < fixup_count; ++i) { int op_type, reloc_type; const struct txvu_operand *operand; /* Create a fixup for this operand. At this point we do not use a bfd_reloc_code_real_type for operands residing in the insn, but instead just use the operand index. This lets us easily handle fixups for any operand type, although that is admittedly not a very exciting feature. We pick a BFD reloc type in md_apply_fix. */ op_type = fixups[i].opindex; reloc_type = op_type + (int) BFD_RELOC_UNUSED; operand = &txvu_operands[op_type]; fix_new_exp (frag_now, buf - frag_now->fr_literal, 4, &fixups[i].exp, (operand->flags & TXVU_OPERAND_RELATIVE_BRANCH) != 0, (bfd_reloc_code_real_type) reloc_type); } /* All done. */ return str; } /* Assemble one instruction. CPU indicates what component we're assembling for. The assembled instruction is stored in INSN_BUF. The result is a pointer to beyond the end of the scanned insn or NULL if an error occured. This is to handle the VU where two instructions appear on one line. If this is the upper insn, the caller can pass back to result to us parse the lower insn. */ static char * assemble_one_insn (cpu, opcode, operand_table, str, insn_buf) enum cputype cpu; const struct txvu_opcode *opcode; const struct txvu_operand *operand_table; char *str; TXVU_INSN *insn_buf; { char *start; /* Keep looking until we find a match. */ start = str; for ( ; opcode != NULL; opcode = TXVU_OPCODE_NEXT_ASM (opcode)) { int past_opcode_p, num_suffixes, num_operands; const unsigned char *syn; /* Ensure the mnemonic part matches. */ for (str = start, syn = opcode->mnemonic; *syn != '\0'; ++str, ++syn) if (tolower (*str) != tolower (*syn)) break; if (*syn != '\0') continue; /* Scan the syntax string. If it doesn't match, try the next one. */ txvu_opcode_init_parse (); *insn_buf = opcode->value; fixup_count = 0; past_opcode_p = 0; num_suffixes = 0; num_operands = 0; /* We don't check for (*str != '\0') here because we want to parse any trailing fake arguments in the syntax string. */ for (/*str = start, */ syn = opcode->syntax; *syn != '\0'; ) { int mods,index; const struct txvu_operand *operand; const char *errmsg; /* Non operand chars must match exactly. Operand chars that are letters are not part of symbols and are case insensitive. */ if (*syn < 128) { if (tolower (*str) == tolower (*syn)) { if (*syn == ' ') past_opcode_p = 1; ++syn; ++str; } else break; continue; } /* We have a suffix or an operand. Pick out any modifiers. */ mods = 0; index = TXVU_OPERAND_INDEX (*syn); while (TXVU_MOD_P (operand_table[index].flags)) { mods |= operand_table[index].flags & TXVU_MOD_BITS; ++syn; index = TXVU_OPERAND_INDEX (*syn); } operand = operand_table + index; if (operand->flags & TXVU_OPERAND_FAKE) { if (operand->insert) { errmsg = NULL; (*operand->insert) (insn_buf, operand, mods, 0, &errmsg); /* If we get an error, go on to try the next insn. */ if (errmsg) break; } ++syn; } /* Are we finished with suffixes? */ else if (!past_opcode_p) { int found; char c; char *s,*t; long suf_value; if (!(operand->flags & TXVU_OPERAND_SUFFIX)) as_fatal ("bad opcode table, missing suffix flag"); /* If we're at a space in the input string, we want to skip the remaining suffixes. There may be some fake ones though, so just go on to try the next one. */ if (*str == ' ') { ++syn; continue; } s = str; /* Pick the suffix out and parse it. */ /* ??? Hmmm ... there may not be any need to nul-terminate the string, and it may in fact complicate things. */ for (t = *s == '.' ? s + 1 : s; *t && (isalnum (*t) || *t == '[' || *t == ']'); ++t) continue; c = *t; *t = '\0'; errmsg = NULL; suf_value = (*operand->parse) (&s, &errmsg); *t = c; if (errmsg) { /* This can happen, for example, in ARC's in "blle foo" and we're currently using the template "b%q%.n %j". The "bl" insn occurs later in the table so "lle" isn't an illegal suffix. */ break; } /* Insert the suffix's value into the insn. */ if (operand->insert) (*operand->insert) (insn_buf, operand, mods, suf_value, NULL); else *insn_buf |= suf_value << operand->shift; str = t; ++syn; } else /* This is an operand, either a register or an expression of some kind. */ { char c; char *hold; long value = 0; expressionS exp; if (operand->flags & TXVU_OPERAND_SUFFIX) as_fatal ("bad opcode table, suffix wrong"); #if 0 /* commas are in the syntax string now */ /* If this is not the first, there must be a comma. */ if (num_operands > 0) { if (*str != ',') break; ++str; } #endif /* Is there anything left to parse? We don't check for this at the top because we want to parse any trailing fake arguments in the syntax string. */ /* ??? This doesn't allow operands with a legal value of "". */ if (*str == '\0') break; /* Parse the operand. */ if (operand->parse) { errmsg = NULL; value = (*operand->parse) (&str, &errmsg); if (errmsg) break; } else { hold = input_line_pointer; input_line_pointer = str; expression (&exp); str = input_line_pointer; input_line_pointer = hold; if (exp.X_op == O_illegal || exp.X_op == O_absent) break; else if (exp.X_op == O_constant) value = exp.X_add_number; else if (exp.X_op == O_register) as_fatal ("got O_register"); else { /* We need to generate a fixup for this expression. */ if (fixup_count >= MAX_FIXUPS) as_fatal ("too many fixups"); fixups[fixup_count].exp = exp; fixups[fixup_count].opindex = index; ++fixup_count; value = 0; } } /* Insert the register or expression into the instruction. */ if (operand->insert) { const char *errmsg = NULL; (*operand->insert) (insn_buf, operand, mods, value, &errmsg); if (errmsg != (const char *) NULL) break; } else *insn_buf |= (value & ((1 << operand->bits) - 1)) << operand->shift; ++syn; ++num_operands; } } /* If we're at the end of the syntax string, we're done. */ /* FIXME: try to move this to a separate function. */ if (*syn == '\0') { int i; /* For the moment we assume a valid `str' can only contain blanks now. IE: We needn't try again with a longer version of the insn and it is assumed that longer versions of insns appear before shorter ones (eg: lsr r2,r3,1 vs lsr r2,r3). */ while (isspace (*str)) ++str; if (*str != '\0' #ifndef VERTICAL_BAR_SEPARATOR && cpu != CPU_VUUP #endif ) as_bad ("junk at end of line: `%s'", str); /* It's now up to the caller to emit the instruction and any relocations. */ return str; } /* Try the next entry. */ } as_bad ("bad instruction `%s'", start); return 0; } void md_operand (expressionP) expressionS *expressionP; { } valueT md_section_align (segment, size) segT segment; valueT size; { int align = bfd_get_section_alignment (stdoutput, segment); return ((size + (1 << align) - 1) & (-1 << align)); } symbolS * md_undefined_symbol (name) char *name; { return 0; } /* Functions concerning relocs. */ /* The location from which a PC relative jump should be calculated, given a PC relative reloc. */ long md_pcrel_from_section (fixP, sec) fixS *fixP; segT sec; { if (fixP->fx_addsy != (symbolS *) NULL && (! S_IS_DEFINED (fixP->fx_addsy) || S_GET_SEGMENT (fixP->fx_addsy) != sec)) { /* The symbol is undefined (or is defined but not in this section). Let the linker figure it out. */ return 0; } /* FIXME: `& -16L'? */ return (fixP->fx_frag->fr_address + fixP->fx_where) & -8L; } /* Apply a fixup to the object code. This is called for all the fixups we generated by calls to fix_new_exp. At this point all symbol values should be fully resolved, and we attempt to completely resolve the reloc. If we can not do that, we determine the correct reloc code and put it back in the fixup. */ int md_apply_fix3 (fixP, valueP, seg) fixS *fixP; valueT *valueP; segT seg; { char *where = fixP->fx_frag->fr_literal + fixP->fx_where; valueT value; /* FIXME FIXME FIXME: The value we are passed in *valueP includes the symbol values. Since we are using BFD_ASSEMBLER, if we are doing this relocation the code in write.c is going to call bfd_perform_relocation, which is also going to use the symbol value. That means that if the reloc is fully resolved we want to use *valueP since bfd_perform_relocation is not being used. However, if the reloc is not fully resolved we do not want to use *valueP, and must use fx_offset instead. However, if the reloc is PC relative, we do want to use *valueP since it includes the result of md_pcrel_from. This is confusing. */ if (fixP->fx_addsy == (symbolS *) NULL) { value = *valueP; fixP->fx_done = 1; } else if (fixP->fx_pcrel) { value = *valueP; } else { value = fixP->fx_offset; if (fixP->fx_subsy != (symbolS *) NULL) { if (S_GET_SEGMENT (fixP->fx_subsy) == absolute_section) value -= S_GET_VALUE (fixP->fx_subsy); else { /* We can't actually support subtracting a symbol. */ as_bad_where (fixP->fx_file, fixP->fx_line, "expression too complex"); } } } /* Check for txvu_operand's. These are indicated with a reloc value >= BFD_RELOC_UNUSED. */ if ((int) fixP->fx_r_type >= (int) BFD_RELOC_UNUSED) { int opindex; const struct txvu_operand *operand; TXVU_INSN insn; opindex = (int) fixP->fx_r_type - (int) BFD_RELOC_UNUSED; operand = &txvu_operands[opindex]; /* Fetch the instruction, insert the fully resolved operand value, and stuff the instruction back again. */ insn = bfd_getl32 ((unsigned char *) where); insn = txvu_insert_operand (insn, operand, -1, (offsetT) value, fixP->fx_file, fixP->fx_line); bfd_putl32 ((bfd_vma) insn, (unsigned char *) where); if (fixP->fx_done) { /* Nothing else to do here. */ return 1; } /* Determine a BFD reloc value based on the operand information. We are only prepared to turn a few of the operands into relocs. */ /* FIXME: This test is a hack. */ if ((operand->flags & TXVU_OPERAND_RELATIVE_BRANCH) != 0) { assert ((operand->flags & TXVU_OPERAND_RELATIVE_BRANCH) != 0 && operand->bits == 11 && operand->shift == 0); fixP->fx_r_type = BFD_RELOC_TXVU_11_PCREL; } else { as_bad_where (fixP->fx_file, fixP->fx_line, "unresolved expression that must be resolved"); fixP->fx_done = 1; return 1; } } else { switch (fixP->fx_r_type) { case BFD_RELOC_8: md_number_to_chars (where, value, 1); break; case BFD_RELOC_16: md_number_to_chars (where, value, 2); break; case BFD_RELOC_32: md_number_to_chars (where, value, 4); break; default: abort (); } } fixP->fx_addnumber = value; return 1; } /* Translate internal representation of relocation info to BFD target format. */ arelent * tc_gen_reloc (section, fixP) asection *section; fixS *fixP; { arelent *reloc; reloc = (arelent *) xmalloc (sizeof (arelent)); reloc->sym_ptr_ptr = &fixP->fx_addsy->bsym; reloc->address = fixP->fx_frag->fr_address + fixP->fx_where; reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type); if (reloc->howto == (reloc_howto_type *) NULL) { as_bad_where (fixP->fx_file, fixP->fx_line, "internal error: can't export reloc type %d (`%s')", fixP->fx_r_type, bfd_get_reloc_code_name (fixP->fx_r_type)); return NULL; } assert (!fixP->fx_pcrel == !reloc->howto->pc_relative); reloc->addend = fixP->fx_addnumber; return reloc; } /* Write a value out to the object file, using the appropriate endianness. */ void md_number_to_chars (buf, val, n) char *buf; valueT val; int n; { if (target_big_endian) number_to_chars_bigendian (buf, val, n); else number_to_chars_littleendian (buf, val, n); } /* Turn a string in input_line_pointer into a floating point constant of type type, and store the appropriate bytes in *litP. The number of LITTLENUMS emitted is stored in *sizeP . An error message is returned, or NULL on OK. */ /* Equal to MAX_PRECISION in atof-ieee.c */ #define MAX_LITTLENUMS 6 char * md_atof (type, litP, sizeP) char type; char *litP; int *sizeP; { int i,prec; LITTLENUM_TYPE words[MAX_LITTLENUMS]; LITTLENUM_TYPE *wordP; char *t; char *atof_ieee (); switch (type) { case 'f': case 'F': case 's': case 'S': prec = 2; break; case 'd': case 'D': case 'r': case 'R': prec = 4; break; /* FIXME: Some targets allow other format chars for bigger sizes here. */ default: *sizeP = 0; return "Bad call to md_atof()"; } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizeP = prec * sizeof (LITTLENUM_TYPE); if (target_big_endian) { for (i = 0; i < prec; i++) { md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE)); litP += sizeof (LITTLENUM_TYPE); } } else { for (i = prec - 1; i >= 0; i--) { md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE)); litP += sizeof (LITTLENUM_TYPE); } } return 0; } /* Insert an operand value into an instruction. */ static TXVU_INSN txvu_insert_operand (insn, operand, mods, val, file, line) TXVU_INSN insn; const struct txvu_operand *operand; int mods; offsetT val; char *file; unsigned int line; { if (operand->bits != 32) { long min, max; offsetT test; if ((operand->flags & TXVU_OPERAND_RELATIVE_BRANCH) != 0) { if ((val & 7) != 0) { if (file == (char *) NULL) as_warn ("branch to misaligned address"); else as_warn_where (file, line, "branch to misaligned address"); } val >>= 3; } if ((operand->flags & TXVU_OPERAND_SIGNED) != 0) { if ((operand->flags & TXVU_OPERAND_SIGNOPT) != 0) max = (1 << operand->bits) - 1; else max = (1 << (operand->bits - 1)) - 1; min = - (1 << (operand->bits - 1)); } else { max = (1 << operand->bits) - 1; min = 0; } if ((operand->flags & TXVU_OPERAND_NEGATIVE) != 0) test = - val; else test = val; if (test < (offsetT) min || test > (offsetT) max) { const char *err = "operand out of range (%s not between %ld and %ld)"; char buf[100]; sprint_value (buf, test); if (file == (char *) NULL) as_warn (err, buf, min, max); else as_warn_where (file, line, err, buf, min, max); } } if (operand->insert) { const char *errmsg = NULL; (*operand->insert) (&insn, operand, mods, (long) val, &errmsg); if (errmsg != (const char *) NULL) as_warn (errmsg); } else insn |= (((long) val & ((1 << operand->bits) - 1)) << operand->shift); return insn; } static void s_dmadata( type) int type; { static short state = 0; static symbolS *label; /* Points to symbol */ char *name; const char *prevName; int temp; switch( type) { case 1: /* .DmaData */ if( state != 0) { as_bad( "DmaData blocks cannot be nested."); ignore_rest_of_line(); state = 1; break; } state = 1; SKIP_WHITESPACE(); /* Leading whitespace is part of operand. */ name = input_line_pointer; if( !is_name_beginner( *name) ) { as_bad( "invalid identifier for \".DmaData\""); obstack_1grow (&cond_obstack, 0); ignore_rest_of_line(); break; } else { char c; c = get_symbol_end(); line_label = label = colon( name); /* user-defined label */ *input_line_pointer = c; demand_empty_rest_of_line(); } /* if a valid identifyer name */ break; case 0: /* .EndDmaData */ if( state != 1) { as_warn( ".EndDmaData encountered outside a DmaData block -- ignored."); ignore_rest_of_line(); state = 0; break; } state = 0; demand_empty_rest_of_line(); /* *"label" points to beginning of block * Create a name for the final label like _$ */ prevName = label->bsym->name; temp = strlen( prevName) + 1; name = malloc( temp + 2); name[ 0] = '_'; name[ 1] = '$'; memcpy( name+2, prevName, temp); /* copy original name & \0 */ colon( name); free( name); break; default: as_assert( __FILE__, __LINE__, 0); } } static void s_dmapackpke( ignore) int ignore; { /* Syntax: .dmapackpke 0|1 */ struct symbol *label; /* Points to symbol */ char *name; /* points to name of symbol */ SKIP_WHITESPACE(); /* Leading whitespace is part of operand. */ switch( *input_line_pointer++) { case 0: dma_pack_pke_p = 0; break; case 1: dma_pack_pke_p = 1; break; default: as_bad( "illegal argument to `.DmaPackPke'"); } demand_empty_rest_of_line(); } static void s_enddirect (ignore) int ignore; { } static void s_endgpuif (ignore) int ignore; { } static void s_endmpg (ignore) int ignore; { vu_mode_p = 0; } static void s_endunpack (ignore) int ignore; { vu_mode_p = 0; } static void s_vu (enable_p) int enable_p; { vu_mode_p = enable_p; }